Computer Vision Toolbox ${ }^{\text {mm }}$

Reference

MATLAB®\&SIMULINK ${ }^{\circ}$

How to Contact MathWorks

Latest news:
www.mathworks.com
Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact_us
Phone:
508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098
Computer Vision Toolbox ${ }^{\mathrm{Tm}}$ Reference
© COPYRIGHT 2000-2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

April 2011 Online only
September 2011 Online only
March 2012 Online only
September 2012 Online only
March 2013 Online only
September 2013 Online only
March 2014 Online only
October 2014 Online only
March 2015 Online only
September 2015 Online only
March 2016 Online only
September 2016 Online only
March 2017 Online only
September 2017 Online only
March 2018 Online only
September 2018 Online only
March 2019 Online only
September 2019 Online only

Revised for Version 4.0 (Release 2011a)
Revised for Version 4.1 (Release 2011b)
Revised for Version 5.0 (Release 2012a)
Revised for Version 5.1 (Release R2012b)
Revised for Version 5.2 (Release R2013a)
Revised for Version 5.3 (Release R2013b)
Revised for Version 6.0 (Release R2014a)
Revised for Version 6.1 (Release R2014b)
Revised for Version 6.2 (Release R2015a)
Revised for Version 7.0 (Release R2015b)
Revised for Version 7.1 (Release R2016a)
Revised for Version 7.2 (Release R2016b)
Revised for Version 7.3 (Release R2017a)
Revised for Version 8.0 (Release R2017b)
Revised for Version 8.1 (Release R2018a)
Revised for Version 8.2 (Release R2018b)
Revised for Version 9.0 (Release R2019a)
Revised for Version 9.1 (Release R2019b)

Blocks in Computer Vision Toolbox
 1

Objects in Computer Vision Toolbox
2

Functions in Computer Vision Toolbox
3

Blocks in Computer Vision Toolbox

2-D Autocorrelation

Compute 2-D autocorrelation of input matrix

Library

Statistics
visionstatistics

Description

The 2-D Autocorrelation block computes the two-dimensional autocorrelation of the input matrix. Assume that input matrix A has dimensions (Ma, Na). The equation for the twodimensional discrete autocorrelation is

$$
C(i, j)=\sum_{m=0}^{(M a-1)} \sum_{n=0}^{(N a-1)} A(m, n) \cdot \operatorname{conj}(A(m+i, n+j))
$$

where $0 \leq i<2 M a-1$ and $0 \leq j<2 N a-1$.
The output of this block has dimensions ($2 \mathrm{Ma}-1,2 \mathrm{Na}-1$).

Port	Input/Output	Supported Data Types	Complex Values Supported
Input	Vector or matrix of intensity values or a scalar, vector, or matrix that represents one plane of the RGB video stream	- Double-precision floating point - Single-precision floating point - Fixed point - 8-, 16-, 32-bit signed integer - 8-, 16-, 32-bit unsigned integer	Yes
Output	Autocorrelation of the input matrix	Same as Input port	Yes

If the data type of the input is floating point, the output of the block has the same data type.

Fixed-Point Data Types

The following diagram shows the data types used in the 2-D Autocorrelation block for fixed-point signals.

You can set the product output, accumulator, and output data types in the block mask as discussed in "Parameters" on page 1-4.

The output of the multiplier is in the product output data type if at least one of the inputs to the multiplier is real. If both of the inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, refer to "Multiplication Data Types".

Parameters

Rounding mode

Select the "Rounding Modes" for fixed-point operations.

Saturate on integer overflow

Select the overflow mode for fixed-point operations. See "Precision and Range".

Product output

Specify the product output data type. See "Fixed-Point Data Types" on page 1-3 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block:

- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. The bias of all signals in the Computer Vision Toolbox software is 0 .

Accumulator

Use this parameter to specify how to designate the accumulator word and fraction lengths. Refer to "Fixed-Point Data Types" on page 1-3 and "Multiplication Data Types" for illustrations depicting the use of the accumulator data type in this block. The accumulator data type is only used when both inputs to the multiplier are complex.

- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. The bias of all signals in the Computer Vision Toolbox software is 0 .

Output

Choose how to specify the output word length and fraction length.

- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. The bias of all signals in the Computer Vision Toolbox software is 0 .

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink ${ }^{\circledR}$ documentation.

See Also

2-D Correlation
2-D Histogram
2-D Mean
2-D Median
2-D Standard Deviation
2-D Variance
2-D Maximum
2-D Minimum

Computer Vision Toolbox

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

Introduced before R2006a

2-D Convolution

Compute 2-D discrete convolution of two input matrices Library: Computer Vision Toolbox / Filtering

Description

The 2-D Convolution block computes the two-dimensional convolution of two input matrices. Assume that matrix A has dimensions ($M a, N a$) and matrix B has dimensions $(M b, N b)$. When the block calculates the full output size, the equation for the 2-D discrete convolution is:

$$
C(i, j)=\sum_{m=0}^{(M a-1)} \sum_{n=0}^{(N a-1)} A(m, n) * B(i-m, j-n)
$$

where $0 \leq i<M a+M b-1$ and $0 \leq j<N a+N b-1$.

Ports

Input

I1 - Input matrix

matrix

Input matrix, specified as either a matrix of intensity values or a matrix that represents one plane of an RGB video stream.
Data Types: single | double | int8| int16|int32|uint8|uint16|uint32| fixed point

I2 - Input matrix

matrix

Input matrix, specified as either a matrix of intensity values or a matrix that represents one plane of an RGB video stream.
Data Types: single | double | int8| int16|int32|uint8|uint16|uint32| fixed point

Output

Output - Convolution

matrix
Convolution of the input matrices, returned as a matrix.

Dependencies

- The dimensions of the output are dictated by the Output size parameter.
- If the data type of the input is floating point, the output of the block is also floating point.
- If all(size(I1)<size(I2)), the block returns an error.

Data Types: single|double | int8|int16|int32|uint8|uint16|uint32| fixed point

Parameters

Main Tab

Output size - Output size

matrix
Dimensions of the output.
The table describes the block output, given the following input dimensions:

- $\mathbf{I 1}$ - (Ma, Na)
- $\mathbf{I 2}-(M b, N b)$

Output size	Output	Output Dimension
Full	Full two-dimensional convolution	$(M a+M b-1, N a+N b-1)$.
Same as input port I1	Central part of the convolution with the same dimensions as the input at port I1	
Valid	Only the parts of the convolution that are computed without the zero- padded edges of any input.	$(M a-M b+1, N a-N b+1)$

Normalized output - Normalized output

matrix

Normalize output by dividing the output by
$\operatorname{sqrt}(\operatorname{sum}(\operatorname{dot}(I 1 p, I 1 p)) * \operatorname{sum}(\operatorname{dot}(I 2, I 2)))$, where I1p is the portion of the I1 matrix that aligns with the $\mathbf{I} 2$ matrix.

Note When you select the Normalized output check box, the block input cannot be fixed point.

Data Types Tab

For details on the fixed-point block parameters, see "Specify Fixed-Point Attributes for Blocks" .

Block Characteristics

| Data Types | double \| fixed point | integer | single |
| :--- | :--- |
| Multidimensional
 Signals | no |
| Variable-Size
 Signals | yes |

Algorithms

2-D Convolution

In convolution, the value of an output element is computed as a weighted sum of neighboring elements.

For example, suppose the first input matrix represents an image and is defined as:

I1 $=$| $[17$ | 24 | 1 | 8 | 15 |
| :---: | :---: | :---: | :---: | :---: |
| 23 | 5 | 7 | 14 | 16 |
| 4 | 6 | 13 | 20 | 22 |
| 10 | 12 | 19 | 21 | 3 |
| 11 | 18 | 25 | 2 | $9]$ |

The second input matrix also represents an image and is defined as:
$\left.\mathrm{I} 2=\begin{array}{lll}{[8} & 1 & \\ 3 & 5 & 7 \\ 4 & 9 & 2\end{array}\right]$

The following figure shows how to compute the $(1,1)$ output element by using these steps:
1 Rotate the second input matrix, $\mathbf{I} 2,180$ degrees around its center element.
2 Slide the center element of $\mathbf{I} \mathbf{2}$ so that it lies on top of the $(0,0)$ element of \mathbf{I}.
3 Multiply each element of the rotated $\mathbf{I} 2$ matrix by the element of $\mathbf{I} \mathbf{1}$ underneath.
4 Sum the individual products from step 3.
The $(1,1)$ output element is $0 \cdot 2+0 \cdot 9+0 \cdot 4+0 \cdot 7+17 \cdot 5+24 \cdot 3+0 \cdot 6+23 \cdot 1+5 \cdot 8=220$.

Computing the ($\mathbf{1}, \mathbf{1}$) Output of Convolution

The normalized convolution of the (1,1) output element is $220 /$ sqrt(sum(dot(Ilp,I1p))*sum(dot(I2,I2))) = 0.3459, where Ilp = [0 0 0; 0 17 24; 023 5].

Output Sizes

The equations below describe how the block computes the convolution depending on how you set the Output size parameter. For the cases below, the inputs are set as:

- I1 - dimensions $(4,3)$
- I2 - dimensions $(2,2)$
- When Output size is set to Full, the block uses the following equations:

$$
\begin{aligned}
& C_{\text {full } l_{\text {rows }}}=I 1_{\text {rows }}+I 2_{\text {rows }}-1=5 \\
& C_{\text {full }}^{\text {columns }} \\
& =I 1_{\text {columns }}+I 2_{\text {columns }}-1=4
\end{aligned}
$$

The resulting matrix is:

$$
C_{\text {full }}=\left[\begin{array}{llll}
c_{00} & c_{01} & c_{02} & c_{03} \\
c_{10} & c_{11} & c_{12} & c_{13} \\
c_{20} & c_{21} & c_{22} & c_{23} \\
c_{30} & c_{31} & c_{32} & c_{33} \\
c_{40} & c_{41} & c_{42} & c_{43}
\end{array}\right]
$$

- When Output size is set to Same as input port I1, the output is the central part of Cfull with the same dimensions as the input at port I1, (4,3). However, since a 4-by-3 matrix cannot be extracted from the exact center of Cfull, the block leaves more rows and columns on the top and left side of the Cfull matrix and outputs:

$$
C_{\text {same }}=\left[\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33} \\
c_{41} & c_{42} & c_{43}
\end{array}\right]
$$

- When the Output size is set to Valid, the block uses the following equations to determine the number of rows and columns of the output matrix:

$$
\begin{aligned}
& C_{\text {valid }_{\text {rons }}}=I 1_{\text {rows }}-I 2_{\text {rows }}+1=3 \\
& C_{\text {valid }_{\text {colums }}}=I 1_{\text {columns }}-I 2_{\text {columns }}+1=2
\end{aligned}
$$

In this case, it is always possible to extract the exact center of Cfull. Therefore, the block outputs:

$$
C_{\text {full }}=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22} \\
c_{31} & c_{32}
\end{array}\right]
$$

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\mathrm{TM}}$.
When you select the Normalized output check box, the block input cannot be fixed point.

See Also

2-D FIR Filter

Introduced before R2006a

2-D Correlation

Compute 2-D correlation of two input matrices

Library: Computer Vision Toolbox / Statistics

Description

The 2-D Correlation block computes the two-dimensional cross-correlation between two input matrices.

Ports

Input

I1 - First input matrix
 M-by- N matrix

First input matrix, specified as a M-by- N matrix.
Data Types: single| double|int8|int16|int32|int64|uint8|uint16| uint32|uint64|fixed point
Complex Number Support: Yes

I2 - Second input matrix

P-by-Q matrix
Second input matrix, specified as a P-by- Q matrix.

```
Data Types: single| double| int8|int16|int32|int64|uint8|uint16|
uint32|uint64|fixed point
Complex Number Support: Yes
```


Output

Port_1 - Calculated cross-correlation

scalar | vector | matrix
Calculated cross-correlation, returned as a scalar, vector, or matrix. The size of the crosscorrelation output depends on the Output size parameter.
Data Types: single|double|int8|int16|int32|int64|uint8|uint16| uint32|uint64|fixed point
Complex Number Support: Yes

Parameters

Main Tab

Output size - Size of cross-correlation output

Full (default)|Same as input port Il|Valid
Size of the cross-correlation output.

- If you choose Full, the output has the dimensions ($M+P-1$)-by- $(N+Q-1)$.
- If you choose Same as input port I1, the output has the same dimensions as the input at port I1. The block returns the central part of cross-correlation matrix, which is the same size as the input at port $\mathbf{I 1}$.
- If you choose Valid, the output has the dimensions $(M-P+1)$-by- $(N-Q+1)$. The block returns only parts of the cross-correlation matrix that are computed without zeropadded edges.

Normalized output - Normalize cross-correlation output

off (default) | on
Select this parameter, if the data types of the inputs are floating-point. The values of the cross-correlation output are normalized to [0, 1].

Data Types Tab

For details on the fixed-point block parameters, see "Specify Fixed-Point Attributes for Blocks".

Lock data type settings against change by the fixed-point tools Prevent fixed-point tools from overriding data types

off (default) | on
Select this parameter to prevent the fixed-point tools from overriding the data types you specify on this block. For more information, see "Lock the Output Data Type Setting" (Fixed-Point Designer).

Block Characteristics

| Data Types | double \| fixed point | integer | single |
| :--- | :--- |
| Multidimensional
 Signals | no |
| Variable-Size
 Signals | yes |

Algorithms

Given two input matrices, $I 1$ and $I 2$, that are size M-by- N and P-by- Q, the 2-D crosscorrelation value at the point (k, l) is given by

$$
C(k, l)=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} I 1(m, n) \overline{I 2}(m+k, n+l) .
$$

The normalized cross-correlation value at the point (k, l) is calculated as

$$
C_{N}(k, l)=\frac{\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} I 1(m, n) \overline{I 2}(m+k, n+l)}{\sqrt{\sum_{m=0}^{M-1} \sum_{n=0}^{1 N-1} I 1(m, n)^{2}} \sqrt{\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \overline{I 2}(m+k, n+l)^{2}}},
$$

where,
$0 \leq k<M+P-1$
$0 \leq l<N+Q-1$

Suppose I1 and I2 are matrices with dimensions $(4,3)$ and $(2,2)$. The following figure shows how the block computes cross-correlation value for the point $I 1(1,3)$, which refers to the second column and fourth row in zero-based indexing.

The cross-correlation value for the point $I 1(1,3)$ is computed using these steps:
1 Slide the center element of $I 2$ so that it lies on top of the $(0,2)$ element of $I 1$.
2 Multiply each weight in I2 by the element of I1 underneath.
3 Sum the individual products from step 2.
The cross-correlation value for the point $I 1(1,3)$ is
$1 \cdot 8+8 \cdot 1+15 \cdot 6+7 \cdot 3+14 \cdot 5+16 \cdot 7+13 \cdot 4+20 \cdot 9+22 \cdot 2=585$.
The normalized cross-correlation value for the point $I 1(1,3)$ is

$$
\frac{585}{\sqrt{\sum I 1_{p}^{2}} \sqrt{\sum I 2^{2}}}=0.8070
$$

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using Simulink $®{ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\mathrm{TM}}$.

See Also
2-D Autocorrelation | 2-D Histogram | 2-D Maximum | 2-D Mean | 2-D Median | 2-D Minimum | 2-D Standard Deviation | 2-D Variance
Introduced before R2006a

2-D DCT

Compute 2-D discrete cosine transform (DCT)

```
2-D DCT
```


Library

Transforms
visiontransforms

Description

The 2-D DCT block calculates the two-dimensional discrete cosine transform of the input signal. The equation for the two-dimensional DCT is
$F(m, n)=\frac{2}{\sqrt{M N}} C(m) C(n) \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \cos \frac{(2 x+1) m \pi}{2 M} \cos \frac{(2 y+1) n \pi}{2 N}$
where $C(m), C(n)=1 / \sqrt{2}$ for $m, n=0$ and $C(m), C(n)=1$ otherwise.
The number of rows and columns of the input signal must be powers of two. The output of this block has dimensions the same dimensions as the input.

Port	Input/Output	Supported Data Types	Complex Values Supported
Input	Vector or matrix of intensity values	- Double-precision floating point - Single-precision floating point - Fixed point - 8-, 16-, 32-bit signed integer - 8 -, 16-, 32 -bit unsigned integer	No
Output	2-D DCT of the input	Same as Input port	No

If the data type of the input signal is floating point, the output of the block is the same data type.

Use the Sine and cosine computation parameter to specify how the block computes the sine and cosine terms in the DCT algorithm. If you select Trigonometric fcn, the block computes the sine and cosine values during the simulation. If you select Table lookup, the block computes and stores the trigonometric values before the simulation starts. In this case, the block requires extra memory.

Fixed-Point Data Types

The following diagram shows the data types used in the 2-D DCT block for fixed-point signals. Inputs are first cast to the output data type and stored in the output buffer. Each butterfly stage processes signals in the accumulator data type, with the final output of the butterfly being cast back into the output data type.

\longmapsto butterly stage-—

OR

\longmapsto butterfly stage ——wwiddle multiplication-

Butterfly Stage Data Iypes

Twiddle Multiplication Data Types

The output of the multiplier is in the product output data type when at least one of the inputs to the multiplier is real. When both inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, refer to "Multiplication Data Types". You can set the sine table,
product output, accumulator, and output data types in the block mask as discussed in the next section.

Parameters

Sine and cosine computation

Specify how the block computes the sine and cosine terms in the DCT algorithm. If you select Trigonometric fcn, the block computes the sine and cosine values during the simulation. If you select Table lookup, the block computes and stores the trigonometric values before the simulation starts. In this case, the block requires extra memory.

Rounding mode

Select the "Rounding Modes" for fixed-point operations. The sine table values do not obey this parameter; they always round to Nearest.

Saturate on integer overflow

Select the overflow mode for fixed-point operations. See "Precision and Range". The sine table values do not obey this parameter; instead, they are always saturated.

Sine table data type

Choose how you specify the word length of the values of the sine table. The fraction length of the sine table values always equals the word length minus one. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Same word length as input
- An expression that evaluates to a valid data type, for example, fixdt (1,16)

The sine table values do not obey the Rounding mode and Saturate on integer overflow parameters; instead, they are always saturated and rounded to Nearest.

Product output data type

Specify the product output data type. See "Fixed-Point Data Types" on page 1-21 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt ($1,16,0$)

Click the Show data type assistant button \gg to display the Data Type
Assistant, which helps you set the Product output data type parameter.
See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Accumulator data type

Specify the accumulator data type. See "Fixed-Point Data Types" on page 1-21 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt ($1,16,0$)

Click the Show data type assistant button \gg to display the Data Type
Assistant, which helps you set the Accumulator data type parameter.
See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Output data type

Specify the output data type. See "Fixed-Point Data Types" on page 1-21 for illustrations depicting the use of the output data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule.

When you select Inherit: Inherit via internal rule, the block calculates the output word length and fraction length automatically. The internal rule first calculates an ideal output word length and fraction length using the following equations:
$W L_{\text {idealoutput }}=W L_{\text {input }}+$ floor $\left(\log _{2}(\right.$ DCTlength -1$\left.)\right)+1$
$F L_{\text {idealoutput }}=F L_{\text {input }}$
Using these ideal results, the internal rule then selects word lengths and fraction lengths that are appropriate for your hardware. For more information, see "Inherit via Internal Rule".

- An expression that evaluates to a valid data type, for example, fixdt ($1,16,0$)

Click the Show data type assistant button \gg to display the Data Type Assistant, which helps you set the Output data type parameter.

See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool. For more information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink documentation.

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink documentation.

References

[1] Chen, W.H, C.H. Smith, and S.C. Fralick, "A fast computational algorithm for the discrete cosine transform," IEEE Trans. Commun., vol. COM-25, pp. 1004-1009. 1977.
[2] Wang, Z. "Fast algorithms for the discrete W transform and for the discrete Fourier transform," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32, pp. 803-816, Aug. 1984.

See Also

2-D IDCT	Computer Vision Toolbox software
2-D FFT	Computer Vision Toolbox software
2-D IFFT	Computer Vision Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Introduced before R2006a

2-D FFT

Compute two-dimensional fast Fourier transform of input

```
2-DFFT
```


Library

Transforms
visiontransforms

Description

The 2-D FFT block computes the fast Fourier transform (FFT). The block does the computation of a two-dimensional M-by- N input matrix in two steps. First it computes the one-dimensional FFT along one dimension (row or column). Then it computes the FFT of the output of the first step along the other dimension (column or row).

The output of the 2-D FFT block is equivalent to the MATLAB ${ }^{\circledR}$ fft2 function:

```
y = fft2(A) % Equivalent MATLAB code
```

Computing the FFT of each dimension of the input matrix is equivalent to calculating the two-dimensional discrete Fourier transform (DFT), which is defined by the following equation:

$$
F(m, n)=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j \frac{2 \pi m x}{M}} e^{-j \frac{2 \pi n y}{N}}
$$

where $0 \leq m \leq M-1$ and $0 \leq n \leq N-1$.
The output of this block has the same dimensions as the input. If the input signal has a floating-point data type, the data type of the output signal uses the same floating-point data type. Otherwise, the output can be any fixed-point data type. The block computes scaled and unscaled versions of the FFT.

The input to this block can be floating-point or fixed-point, real or complex, and conjugate symmetric. The block uses one of two possible FFT implementations. You can select an implementation based on the FFTW library [1], [2], or an implementation based on a collection of Radix-2 algorithms. You can select Auto to allow the block to choose the implementation.

Port Description

Port	Description	Supported Data Types	Complex Values Supported
Input	Vector or matrix of intensity values	•Double-precision floating point - Single-precision floating point - Fixed point - 8-, 16-, 32-bit signed integer 8-, 16-, 32-bit unsigned integer 	
Output	2-D FFT of the input	Same as Input port	

FFTW Implementation

The FFTW implementation provides an optimized FFT calculation including support for power-of-two and non-power-of-two transform lengths in both simulation and code generation. Generated code using the FFTW implementation will be restricted to those computers which are capable of running MATLAB. The input data type must be floatingpoint.

Radix-2 Implementation

The Radix-2 implementation supports bit-reversed processing, fixed or floating-point data, and allows the block to provide portable C-code generation using the "Simulink Coder". The dimensions of the input matrix, M and N, must be powers of two. To work with other input sizes, use the Image Pad block to pad or truncate these dimensions to powers of two, or if possible choose the FFTW implementation.

With Radix-2 selected, the block implements one or more of the following algorithms:

- Butterfly operation
- Double-signal algorithm
- Half-length algorithm
- Radix-2 decimation-in-time (DIT) algorithm
- Radix-2 decimation-in-frequency (DIF) algorithm

Radix-2 Algorithms for Real or Complex Input Complexity Floating-Point Signals

Other Parameter Settings	Algorithms Used for IFFT Computation
Γ Input is in bit-reversed order	
Γ Input is coniugate symmetric	

Radix-2 Algorithms for Real or Complex Input Complexity Fixed-Point Signals

Other Parameter Settings	Algorithms Used for IFFT Computation
Γ Input is in bit-reversed order	Butterfly operation and radix-2 DIT
Γ Input is coniugate symmetric	
Γ Input is in bit-reversed order	Radix-2 DIF
Γ Input is coniugate symmetric	

Note The Input is conjugate symmetric parameter cannot be used for fixed-point signals.

Radix-2 Optimization for the Table of Trigonometric Values

In certain situations, the block's Radix-2 algorithm computes all the possible trigonometric values of the twiddle factor

$$
e^{j \frac{2 \pi k}{K}}
$$

where K is the greater value of either M or N and $k=0, \cdots, K-1$. The block stores these values in a table and retrieves them during simulation. The number of table entries for fixed-point and floating-point is summarized in the following table:

Number of Table Entries for N-Point FFT	
floating-point	$3 N / 4$
fixed-point	N

Fixed-Point Data Types

The following diagrams show the data types used in the FFT block for fixed-point signals. You can set the sine table, accumulator, product output, and output data types displayed in the diagrams in the FFT dialog box as discussed in "Parameters" on page 1-32.

Inputs to the FFT block are first cast to the output data type and stored in the output buffer. Each butterfly stage then processes signals in the accumulator data type, with the final output of the butterfly being cast back into the output data type. The block multiplies in a twiddle factor before each butterfly stage in a decimation-in-time FFT and after each butterfly stage in a decimation-in-frequency FFT.

Deci matiorirrti me IFFT

--widdle muttipliction- butterfly stage -

Decimation-ir-frequency IFFT

Butterfly stage data types

Twidde multiplication data types

The multiplier output appears in the accumulator data type because both of the inputs to the multiplier are complex. For details on the complex multiplication performed, refer to "Multiplication Data Types".

Parameters

FFT implementation

Set this parameter to FFTW [1], [2] to support an arbitrary length input signal. The block restricts generated code with FFTW implementation to host computers capable of running MATLAB.

Set this parameter to Radix-2 for bit-reversed processing, fixed or floating-point data, or for portable C-code generation using the "Simulink Coder". The dimensions of the input matrix, M and N, must be powers of two. To work with other input sizes, use the Image Pad block to pad or truncate these dimensions to powers of two, or if possible choose the FFTW implementation. See "Radix-2 Implementation" on page 128.

Set this parameter to Auto to let the block choose the FFT implementation. For non-power-of-two transform lengths, the block restricts generated code to MATLAB host computers.

Output in bit-reversed order

Designate the order of the output channel elements relative to the ordering of the input elements. When you select this check box, the output channel elements appear in bit-reversed order relative to the input ordering. If you clear this check box, the output channel elements appear in linear order relative to the input ordering.

Linearly ordering the output requires extra data sorting manipulation. For more information, see "Bit-Reversed Order" on page 1-35.

Scale result by FFT length

When you select this parameter, the block divides the output of the FFT by the FFT length. This option is useful when you want the output of the FFT to stay in the same amplitude range as its input. This is particularly useful when working with fixed-point data types.

Rounding mode

Select the "Rounding Modes" for fixed-point operations. The sine table values do not obey this parameter; instead, they always round to Nearest.

Saturate on integer overflow

Select the overflow mode for fixed-point operations. See "Precision and Range". The sine table values do not obey this parameter; instead, they are always saturated.

Sine table data type

Choose how you specify the word length of the values of the sine table. The fraction length of the sine table values always equals the word length minus one. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Same word length as input
- An expression that evaluates to a valid data type, for example, fixdt (1,16)

The sine table values do not obey the Rounding mode and Saturate on integer overflow parameters; instead, they are always saturated and rounded to Nearest.

Product output data type

Specify the product output data type. See "Fixed-Point Data Types" on page 1-30 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt ($1,16,0$)

Click the Show data type assistant button \gg to display the Data Type

Assistant, which helps you set the Product output data type parameter.
See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Accumulator data type

Specify the accumulator data type. See "Fixed-Point Data Types" on page 1-30 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt ($1,16,0$)

Click the Show data type assistant button \gg to display the Data Type
Assistant, which helps you set the Accumulator data type parameter.
See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Output data type

Specify the output data type. See "Fixed-Point Data Types" on page 1-30 for illustrations depicting the use of the output data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule.

When you select Inherit: Inherit via internal rule, the block calculates the output word length and fraction length automatically. The internal rule first calculates an ideal output word length and fraction length using the following equations:

- When you select the Divide butterfly outputs by two check box, the ideal output word and fraction lengths are the same as the input word and fraction lengths.
- When you clear the Divide butterfly outputs by two check box, the block computes the ideal output word and fraction lengths according to the following equations:

$$
\begin{aligned}
& W L_{\text {idealoutput }}=W L_{\text {input }}+\text { floor }\left(\log _{2}(F F \text { Tlength }-1)\right)+1 \\
& F L_{\text {idealoutput }}=F L_{\text {input }}
\end{aligned}
$$

Using these ideal results, the internal rule then selects word lengths and fraction lengths that are appropriate for your hardware. For more information, see "Inherit via Internal Rule".

- An expression that evaluates to a valid data type, for example, fixdt ($1,16,0$)

Click the Show data type assistant button \gg to display the Data Type
Assistant, which helps you set the Output data type parameter.
See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink documentation.

Example

Bit-Reversed Order

Two numbers are bit-reversed values of each other when the binary representation of one is the mirror image of the binary representation of the other. For example, in a three-bit system, one and four are bit-reversed values of each other because the three-bit binary representation of one, 001 , is the mirror image of the three-bit binary representation of four, 100. The following diagram shows the row indices in linear order. To put them in bitreversed order

1 Translate the indices into their binary representation with the minimum number of bits. In this example, the minimum number of bits is three because the binary representation of 7 is 111 .
2 Find the mirror image of each binary entry, and write it beside the original binary representation.
3 Translate the indices back to their decimal representation.
The row indices now appear in bit-reversed order.

If, on the 2-D FFT block parameters dialog box, you select the Output in bit-reversed order check box, the block bit-reverses the order of both the columns and the rows. The next diagram illustrates the linear and bit-reversed outputs of the 2-D FFT block. The output values are the same, but they appear in different order.
$\left[\begin{array}{cccccccc}245 & -13 & 10-5 i & 10+5 i & 13.9-0.4 i & -15.9-21.6 i & -15.9+21.6 i & 13.9 \\ -9 & 1 & 14-31 i & 14+31 i & 16.3+5.9 i & 17.7-23.9 i & 17.7+23.9 i & 16.3-5.9 i \\ 18-5 i & 6-3 i & 19-24 i & 5+4 i & -4.3-10.4 i & -5.7+16.4 i & 12.4-11.4 i & 5.5+1.4 i \\ 18+5 i & 6+3 i & 5-4 i & 19+24 i & 5.5-1.4 i & 12.5+11.3 i & -5.7-16.4 i & 34+0.5 i \\ -4.3-10.3 i & 1.1-i & -5.6+13.1 i & -11.5-11 i & -27.6-6.6 i & -2.6 i & -3.4+8.7 i & 6.2+13 i \\ 8.4+2.4 i & 11+9 i & -18.4-25.1 i & -4.5-1.1 i & 3.4-5.4 i & 17.6-9.4 i & -2.2+13 i & -1-2.7 i \\ 8.4-2.4 i & 11-9 i & -4.5+1.1 i & -18.4+25.1 i & -0.6+2.7 i & -2.2-13 i & 17.6+9.4 i & 34+0.5 i \\ -4.4+10.3 i & 1.1+i & -11.5+11 i & -5.6-13.1 & 6.2-13 i & -3.4-8.7 i & 2.6 i & -27.6+6.6 i\end{array}\right]$

References

[1] FFTW (https://www.fftw.org)
[2] Frigo, M. and S. G. Johnson, "FFTW: An Adaptive Software Architecture for the FFT,"Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Vol. 3, 1998, pp. 1381-1384.

See Also

2-D DCT	Computer Vision Toolbox software
2-D IDCT	Computer Vision Toolbox software
2-D IFFT	Computer Vision Toolbox software
2-D IFFT	Computer Vision Toolbox software
bitrevorder	Signal Processing Toolbox software
fft	MATLAB
ifft	MATLAB
"Simulink Coder"	Simulink Coder ${ }^{\mathrm{TM}}$

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- When the following conditions apply, the executable generated from this block relies on prebuilt dynamic library files (. dll files) included with MATLAB:
- FFT implementation is set to FFTW.
- Inherit FFT length from input dimensions is cleared, and FFT length is set to a value that is not a power of two.

Use the packNGo function to package the code generated from this block and all the relevant files in a compressed zip file. Using this zip file, you can relocate, unpack, and rebuild your project in another development environment where MATLAB is not installed. For more details, see .

- When the FFT length is a power of two, you can generate standalone C and $\mathrm{C}++$ code from this block.

Introduced before R2006a

2-D FIR Filter

Perform 2-D FIR filtering on input matrix

Library

Filtering
visionfilter

Description

The 2-D Finite Impulse Response (FIR) filter block filters the input matrix I using the coefficient matrix H or the coefficient vectors HH and HV.

Port	Input/Output	Supported Data Types	Complex Values Supported
I	Vector or matrix of intensity values	- Double-precision floating point - Single-precision floating point - Fixed point - 8-, 16-, 32-bit signed integer - 8-, 16-, 32-bit unsigned integer	Yes
H	Matrix of filter coefficients	Same as I port.	Yes
HH	Vector of filter coefficients	Same as I port. The input to ports HH and HV must be the same data type.	Yes
HV	Vector of filter coefficients	Same as I port. The input to ports HH and HV must be the same data type.	Yes

Port	Input/Output	Supported Data Types	Complex Values Supported
PVal	Scalar value that represents the constant pad value	Input must have the same data type as the input to I port.	Yes
Output	Scalar, vector, or matrix of filtered values	Same as I port.	Yes

If the input has a floating-point data type, then the output uses the same data type. Otherwise, the output can be any fixed-point data type.

Select the Separable filter coefficients check box if your filter coefficients are separable. Using separable filter coefficients reduces the amount of calculations the block must perform to compute the output. For example, suppose your input image is M-by- N and your filter coefficient matrix is x-by-y. For a nonseparable filter with the Output size parameter set to Same as input port I, it would take

$$
x \cdot y \cdot M \cdot N
$$

multiply-accumulate (MAC) operations for the block to calculate the output. For a separable filter, it would only take

$$
(x+y) \cdot M \cdot N
$$

MAC operations. If you do not know whether or not your filter coefficients are separable, use the isfilterseparable function.

Here is an example of the function syntax, [S, HCOL, HROW] = isfilterseparable(H). The isfilterseparable function takes the filter kernel, H , and returns S, HCOL and HROW. Here, S is a Boolean variable that is 1 if the filter is separable and 0 if it is not. HCOL is a vector of vertical filter coefficients, and HROW is a vector of horizontal filter coefficients.

Use the Coefficient source parameter to specify how to define your filter coefficients. If you select the Separable filter coefficients check box and then select a Coefficient source of Specify via dialog, the Vertical coefficients (across height) and Horizontal coefficients (across width) parameters appear in the dialog box. You can use these parameters to enter vectors of vertical and horizontal filter coefficients, respectively.

You can also use the variables HCOL and HROW, the output of the isfilterseparable function, for these parameters. If you select the Separable filter coefficients check box
and then select a Coefficient source of Input port, ports HV and HH appear on the block. Use these ports to specify vectors of vertical and horizontal filter coefficients.

If you clear the Separable filter coefficients check box and select a Coefficient source of Specify via dialog, the Coefficients parameter appears in the dialog box. Use this parameter to enter your matrix of filter coefficients.

If you clear the Separable filter coefficients check box and select a Coefficient source of Input port, port \mathbf{H} appears on the block. Use this port to specify your filter coefficient matrix.

The block outputs the result of the filtering operation at the Output port. The Output size parameter and the sizes of the inputs at ports \mathbf{I} and \mathbf{H} dictate the dimensions of the output. For example, assume that the input at port I has dimensions (Mi,Ni) and the input at port H has dimensions ($M h, N h$). If you select an Output size of Full, the output has dimensions (Mi+Mh-1, Ni+Nh-1). If you select an Output size of Same as input port I, the output has the same dimensions as the input at port I. If you select an Output size of Valid, the block filters the input image only where the coefficient matrix fits entirely within it, so no padding is required. The output has dimensions (Mi-Mh+1, Ni-Nh+1). However, if all(size(I)<size(H)), the block errors out.

Use the Padding options parameter to specify how to pad the boundary of your input matrix. To pad your matrix with a constant value, select Constant. To pad your input matrix by repeating its border values, select Replicate. To pad your input matrix with its mirror image, select Symmetric. To pad your input matrix using a circular repetition of its elements, select Circular. For more information on padding, see the Image Pad block reference page.

If, for the Padding options parameter, you select Constant, the Pad value source parameter appears in the dialog box. If you select Specify via dialog, the Pad value parameter appears in the dialog box. Use this parameter to enter the constant value with which to pad your matrix. If you select Pad value source ofInput port, the PVal port appears on the block. Use this port to specify the constant value with which to pad your matrix. The pad value must be real if the input image is real. You will get an error message if the pad value is complex when the input image is real.

Use the Filtering based on parameter to specify the algorithm by which the block filters the input matrix. If you select Convolution and set the Output size parameter to Full, the block filters your input using the following algorithm

$$
C(i, j)=\sum_{m=0}^{(M a-1)} \sum_{n=0}^{(N a-1)} A(m, n) * H(i-m, j-n)
$$

where $0 \leq i<M a+M h-1$ and $0 \leq j<N a+N h-1$. If you select Correlation and set the Output size parameter to Full, the block filters your input using the following algorithm

$$
C(i, j)=\sum_{m=0}^{(M a-1)} \sum_{n=0}^{(N a-1)} A(m, n) \cdot \operatorname{conj}(H(m+i, n+j))
$$

where $0 \leq i<M a+M h-1$ and $0 \leq j<N a+N h-1$.
TThe imfilter function from the Image Processing Toolbox ${ }^{\text {TM }}$ product similarly performs N -D filtering of multidimensional images.

Fixed-Point Data Types

The following diagram shows the data types used in the 2-D FIR Filter block for fixedpoint signals.

You can set the coefficient, product output, accumulator, and output data types in the block mask as discussed in "Parameters" on page 1-42.

The output of the multiplier is in the product output data type if at least one of the inputs to the multiplier is real. If both of the inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, refer to "Multiplication Data Types".

Parameters

Separable filter coefficients

Select this check box if your filter coefficients are separable. Using separable filter coefficients reduces the amount of calculations the block must perform to compute the output.

Coefficient source

Specify how to define your filter coefficients. Select Specify via dialog to enter your coefficients in the block parameters dialog box. Select Input port to specify your filter coefficient matrix using port H or ports HH and HV.

Coefficients

Enter your real or complex-valued filter coefficient matrix. This parameter appears if you clear the Separable filter coefficients check box and then select a Coefficient source of Specify via dialog. Tunable.

Vertical coefficients (across height)

Enter the vector of vertical filter coefficients for your separable filter. This parameter appears if you select the Separable filter coefficients check box and then select a Coefficient source of Specify via dialog.

Horizontal coefficients (across width)

Enter the vector of horizontal filter coefficients for your separable filter. This parameter appears if you select the Separable filter coefficients check box and then select a Coefficient source of Specify via dialog.

Output size

This parameter controls the size of the filtered output. If you choose Full, the output has dimensions ($M a+M h-1, N a+N h-1$). If you choose Same as input port I, the output has the same dimensions as the input at port I If you choose Valid, output has dimensions ($\mathrm{Ma}-\mathrm{Mh}+1, \mathrm{Na}-\mathrm{Nh}+1$).

Padding options

Specify how to pad the boundary of your input matrix. Select Constant to pad your matrix with a constant value. Select Replicate to pad your input matrix by repeating its border values. Select Symmetricto pad your input matrix with its mirror image. Select Circular to pad your input matrix using a circular repetition of its elements. This parameter appears if you select an Output size of Full or Same as input port I.

Pad value source

Use this parameter to specify how to define your constant boundary value. Select Specify via dialog to enter your value in the block parameters dialog box. Select Input port to specify your constant value using the PVal port. This parameter appears if you select a Padding options of Constant.

Pad value

Enter the constant value with which to pad your matrix. This parameter is visible if, for the Pad value source parameter, you select Specify via dialog. Tunable. The pad value must be real if the input image is real. You will get an error message if the pad value is complex when the input image is real.

Filtering based on

Specify the algorithm by which the block filters the input matrix. You can select Convolution or Correlation.

Rounding mode

Select the "Rounding Modes" for fixed-point operations.

Saturate on integer overflow

Select the overflow mode for fixed-point operations. See "Precision and Range".

Coefficients

Choose how to specify the word length and the fraction length of the filter coefficients.

- When you select Inherit: Same word length as input, the word length of the filter coefficients match that of the input to the block. In this mode, the block automatically sets the fraction length of the coefficients to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select fixdt $(1,16)$, you can enter the word length of the coefficients, in bits. In this mode, the block automatically sets the fraction length of the coefficients to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select fixdt ($1,16,0$), you can enter the word length and the fraction length of the coefficients, in bits.
- When you select <data type expression>, you can enter the data type expression.

The filter coefficients do not obey the Rounding mode and the Saturate on integer overflow parameters; instead, they are always saturated and rounded to Nearest.

Click the Show data type assistant button \gg to display the Data Type
Assistant, which helps you set the Product output data type parameter.
See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Product output

Use this parameter to specify how to designate the product output word and fraction lengths. Refer to "Fixed-Point Data Types" on page 1-41 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block:

- When you select Inherit: Same as input, these characteristics match those of the input to the block.
- When you select fixdt ([],16,0), you can enter the word length and the fraction length of the product output, in bits.
- When you select <data type expression>, you can enter the data type expression.

If you set the Coefficient source (on the Main tab) to Input port the Product Output will inherit its sign according to the inputs. If either or both input I1 and I2 are signed, the Product Output will be signed. Otherwise, the Product Output is unsigned. The following table shows all cases.

Sign of Input I1	Sign of Input I2	Sign of Product Output
unsigned	unsigned	unsigned
unsigned	signed	signed
signed	unsigned	signed
signed	signed	signed

Click the Show data type assistant button \ggg to display the Data Type
Assistant, which helps you set the Product output data type parameter.
See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Accumulator

Use this parameter to specify how to designate the accumulator word and fraction lengths. Refer to "Fixed-Point Data Types" on page 1-41 and "Multiplication Data

Types" for illustrations depicting the use of the accumulator data type in this block. The accumulator data type is only used when both inputs to the multiplier are complex:

- When you select Inherit: Same as input, these characteristics match those of the input to the block.
- When you select Inherit: Same as product output, these characteristics match those of the product output.
- When you select fixdt ([],16,0), you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. All signals in the Computer Vision Toolbox software have a bias of 0 .

Click the Show data type assistant button \gg to display the Data Type
Assistant, which helps you set the Product output data type parameter.
See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Output

Choose how to specify the word length and fraction length of the output of the block:

- When you select Inherit: Same as input, these characteristics match those of the input to the block.
- When you select fixdt ([],16,0), you can enter the word length and the fraction length of the output, in bits.

You can choose to set signedness of the output to Auto, Signed or Unsigned.

- When you select <data type expression>, you can enter the a data type expression.

Click the Show data type assistant button \gg to display the Data Type
Assistant, which helps you set the Product output data type parameter.
See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink documentation.

See Also

imfilter	Image Processing Toolbox

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using Simulink ${ }_{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

Topics

"Periodic Noise Reduction"
"Video Stabilization"

Introduced before R2006a

2-D Histogram

Generate histogram of input or sequence of inputs

Library

Statistics
visionstatistics

Description

The 2-D Histogram block computes the frequency distribution of the elements in the input. You must use the Find the histogram over parameter to specify whether the block computes the histogram for Each column of the input or of the Entire input. The Running histogram check box allows you to select between basic operation and running operation, as described below.

The block distributes the elements of the input into the number of discrete bins specified by the Number of bins parameter, n.

```
y = hist(u,n) % Equivalent MATLAB code
```

The 2-D Histogram block sorts all complex input values into bins according to their magnitude.

The histogram value for a given bin represents the frequency of occurrence of the input values bracketed by that bin. You specify the upper boundary of the highest-valued bin in the Upper limit of histogram parameter, B_{M}, and the lower boundary of the lowestvalued bin in the Lower limit of histogram parameter, B_{m}. The bins have equal width of

$$
\Delta=\frac{B_{M}-B_{m}}{n}
$$

and centers located at

$$
B_{m}+\left(k+\frac{1}{2}\right) \Delta \quad k=0,1,2, \ldots, n-1
$$

Input values that fall on the border between two bins are placed into the lower valued bin; that is, each bin includes its upper boundary. For example, a bin of width 4 centered on the value 5 contains the input value 7, but not the input value 3. Input values greater than the Upper limit of histogram parameter or less than Lower limit of histogram parameter are placed into the highest valued or lowest valued bin, respectively.

The values you enter for the Upper limit of histogram and Lower limit of histogram parameters must be real-valued scalars. NaN and inf are not valid values for the Upper limit of histogram and Lower limit of histogram parameters.

Basic Operation

When the Running histogram check box is not selected, the 2-D Histogram block computes the frequency distribution of the current input.

When you set the Find the histogram over parameter to Each column, the 2-D Histogram block computes a histogram for each column of the M-by- N matrix independently. The block outputs an n-by- N matrix, where n is the Number of bins you specify. The j th column of the output matrix contains the histogram for the data in the j th column of the M-by- N input matrix.

When you set the Find the histogram over parameter to Entire input, the 2-D Histogram block computes the frequency distribution for the entire input vector, matrix or N -D array. The block outputs an n-by- 1 vector, where n is the Number of bins you specify.

Running Operation

When you select the Running histogram check box, the 2-D Histogram block computes the frequency distribution of both the past and present data for successive inputs. The block resets the histogram (by emptying all of the bins) when it detects a reset event at the optional Rst port. See "Resetting the Running Histogram" on page 1-49 for more information on how to trigger a reset.

When you set the Find the histogram over parameter to Each column, the 2-D Histogram block computes a running histogram for each column of the M-by- N matrix. The block outputs an n-by- N matrix, where n is the Number of bins you specify. The j th
column of the output matrix contains the running histogram for the j th column of the M -by- N input matrix.

When you set the Find the histogram over parameter to Entire input, the 2-D Histogram block computes a running histogram for the data in the first dimension of the input. The block outputs an n-by- 1 vector, where n is the Number of bins you specify.

Note When the 2-D Histogram block is used in running mode and the input data type is non-floating point, the output of the histogram is stored as a uint32 data type. The largest number that can be represented by this data type is $2^{32}-1$. If the range of the uint32 data type is exceeded, the output data will wrap back to 0 .

Resetting the Running Histogram

The block resets the running histogram whenever a reset event is detected at the optional Rst port. The reset signal and the input data signal must be the same rate.

You specify the reset event using the Reset port menu:

- None - Disables the Rst port
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described earlier)
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero

Parameters

Lower limit of histogram

Enter a real-valued scalar for the lower boundary, B_{m}, of the lowest-valued bin. NaN and inf are not valid values for B_{m}. Tunable.

Upper limit of histogram

Enter a real-valued scalar for the upper boundary, B_{M}, of the highest-valued bin. NaN and inf are not valid values for B_{M}. Tunable.

Number of bins

The number of bins, n, in the histogram.

Find the histogram over

Specify whether the block finds the histogram over the entire input or along each column of the input.

Note The option will be removed in a future release.

Normalized

When selected, the output vector, v, is normalized such that $\operatorname{sum}(v)=1$.
Use of this parameter is not supported for fixed-point signals.

Running histogram

Set to enable the running histogram operation, and clear to enable basic histogram operation. For more information, see "Basic Operation" on page 1-48 and "Running Operation" on page 1-48.

Reset port

The type of event that resets the running histogram. For more information, see "Resetting the Running Histogram" on page 1-49. The reset signal and the input data signal must be the same rate. This parameter is enabled only when you select the Running histogram check box. For more information, see "Running Operation" on page 1-48.

Note The fixed-point parameters listed are only used for fixed-point complex inputs, which are distributed by squared magnitude.

Rounding mode

Select the "Rounding Modes" for fixed-point operations.

Saturate on integer overflow

Select the overflow mode for fixed-point operations. See "Precision and Range".

Product output data type

Specify the product output data type. See "Multiplication Data Types" for illustrations depicting the use of the product output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt ([], 16, 0)

Click the Show data type assistant button \gg to display the Data Type Assistant, which helps you set the Product output data type parameter.

See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Accumulator data type

Specify the accumulator data type. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt ([], 16, 0)

Click the Show data type assistant button \gg to display the Data Type Assistant, which helps you set the Accumulator data type parameter.

See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Supported Data Types

Port	Supported Data Types
In	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - 8-, 16-, and 32 -bit signed integers - 8-, 16-, and 32 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - 32-bit unsigned integers
Rst	- Double-precision floating point - Single-precision floating point - Boolean - $8-, 16$-, and 32 -bit signed integers - $8-, 16$-, and 32 -bit unsigned integers

See Also

histogram MATLAB

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Generated code relies on memcpy or memset functions (string.h) under certain conditions.

2-D IDCT

Compute 2-D inverse discrete cosine transform (IDCT)
$\frac{2-D \operatorname{IDCT}}{2-D \operatorname{IDCT}}$

Library

Transforms
visiontransforms

Description

The 2-D IDCT block calculates the two-dimensional inverse discrete cosine transform of the input signal. The equation for the two-dimensional IDCT is

$$
f(x, y)=\frac{2}{\sqrt{M N}} \sum_{m=0}^{M-1} \sum_{n=0}^{1 N-1} C(m) C(n) F(m, n) \cos \frac{(2 x+1) m \Pi}{2 M} \cos \frac{(2 y+1) n \pi}{2 N}
$$

where $F(m, n)$ is the DCT of the signal $f(x, y)$ and $C(m), C(n)=1 / \sqrt{2}$ for $m, n=0$ and $C(m), C(n)=1$ otherwise.

The number of rows and columns of the input signal must be powers of two. The output of this block has dimensions the same dimensions as the input.

Port	Input/Output	Supported Data Types	Complex Values Supported
Input	Vector or matrix of intensity values	- Double-precision floating point - Single-precision floating point - Fixed point - 8-, 16-, 32-bit signed integer - 8-, 16-, 32-bit unsigned integer	No
Output	2-D IDCT of the input	Same as Input port	No

If the data type of the input signal is floating point, the output of the block is the same data type.

Use the Sine and cosine computation parameter to specify how the block computes the sine and cosine terms in the IDCT algorithm. If you select Trigonometric fcn, the block computes the sine and cosine values during the simulation. If you select Table lookup, the block computes and stores the trigonometric values before the simulation starts. In this case, the block requires extra memory.

Fixed-Point Data Types

The following diagram shows the data types used in the 2-D IDCT block for fixed-point signals. Inputs are first cast to the output data type and stored in the output buffer. Each butterfly stage processes signals in the accumulator data type, with the final output of the butterfly being cast back into the output data type.

\longmapsto butterfly stage ———

OR

\longmapsto butterfly stage ——wwiddle multiplication-

Butterfly Stage Data Iypes

Iwiddle Multiplication Data Types

The output of the multiplier is in the product output data type when at least one of the inputs to the multiplier is real. When both of the inputs to the multiplier are complex, the result of the multiplication is in the accumulator data type. For details on the complex multiplication performed, refer to "Multiplication Data Types". You can set the sine table,
product output, accumulator, and output data types in the block mask as discussed in the next section.

Parameters

Sine and cosine computation

Specify how the block computes the sine and cosine terms in the IDCT algorithm. If you select Trigonometric fcn, the block computes the sine and cosine values during the simulation. If you select Table lookup, the block computes and stores the trigonometric values before the simulation starts. In this case, the block requires extra memory.

Rounding mode

Select the "Rounding Modes" for fixed-point operations.

Saturate on integer overflow

Select the overflow mode for fixed-point operations. See "Precision and Range". The sine table values do not obey this parameter; instead, they are always saturated.

Sine table data type

Choose how you specify the word length of the values of the sine table. The fraction length of the sine table values always equals the word length minus one. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Same word length as input
- An expression that evaluates to a valid data type, for example, fixdt (1,16)

The sine table values do not obey the Rounding mode and Saturate on integer overflow parameters; instead, they are always saturated and rounded to Nearest.

Product output data type

Specify the product output data type. See "Fixed-Point Data Types" on page 1-55 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt ($1,16,0$)

Click the Show data type assistant button \ggg to display the Data Type
Assistant, which helps you set the Product output data type parameter.
See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Accumulator data type

Specify the accumulator data type. See "Fixed-Point Data Types" on page 1-55 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt ($1,16,0$)

Click the Show data type assistant button \ggg to display the Data Type
Assistant, which helps you set the Accumulator data type parameter.
See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Output data type

Specify the output data type. See "Fixed-Point Data Types" on page 1-55 for illustrations depicting the use of the output data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule.

When you select Inherit: Inherit via internal rule, the block calculates the output word length and fraction length automatically. The internal rule first calculates an ideal output word length and fraction length using the following equations:

$$
\begin{aligned}
& W L_{\text {idealoutput }}=W L_{\text {input }}+\text { floor }\left(\log _{2}(\text { DCTlength }-1)\right)+1 \\
& F L_{\text {idealoutput }}=F L_{\text {input }}
\end{aligned}
$$

Using these ideal results, the internal rule then selects word lengths and fraction lengths that are appropriate for your hardware. For more information, see "Inherit via Internal Rule".

- An expression that evaluates to a valid data type, for example, fixdt ($1,16,0$)

Click the Show data type assistant button \ggg to display the Data Type
Assistant, which helps you set the Output data type parameter.
See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Lock scaling against changes by the autoscaling tool

Select this parameter to prevent any fixed-point scaling you specify in this block mask from being overridden by the autoscaling tool in the Fixed-Point Tool. For more information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink documentation.

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink documentation.

References

[1] Chen, W.H, C.H. Smith, and S.C. Fralick, "A fast computational algorithm for the discrete cosine transform,"IEEE Trans. Commun., vol. COM-25, pp. 1004-1009. 1977.
[2] Wang, Z. "Fast algorithms for the discrete W transform and for the discrete Fourier transform," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32, pp. 803-816, Aug. 1984.

See Also

2-D DCT	Computer Vision Toolbox software
2-D FFT	Computer Vision Toolbox software
2-D IFFT	Computer Vision Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Introduced before R2006a

2-D IFFT

2-D Inverse fast Fourier transform of input
$\underset{\text { 2-D IFFT }}{2-\text { D IFFT }}$

Library

Transforms
visiontransforms

Description

The 2-D IFFT block computes the inverse fast Fourier transform (IFFT) of an M-by- N input matrix in two steps. First, it computes the one-dimensional IFFT along one dimension (row or column). Next, it computes the IFFT of the output of the first step along the other dimension (column or row).

The output of the IFFT block is equivalent to the MATLAB ifft2 function:
$y=i f f t 2(A)$
\% Equivalent MATLAB code

Computing the IFFT of each dimension of the input matrix is equivalent to calculating the two-dimensional inverse discrete Fourier transform (IDFT), which is defined by the following equation:

$$
f(x, y)=\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=0}^{1 N-1} F(m, n) e^{j \frac{2 \pi m x}{M}} e^{j \frac{2 \pi n y}{N}}
$$

where $0 \leq x \leq M-1$ and $0 \leq y \leq N-1$.
The output of this block has the same dimensions as the input. If the input signal has a floating-point data type, the data type of the output signal uses the same floating-point data type. Otherwise, the output can be any fixed-point data type. The block computes scaled and unscaled versions of the IFFT.

The input to this block can be floating-point or fixed-point, real or complex, and conjugate symmetric. The block uses one of two possible FFT implementations. You can select an implementation based on the FFTW library [1], [2], or an implementation based on a collection of Radix-2 algorithms. You can select Auto to allow the block to choose the implementation.

Port Description

Port	Description	Supported Data Types	Complex Values Supported
Input	Vector or matrix of intensity values	- Double-precision floating point - Single-precision floating point - Fixed point - 8-, 16-, 32-bit signed integer - 8 -, 16-, 32 -bit unsigned integer	Yes
Output	2-D IFFT of the input	Same as Input port	Yes

FFTW Implementation

The FFTW implementation provides an optimized FFT calculation including support for power-of-two and non-power-of-two transform lengths in both simulation and code generation. Generated code using the FFTW implementation will be restricted to MATLAB host computers. The data type must be floating-point. Refer to "Simulink Coder" for more details on generating code.

Radix-2 Implementation

The Radix-2 implementation supports bit-reversed processing, fixed or floating-point data, and allows the block to provide portable C-code generation using the "Simulink Coder". The dimensions of the input matrix, M and N, must be powers of two. To work with other input sizes, use the Image Pad block to pad or truncate these dimensions to powers of two, or if possible choose the FFTW implementation.

With Radix-2 selected, the block implements one or more of the following algorithms:

- Butterfly operation
- Double-signal algorithm
- Half-length algorithm
- Radix-2 decimation-in-time (DIT) algorithm
- Radix-2 decimation-in-frequency (DIF) algorithm

Radix-2 Algorithms for Real or Complex Input Complexity Floating-Point Signals

Parameter Settings	Algorithms Used for IFFT Computation
Γ Input is in bit-reversed order I Input is coniugate symmetric	Butterfly operation and radix-2 DIT
V Input is in bit-reversed order Γ Input is coniugate symmetric	Radix-2 DIF
Γ Input is in bit-reversed order $\sqrt{ }$ Input is coniugate symmetric	Butterfly operation and radix-2 DIT in conjunction with the half-length and double-signal algorithms
- Input is in bit-reversed order $\sqrt{ }$ Input is coniugate symmetric	Radix-2 DIF in conjunction with the half-length and doublesignal algorithms

Radix-2 Algorithms for Real or Complex Input Complexity Fixed-Point Signals

Other Parameter Settings	Algorithms Used for IFFT Computation
Γ Input is in bit-reversed order	Butterfly operation and radix-2 DIT
Γ Input is coniugate symmetric	
Γ Input is in bit-reversed order	Radix-2 DIF
Γ Input is coniugate symmetric	

Note The Input is conjugate symmetric parameter cannot be used for fixed-point signals.

Radix-2 Optimization for the Table of Trigonometric Values

In certain situations, the block's Radix-2 algorithm computes all the possible trigonometric values of the twiddle factor

$$
e^{j \frac{2 \pi k}{K}}
$$

where K is the greater value of either M or N and $k=0, \cdots, K-1$. The block stores these values in a table and retrieves them during simulation. The number of table entries for fixed-point and floating-point is summarized in the following table:

Number of Table Entries for N-Point FFT	
floating-point	3 N/4
fixed-point	N

Fixed-Point Data Types

The following diagrams show the data types used in the IFFT block for fixed-point signals. You can set the sine table, accumulator, product output, and output data types displayed in the diagrams in the IFFT dialog box as discussed in "Parameters" on page 1-66.

Inputs to the IFFT block are first cast to the output data type and stored in the output buffer. Each butterfly stage then processes signals in the accumulator data type, with the final output of the butterfly being cast back into the output data type. The block multiplies in a twiddle factor before each butterfly stage in a decimation-in-time IFFT and after each butterfly stage in a decimation-in-frequency IFFT.

Deci matiorirrti me IFFT

--widdle mutiplication - butterflystage $-\longrightarrow$

Decimation-ir-frequency IFFT

Butterfly stage data types

Twidde multiplication data types

The multiplier output appears in the accumulator data type because both of the inputs to the multiplier are complex. For details on the complex multiplication performed, refer to "Multiplication Data Types".

Parameters

FFT implementation

Set this parameter to FFTW [1], [2] to support an arbitrary length input signal. The block restricts generated code with FFTW implementation to MATLAB host computers.

Set this parameter to Radix-2 for bit-reversed processing, fixed or floating-point data, or for portable C-code generation using the "Simulink Coder". The dimensions of the input matrix, M and N, must be powers of two. To work with other input sizes, use the Image Pad block to pad or truncate these dimensions to powers of two, or if possible choose the FFTW implementation. See "Radix-2 Implementation" on page 162.

Set this parameter to Auto to let the block choose the FFT implementation. For non-power-of-two transform lengths, the block restricts generated code to MATLAB host computers.

Input is in bit-reversed order

Select or clear this check box to designate the order of the input channel elements. Select this check box when the input should appear in reversed order, and clear it when the input should appear in linear order. The block yields invalid outputs when you do not set this parameter correctly. This check box only appears when you set the FFT implementation parameter to Radix-2 or Auto.

For more information ordering of the output, see "Bit-Reversed Order" on page 1-35. The 2-D FFT block bit-reverses the order of both the columns and the rows.

Input is conjugate symmetric

Select this option when the block inputs both floating point and conjugate symmetric, and you want real-valued outputs. This parameter cannot be used for fixed-point signals. Selecting this check box optimizes the block's computation method.

The FFT block yields conjugate symmetric output when you input real-valued data. Taking the IFFT of a conjugate symmetric input matrix produces real-valued output. Therefore, if the input to the block is both floating point and conjugate symmetric, and you select this check box, the block produces real-valued outputs.

If the IFFT block inputs conjugate symmetric data and you do not select this check box, the IFFT block outputs a complex-valued signal with small imaginary parts. The block outputs invalid data if you select this option with non conjugate symmetric input data.

Divide output by product of FFT length in each input dimension

Select this check box to compute the scaled IFFT. The block computes scaled and unscaled versions of the IFFT. If you select this option, the block computes the scaled version of the IFFT. The unscaled IFFT is defined by the following equation:
$f(x, y)=\sum_{m=0}^{M-1} \sum_{n=0}^{1 N-1} F(m, n) e^{j \frac{2 \pi m x}{M}} e^{j \frac{2 \pi n y}{N}}$
where $0 \leq x \leq M-1$ and $0 \leq y \leq N-1$.
The scaled version of the IFFT multiplies the above unscaled version by $\frac{1}{M N}$.

Rounding mode

Select the "Rounding Modes" for fixed-point operations. The sine table values do not obey this parameter; instead, they always round to Nearest.

Saturate on integer overflow

Select the overflow mode for fixed-point operations. See "Precision and Range". The sine table values do not obey this parameter; instead, they are always saturated.

Sine table data type

Choose how you specify the word length of the values of the sine table. The fraction length of the sine table values always equals the word length minus one. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Same word length as input
- An expression that evaluates to a valid data type, for example, fixdt (1, 16)

The sine table values do not obey the Rounding mode and Saturate on integer overflow parameters; instead, they are always saturated and rounded to Nearest.

Product output data type

Specify the product output data type. See "Fixed-Point Data Types" on page 1-64 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt ($1,16,0$)

Click the Show data type assistant button \gg to display the Data Type Assistant, which helps you set the Product output data type parameter.

See "Specify Data Types Using Data Type Assistant" (Simulink) for more information. Accumulator data type

Specify the accumulator data type. See"Fixed-Point Data Types" on page 1-64 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- An expression that evaluates to a valid data type, for example, fixdt ($1,16,0$)

Click the Show data type assistant button \gg to display the Data Type
Assistant, which helps you set the Accumulator data type parameter.
See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Output data type

Specify the output data type. See "Fixed-Point Data Types" on page 1-64 for illustrations depicting the use of the output data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule.

When you select Inherit: Inherit via internal rule, the block calculates the output word length and fraction length automatically. The internal rule first calculates an ideal output word length and fraction length using the following equations:

- When you select the Divide butterfly outputs by two check box, the ideal output word and fraction lengths are the same as the input word and fraction lengths.
- When you clear the Divide butterfly outputs by two check box, the block computes the ideal output word and fraction lengths according to the following equations:
$W L_{\text {idealoutput }}=W L_{\text {input }}+$ floor $\left(\log _{2}(\right.$ FFTlength -1$\left.)\right)+1$
$F L_{\text {idealoutput }}=F L_{\text {input }}$
Using these ideal results, the internal rule then selects word lengths and fraction lengths that are appropriate for your hardware. For more information, see "Inherit via Internal Rule".
- An expression that evaluates to a valid data type, for example, fixdt ($1,16,0$)

Click the Show data type assistant button \gg to display the Data Type Assistant, which helps you set the Output data type parameter.

See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink documentation.

References

[1] FFTW (http://www.fftw.org)
[2] Frigo, M. and S. G. Johnson, "FFTW: An Adaptive Software Architecture for the FFT,"Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Vol. 3, 1998, pp. 1381-1384.

See Also

2-D DCT	Computer Vision Toolbox software
2-D FFT	Computer Vision Toolbox software
2-D IDCT	Computer Vision Toolbox software
2-D FFT	Computer Vision Toolbox software
bitrevorder	Signal Processing Toolbox software

fft	MATLAB
ifft	MATLAB
"Simulink Coder"	Simulink

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using Simulink $®$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- When the following conditions apply, the executable generated from this block relies on prebuilt dynamic library files (. dll files) included with MATLAB:
- FFT implementation is set to FFTW.
- Inherit FFT length from input dimensions is cleared, and FFT length is set to a value that is not a power of two.

Use the packNGo function to package the code generated from this block and all the relevant files in a compressed zip file. Using this zip file, you can relocate, unpack, and rebuild your project in another development environment where MATLAB is not installed. For more details, see .

- When the FFT length is a power of two, you can generate standalone C and $\mathrm{C}++$ code from this block.

Introduced before R2006a

2-D Maximum

Find maximum values in input or sequence of inputs

Library

Statistics
visionstatistics

Description

The 2-D Maximum block identifies the value and/or position of the smallest element in each row or column of the input, or along a specified dimension of the input. The 2-D Maximum block can also track the maximum values in a sequence of inputs over a period of time.

The 2-D Maximum block supports real and complex floating-point, fixed-point, and Boolean inputs. Real fixed-point inputs can be either signed or unsigned, while complex fixed-point inputs must be signed. The output data type of the maximum values match the data type of the input. The block outputs double index values, when the input is double, and uint32 otherwise.

Port Descriptions

Port	Input/Output	Supported Data Types
Input	Scalar, vector or matrix of intensity values	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Boolean - 8-, 16-, and 32-bit signed integers - 8 -, 16-, and 32 -bit unsigned integers
Rst	Scalar value	- Double-precision floating point - Single-precision floating point - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16 -, and 32 -bit unsigned integers
Val	Maximum value output based on the "Value Mode" on page 1-73	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - Boolean - 8 -, 16-, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers
Idx	One-based output location of the maximum value based on the "Index Mode" on page 1-74	- Double-precision floating point - 32-bit unsigned integers

Value Mode

When you set the Mode parameter to Value, the block computes the maximum value in each row or column of the input, along vectors of a specified dimension of the input, or of the entire input at each sample time, and outputs the array y. Each element in y is the maximum value in the corresponding column, row, vector, or entire input. The output y depends on the setting of the Find the maximum value over parameter. For example, consider a 3 -dimensional input signal of size M-by- N-by- P :

- Each row - The output at each sample time consists of an M-by-1-by-P array, where each element contains the maximum value of each vector over the second dimension of the input. For an M-by- N input matrix, the block outputs an M-by- 1 column vector at each sample time.
- Each column - The output at each sample time consists of a 1-by- N-by- P array, where each element contains the maximum value of each vector over the first dimension of the input. For an M-by- N input matrix, the block outputs a 1-by- N row vector at each sample time.

In this mode, the block treats length- M unoriented vector inputs as M-by- 1 column vectors.

- Entire input - The output at each sample time is a scalar that contains the maximum value in the M-by- N-by- P input matrix.
- Specified dimension - The output at each sample time depends on Dimension. When you set Dimension to 1, the block output is the same as when you select Each column. When you set Dimension to 2, the block output is the same as when you select Each row. When you set Dimension to 3, the block outputs an M-by- N matrix containing the maximum value of each vector over the third dimension of the input, at each sample time.

For complex inputs, the block selects the value in each row or column of the input, along vectors of a specified dimension of the input, or of the entire input that has the maximum magnitude squared as shown below. For complex value $u=a+b i$, the magnitude squared is $a^{2}+b^{2}$.

Index Mode

When you set the Mode parameter to Index, the block computes the maximum value in each row or column of the input, along vectors of a specified dimension of the input, or of the entire input, and outputs the index array I. Each element in I is an integer indexing the maximum value in the corresponding column, row, vector, or entire input. The output I depends on the setting of the Find the maximum value over parameter. For example, consider a 3-dimensional input signal of size M-by- N-by- P :

- Each row - The output at each sample time consists of an M-by-1-by-P array, where each element contains the index of the maximum value of each vector over the second dimension of the input. For an input that is an M-by- N matrix, the output at each sample time is an M-by- 1 column vector.
- Each column - The output at each sample time consists of a 1-by- N-by- P array, where each element contains the index of the maximum value of each vector over the first dimension of the input. For an input that is an M-by- N matrix, the output at each sample time is a $1-$ by $-N$ row vector.

In this mode, the block treats length- M unoriented vector inputs as M-by-1 column vectors.

- Entire input - The output at each sample time is a 1-by-3 vector that contains the location of the maximum value in the M-by- N-by- P input matrix. For an input that is an M-by- N matrix, the output will be a 1 -by-2 vector of one-based [x y] location coordinates for the maximum value.
- Specified dimension - The output at each sample time depends on Dimension. If Dimension is set to 1 , the output is the same as when you select Each column. If Dimension is set to 2 , the output is the same as when you select Each row. If Dimension is set to 3 , the output at each sample time is an M-by- N matrix containing the indices of the maximum values of each vector over the third dimension of the input.

When a maximum value occurs more than once, the computed index corresponds to the first occurrence. For example, when the input is the column vector [3 3 21123 3]', the computed one-based index of the maximum value is 1 rather than 5 when Each column is selected.

When inputs to the block are double-precision values, the index values are doubleprecision values. Otherwise, the index values are 32-bit unsigned integer values.

Value and Index Mode

When you set the Mode parameter to Value and Index, the block outputs both the maxima and the indices.

Running Mode

When you set the Mode parameter to Running, the block tracks the maximum value of each channel in a time sequence of M-by- N inputs. In this mode, the block treats each element as a channel.

Resetting the Running Maximum

The block resets the running maximum whenever a reset event is detected at the optional Rst port. The reset sample time must be a positive integer multiple of the input sample time.

You specify the reset event in the Reset port menu:

- None - Disables the Rst port.
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described above)
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port rate before the block applies the reset.

ROI Processing

To calculate the statistical value within a particular region of interest (ROI) of the input, select the Enable ROI processing check box. This applies to any mode other than running mode and when you set the Find the maximum value over parameter to Entire input and you select the Enable ROI processing check box. ROI processing applies only for 2-D inputs.

You can specify Rectangles, Lines, Label matrix, or Binary mask ROI type.
Use the Binary mask to specify which pixels to highlight or select.
Use the Label matrix to label regions. Pixels set to 0 represent the background. Pixels set to 1 represent the first object, pixels set to 2 , represent the second object, and so on. Use the Label Numbers port to specify the objects in the label matrix for which the block calculates statistics. The input to this port must be a vector of scalar values that correspond to the labeled regions in the label matrix.

For rectangular ROIs, use the ROI portion to process parameter to specify whether to calculate the statistical value for the entire ROI or just the ROI perimeter. For more information about the format of the input to the ROI port when you set the ROI to a rectangle or a line, see the Draw Shapes block reference page.

ROI Output Statistics
Output = Individual statistics for each ROI

Flag Port Output	Description
0	ROI is completely outside the input image.
1	ROI is completely or partially inside the input image.

Output = Single statistic for all ROIs

Flag Port Output	Description
0	All ROIs are completely outside the input image.
1	At least one ROI is completely or partially inside the input image.

If the ROI is partially outside the image, the block only computes the statistical values for the portion of the ROI that is within the image.
Output $=$ Individual statistics for each ROI

Flag Port Output	Description
0	Label number is not in the label matrix.
1	Label number is in the label matrix.

Output = Single statistic for all ROIs

Flag Port Output	Description
0	None of the label numbers are in the label matrix.
1	At least one of the label numbers is in the label matrix.

Fixed-Point Data Types

The parameters on the Data Types pane of the block dialog are only used for complex fixed-point inputs. The sum of the squares of the real and imaginary parts of such an input are formed before a comparison is made, as described in "Value Mode" on page 1-73. The results of the squares of the real and imaginary parts are placed into the product output data type. The result of the sum of the squares is placed into the accumulator data type. These parameters are ignored for other types of inputs.

Parameters

Mode

Specify the block's mode of operation:

- Value and Index - Output both the value and the index location.
- Value - Output the maximum value of each input matrix. For more information, see "Value Mode" on page 1-73.
- Index-Output the one-based index location of the maximum value. For more information, see "Index Mode" on page 1-74.
- Running - Track the maximum value of the input sequence over time. For more information, see "Running Mode" on page 1-75.

For the Value, Index, and Value and Index modes, the 2-D Maximum block produces identical results as the MATLAB max function when it is called as [y I] =
$\max (u,[], D)$, where u and y are the input and output, respectively, D is the dimension, and I is the index.

Find the maximum value over

Specify whether the block should find the maximum of the entire input each row, each column, or dimensions specified by the Dimension parameter.

Reset port

Specify the reset event that causes the block to reset the running maximum. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input. This parameter appears only when you set the Mode parameter to Running. For information about the possible values of this parameter, see "Resetting the Running Maximum" on page 1-75.

Dimension

Specify the dimension (one-based value) of the input signal, over which the maximum is computed. The value of this parameter cannot exceed the number of dimensions in the input signal. This parameter applies only when you set the Find the maximum value over parameter to Specified dimension.

Enable ROI processing

Select this check box to calculate the statistical value within a particular region of each image. This parameter applies only when you set the Find the maximum value over parameter to Entire input, and the block is not in running mode.

ROI type

Specify the type of ROI you want to use. Your choices are Rectangles, Lines, Label matrix, or Binary mask.

When you set this parameter to Rectangles or Lines, the Output flag indicating if ROI is within image bounds check box appears in the dialog box. If you select this check box, the Flag port appears on the block.

When you set this parameter to Label matrix, the Label and Label Numbers ports appear on the block and the Output flag indicating if input label numbers are valid check box appears in the dialog box. If you select this check box, the Flag port appears on the block.

See "ROI Output Statistics" on page 1-77 for details.

ROI portion to process

Specify whether you want to calculate the statistical value for the entire ROI or just the ROI perimeter. This parameter applies only when you set the ROI type parameter to Rectangles.

Output

Specify the block output. The block can output a vector of separate statistical values for each ROI or a scalar value that represents the statistical value for all the specified ROIs. This parameter does not apply when you set the ROI type parameter, to Binary mask.

Output flag indicating if ROI is within image bounds

When you select this check box, the Flag port appears on the block. This check box applies only when you set the ROI type parameter to Rectangles or Lines. For a description of the Flag port output, see the tables in "ROI Processing" on page 1-77.

Output flag indicating if label numbers are valid

When you select this check box, the Flag port appears on the block. This check box applies only when you set the ROI type parameter to Label matrix. For a description of the Flag port output, see the tables in "ROI Processing" on page 1-77.

Note The parameters on the Data Types pane are only used for complex fixed-point inputs. The sum of the squares of the real and imaginary parts of such an input are formed before a comparison is made, as described in "Value Mode" on page 1-73. The results of the squares of the real and imaginary parts are placed into the product output data type. The result of the sum of the squares is placed into the accumulator data type. These parameters are ignored for other types of inputs.

Rounding mode

Select the "Rounding Modes" for fixed-point operations.

Saturate on integer overflow

Select the overflow mode for fixed-point operations. See "Precision and Range".

Product output data type

Specify the product output data type. See "Fixed-Point Data Types" on page 1-78 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as input
- An expression that evaluates to a valid data type, for example, fixdt ([], 16, 0)

Click the Show data type assistant button \gg to display the Data Type Assistant, which helps you set the Product output data type parameter.

See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Accumulator data type

Specify the accumulator data type. See "Fixed-Point Data Types" on page 1-78 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Same as product output
- An expression that evaluates to a valid data type, for example, fixdt ([] , 16, 0)

Click the Show data type assistant button \gg to display the Data Type
Assistant, which helps you set the Accumulator data type parameter.
See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Lock data type settings against changes by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on the block mask.

Examples

The ex_vision_2dmaximum example finds the maximum value within two ROIs. The model outputs the maximum values and their one-based [xy] coordinate locations.

See Also

2-D Mean	Computer Vision Toolbox
2-D Minimum	Computer Vision
	Toolbox
MinMax	Simulink
max	MATLAB

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

2-D Mean

Find mean value of each input matrix

Library

Statistics
visionstatistics

Description

The 2-D Mean block computes the mean of each row or column of the input, along vectors of a specified dimension of the input, or of the entire input. The 2-D Mean block can also track the mean value in a sequence of inputs over a period of time. To track the mean value in a sequence of inputs, select the Running mean check box.

Port Description

Port	Supported Data Types
Input	$\bullet \quad$ Double-precision floating point
	-
	•

Port	Supported Data Types
Reset	- Double-precision floating point - Single-precision floating point - Boolean - 8-, 16-, and 32 -bit signed integers - $8-, 16$-, and 32 -bit unsigned integers
ROI	Rectangles and lines: - Double-precision floating point - Single-precision floating point - Boolean - $8-16$-, and 32 -bit signed integers - $8-, 16$-, and 32 -bit unsigned integers Binary Mask: - Boolean
Label	- 8-, 16-, and 32-bit unsigned integers
Label Numbers	- 8-, 16-, and 32-bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point - 8-, 16-, and 32 -bit signed integers - 8 -, 16-, and 32 -bit unsigned integers
Flag	- Boolean

Basic Operation

When you do not select the Running mean check box, the block computes the mean value in each row or column of the input, along vectors of a specified dimension of the input, or of the entire input at each individual sample time. Each element in the output array y is the mean value of the corresponding column, row, vector, or entire input. The
output array, y, depends on the setting of the Find the mean value over parameter. For example, consider a 3 -dimensional input signal of size M-by- N-by- P :

- Entire input - The output at each sample time is a scalar that contains the mean value of the M-by- N-by- P input matrix.

```
y = mean(u(:)) % Equivalent MATLAB code
```

- Each row - The output at each sample time consists of an M-by-1-by-P array, where each element contains the mean value of each vector over the second dimension of the input. For an input that is an M-by- N matrix, the output at each sample time is an M -by-1 column vector.

```
y = mean(u,2) % Equivalent MATLAB code
```

- Each column - The output at each sample time consists of a 1-by- N-by- P array, where each element contains the mean value of each vector over the first dimension of the input. For an input that is an M-by- N matrix, the output at each sample time is a 1-by- N row vector.
$y=$ mean $(u) \quad$ \% Equivalent MATLAB code
In this mode, the block treats length- M unoriented vector inputs as M-by- 1 column vectors.
- Specified dimension - The output at each sample time depends on the value of the Dimension parameter. If you set the Dimension to 1 , the output is the same as when you select Each column. If you set the Dimension to 2 , the output is the same as when you select Each row. If you set the Dimension to 3, the output at each sample time is an M-by- N matrix containing the mean value of each vector over the third dimension of the input.

```
y = mean(u,Dimension) % Equivalent MATLAB code
```

The mean of a complex input is computed independently for the real and imaginary components, as shown in the following figure.

Running Operation

When you select the Running mean check box, the block tracks the mean value of each channel in a time sequence of inputs. In this mode, the block treats each element as a channel.

Resetting the Running Mean

The block resets the running mean whenever a reset event is detected at the optional Rst port. The reset sample time must be a positive integer multiple of the input sample time.

When a reset event occurs, the running mean for each channel is initialized to the value in the corresponding channel of the current input.

You specify the reset event by the Reset port parameter:

- None disables the Rst port.
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described earlier)
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a onesample delay at the reset port rate before the block applies the reset.

ROI Processing

To calculate the statistical value within a particular region of interest (ROI) of the input, select the Enable ROI processing check box. This option is only available when the Find the mean value over parameter is set to Entire input and the Running mean check box is not selected. ROI processing is only supported for 2-D inputs.

- A binary mask is a binary image that enables you to specify which pixels to highlight, or select.
- In a label matrix, pixels equal to 0 represent the background, pixels equal to 1 represent the first object, pixels equal to 2 represent the second object, and so on. When the ROI type parameter is set to Label matrix, the Label and Label Numbers ports appear on the block. Use the Label Numbers port to specify the objects in the label matrix for which the block calculates statistics. The input to this port must be a vector of scalar values that correspond to the labeled regions in the label matrix.
- For more information about the format of the input to the ROI port when the ROI is a rectangle or a line, see the Draw Shapes reference page.

For more information about the format of the input to the ROI port when the ROI is a rectangle or a line, see the Draw Shapes block reference page.

Note For rectangular ROIs, use the ROI portion to process parameter to specify whether to calculate the statistical value for the entire ROI or just the ROI perimeter.

Use the Output parameter to specify the block output. The block can output separate statistical values for each ROI or the statistical value for all specified ROIs. This parameter is not available if, for the ROI type parameter, you select Binary mask.

If, for the ROI type parameter, you select Rectangles or Lines, the Output flag indicating if ROI is within image bounds check box appears in the dialog box. If you select this check box, the Flag port appears on the block. The following tables describe the Flag port output based on the block parameters.

Output = Individual statistics for each ROI

Flag Port Output	Description
0	ROI is completely outside the input image.
1	ROI is completely or partially inside the input image.

Output = Single statistic for all ROIs

Flag Port Output	Description
0	All ROIs are completely outside the input image.
1	At least one ROI is completely or partially inside the input image.

If the ROI is partially outside the image, the block only computes the statistical values for the portion of the ROI that is within the image.

If, for the ROI type parameter, you select Label matrix, the Output flag indicating if input label numbers are valid check box appears in the dialog box. If you select this check box, the Flag port appears on the block. The following tables describe the Flag port output based on the block parameters.

Output = Individual statistics for each ROI

Flag Port Output	Description
0	Label number is not in the label matrix.
1	Label number is in the label matrix.

Output = Single statistic for all ROIs

Flag Port Output	Description
0	None of the label numbers are in the label matrix.
1	At least one of the label numbers is in the label matrix.

Fixed-Point Data Types

The following diagram shows the data types used within the Mean block for fixed-point signals.

You can set the accumulator and output data types in the block dialog, as discussed in "Parameters" on page 1-90.

Parameters

Running mean

Enables running operation when selected.

Reset port

Specify the reset event that causes the block to reset the running mean. The sample time of the input to the Rst port must be a positive integer multiple of the input sample time. This parameter appears only when you select the Running mean check box. For more information, see "Resetting the Running Mean" on page 1-86.

Find the mean value over

Specify whether to find the mean value along rows, columns, entire input, or the dimension specified in the Dimension parameter. For more information, see "Basic Operation" on page 1-84.

Dimension

Specify the dimension (one-based value) of the input signal, over which the mean is computed. The value of this parameter cannot exceed the number of dimensions in
the input signal. This parameter is only visible when the Find the mean value over parameter is set to Specified dimension.

Enable ROI Processing

Select this check box to calculate the statistical value within a particular region of each image. This parameter is only available when the Find the mean value over parameter is set to Entire input, and the block is not in running mode.

ROI type

Specify the type of ROI you want to use. Your choices are Rectangles, Lines, Label matrix, or Binary mask.

ROI portion to process

Specify whether you want to calculate the statistical value for the entire ROI or just the ROI perimeter. This parameter is only visible if, for the ROI type parameter, you specify Rectangles.

Output

Specify the block output. The block can output a vector of separate statistical values for each ROI or a scalar value that represents the statistical value for all the specified ROIs. This parameter is not available if, for the ROI type parameter, you select Binary mask.

Output flag indicating if ROI is within image bounds

When you select this check box, a Flag port appears on the block. For a description of the Flag port output, see the tables in "ROI Processing" on page 1-88.

Output flag indicating if label numbers are valid

When you select this check box, a Flag port appears on the block. This check box is visible only when you select Label matrix for the ROI type parameter. For a description of the Flag port output, see the tables in "ROI Processing" on page 1-88.

Rounding mode

Select the "Rounding Modes" for fixed-point operations.

Saturate on integer overflow

Select the overflow mode for fixed-point operations. See "Precision and Range".

Accumulator data type

Specify the accumulator data type. See "Fixed-Point Data Types" on page 1-90 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Same as input
- An expression that evaluates to a valid data type, for example, fixdt ([], 16, 0)

Click the Show data type assistant button \ggg to display the Data Type
Assistant, which helps you set the Accumulator data type parameter.
See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Output data type

Specify the output data type. See "Fixed-Point Data Types" on page 1-90 for illustrations depicting the use of the output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as accumulator
- An expression that evaluates to a valid data type, for example, fixdt ([], 16, 0)

Click the Show data type assistant button \gg to display the Data Type
Assistant, which helps you set the Output data type parameter.
See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Signal Ranges" (Simulink))
- Automatic scaling of fixed-point data types

Maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Signal Ranges" (Simulink))
- Automatic scaling of fixed-point data types

Example

The ex_vision_2dmean calculates the mean value within two ROIs.

See Also

2-D Maximum	Computer Vision Toolbox
2D-Median	Computer Vision Toolbox
2-D Minimum	Computer Vision Toolbox
2-D Standard Deviation	Computer Vision Toolbox
mean	MATLAB

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

2-D Median

Find 2-D Median value of each input matrix

Library

Statistics

visionstatistics

Description

The 2-D Median block computes the median value of each row or column of the input, along vectors of a specified dimension of the input, or of the entire input. The median of a set of input values is calculated as follows:

1 The values are sorted.
2 If the number of values is odd, the median is the middle value.
3 If the number of values is even, the median is the average of the two middle values.
For a given input u, the size of the output array y depends on the setting of the Find the median value over parameter. For example, consider a 3-dimensional input signal of size M-by- N-by- P :

- Entire input - The output at each sample time is a scalar that contains the median value of the M-by- N-by- P input matrix.

```
y = median(u(:)) % Equivalent MATLAB code
```

- Each row - The output at each sample time consists of an M-by-1-by- P array, where each element contains the median value of each vector over the second dimension of the input. For an input that is an M-by- N matrix, the output is an M-by- 1 column vector.

```
y = median(u,2) % Equivalent MATLAB code
```

- Each column - The output at each sample time consists of a 1-by- N-by- P array, where each element contains the median value of each vector over the first dimension of the input. For an input that is an M-by- N matrix, the output at each sample time is a 1 -by- N row vector.

```
y = median(u) % Equivalent MATLAB code
```

For convenience, length-M 1-D vector inputs are treated as M-by-1 column vectors when the block is in this mode. Sample-based length-M row vector inputs are also treated as M-by- 1 column vectors.

- Specified dimension - The output at each sample time depends on Dimension. If Dimension is set to 1 , the output is the same as when you select Each column. If Dimension is set to 2 , the output is the same as when you select Each row. If Dimension is set to 3 , the output at each sample time is an M-by- N matrix containing the median value of each vector over the third dimension of the input.

```
y = median(u,Dimension) % Equivalent MATLAB code
```

The block sorts complex inputs according to their magnitude.

Fixed-Point Data Types

For fixed-point inputs, you can specify accumulator, product output, and output data types as discussed in "Parameters" on page 1-96. Not all these fixed-point parameters are applicable for all types of fixed-point inputs. The following table shows when each kind of data type and scaling is used.

	Output data type	Accumulator data type	Product output data type
Even \boldsymbol{M}	X	X	
Odd M	X	X	X
Odd M and complex	X	X	X
Even M and complex	X		

The accumulator and output data types and scalings are used for fixed-point signals when M is even. The result of the sum performed while calculating the average of the two central rows of the input matrix is stored in the accumulator data type and scaling. The total result of the average is then put into the output data type and scaling.

The accumulator and product output parameters are used for complex fixed-point inputs. The sum of the squares of the real and imaginary parts of such an input are formed before the input elements are sorted, as described in Description on page 1-94. The results of the squares of the real and imaginary parts are placed into the product output data type and scaling. The result of the sum of the squares is placed into the accumulator data type and scaling.

For fixed-point inputs that are both complex and have even M, the data types are used in all of the ways described. Therefore, in such cases, the accumulator type is used in two different ways.

Parameters

Sort algorithm

Specify whether to sort the elements of the input using a Quick sort or an Insertion sort algorithm.

Find the median value over

Specify whether to find the median value along rows, columns, entire input, or the dimension specified in the Dimension parameter. For more information, see Description on page 1-94.

Dimension

Specify the dimension (one-based value) of the input signal, over which the median is computed. The value of this parameter cannot exceed the number of dimensions in the input signal. This parameter is only visible when the Find the median value over parameter is set to Specified dimension.

Note Floating-point inheritance takes precedence over the data type settings defined on this pane. When inputs are floating point, the block ignores these settings, and all internal data types are floating point.

Rounding mode

Select the Rounding mode for fixed-point operations.

Saturate on integer overflow

Select the overflow mode for fixed-point operations. See "Precision and Range".

Product output data type

Specify the product output data type. See "Fixed-Point Data Types" on page 1-95 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as input
- An expression that evaluates to a valid data type, for example, fixdt ([], 16, 0)

Click the Show data type assistant button $\quad \ggg$ to display the Data Type
Assistant, which helps you set the Product output data type parameter.
See "Specify Data Types Using Data Type Assistant" (Simulink) for more information. Accumulator data type

Specify the accumulator data type. See "Fixed-Point Data Types" on page 1-95 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Same as product output
- An expression that evaluates to a valid data type, for example, fixdt ([], 16, 0)

Click the Show data type assistant button $\quad \gg \quad$ to display the Data Type
Assistant, which helps you set the Accumulator data type parameter.
See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Output data type

Specify the output data type. See "Fixed-Point Data Types" on page 1-95 for illustrations depicting the use of the output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as accumulator
- An expression that evaluates to a valid data type, for example, fixdt ([] , 16, 0)

Click the Show data type assistant button \square to display the Data Type Assistant, which helps you set the Output data type parameter.

See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Signal Ranges" (Simulink))
- Automatic scaling of fixed-point data types

Maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Signal Ranges" (Simulink))
- Automatic scaling of fixed-point data types

Supported Data Types

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - 8-, 16-, 32 -, and 128 -bit signed integers - 8-, 16-, 32 -, and 128 -bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point - Fixed point (signed and unsigned) - 8-, 16-, 32 -, and 128 -bit signed integers - $8-16-, 32$-, and 128 -bit unsigned integers

Examples

Calculate Median Value Over Entire Input

The ex_vision_2dmedian calculates the median value over the entire input.

See Also

2-D Maximum	Computer Vision Toolbox
2-D Mean	Computer Vision Toolbox
2-D Minimum	Computer Vision Toolbox
2-D Standard Deviation	Computer Vision Toolbox
2-D Variance	Computer Vision Toolbox
median	MATLAB

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Generated code relies on memcpy or memset functions (string.h) under certain conditions.

2-D Minimum

Find minimum values in input or sequence of inputs

Library

Statistics
visionstatistics

Description

The 2-D Minimum block identifies the value and/or position of the smallest element in each row or column of the input, or along a specified dimension of the input. The 2-D Minimum block can also track the minimum values in a sequence of inputs over a period of time.

The 2-D Minimum block supports real and complex floating-point, fixed-point, and Boolean inputs. Real fixed-point inputs can be either signed or unsigned, while complex fixed-point inputs must be signed. The output data type of the minimum values match the data type of the input. The block outputs double index values, when the input is double, and uint32 otherwise.

Port Description

Port	Input/Output	Supported Data Types	Complex Values Supported
Input	Scalar, vector or matrix of intensity values	-Double-precision floating point Single-precision floating point Fixed point 8-, 16-, 32-bit signed integer - Rst $16-, 32$-bit unsigned integer	Yes
Val	Scalar value	Minimum value output based on the "Value Mode" on page 1-101	Same as Input port

Length-M 1-D vector inputs are treated as M-by-1 column vectors.

Value Mode

When you set the Mode parameter to Value, the block computes the minimum value in each row, column, entire input, or over a specified dimension. The block outputs each element as the minimum value in the corresponding column, row, vector, or entire input. The output depends on the setting of the Find the minimum value over parameter. For example, consider a 3 -dimensional input signal of size M-by- N-by- P :

- Each row - The output at each sample time consists of an M-by-1-by- P array, where each element contains the minimum value of each vector over the second dimension of the input. For an M-by- N input matrix, the block outputs an M-by- 1 column vector at each sample time.
- Each column - The output at each sample time consists of a 1-by- N-by- P array, where each element contains the minimum value of each vector over the first dimension of the input. For an M-by- N input matrix, the block outputs a 1-by- N row vector at each sample time.

In this mode, the block treats length- M unoriented vector inputs as M-by- 1 column vectors.

- Entire input - The output at each sample time is a scalar that contains the minimum value in the M-by- N-by- P input matrix.
- Specified dimension - The output at each sample time depends on Dimension. When you set Dimension to 1 , the block output is the same as when you select Each column. When you set Dimension to 2, the block output is the same as when you select Each row. When you set Dimension to 3, the block outputs an M-by- N matrix containing the minimum value of each vector over the third dimension of the input, at each sample time.

For complex inputs, the block selects the value in each row or column of the input, along vectors of a specified dimension of the input, or of the entire input that has the minimum magnitude squared as shown below. For complex value $u=a+b i$, the magnitude squared is $a^{2}+b^{2}$.

Index Mode

When you set the Mode parameter to Index, the block computes the minimum value in each row or column of the input, along vectors of a specified dimension of the input, or of the entire input, and outputs the index array I. Each element in I is an integer indexing the minimum value in the corresponding column, row, vector, or entire input. The output I depends on the setting of the Find the minimum value over parameter. For example, consider a 3 -dimensional input signal of size M-by- N-by- P :

- Each row - The output at each sample time consists of an M-by-1-by-P array, where each element contains the index of the minimum value of each vector over the second dimension of the input. For an input that is an M-by- N matrix, the output at each sample time is an M-by- 1 column vector.
- Each column - The output at each sample time consists of a 1-by- N-by- P array, where each element contains the index of the minimum value of each vector over the first dimension of the input. For an input that is an M-by- N matrix, the output at each sample time is a 1 -by- N row vector.

In this mode, the block treats length- M unoriented vector inputs as M-by- 1 column vectors.

- Entire input - The output at each sample time is a 1-by-3 vector that contains the location of the minimum value in the M-by- N-by- P input matrix. For an input that is an M-by- N matrix, the output will be a 1-by-2 vector of one-based [x y] location coordinates for the minimum value.
- Specified dimension - The output at each sample time depends on Dimension. If Dimension is set to 1 , the output is the same as when you select Each column. If Dimension is set to 2 , the output is the same as when you select Each row. If Dimension is set to 3 , the output at each sample time is an M-by- N matrix containing the indices of the minimum values of each vector over the third dimension of the input.

When a minimum value occurs more than once, the computed index corresponds to the first occurrence. For example, when the input is the column vector $\left[\begin{array}{llll}-1 & 2 & 3 & 2\end{array}\right.$-1 1]', the computed one-based index of the minimum value is 1 rather than 5 when Each column is selected.

Value and Index Mode

When you set the Mode parameter to Value and Index, the block outputs both the minima, and the indices.

Running Mode

When you set the Mode parameter to Running, the block tracks the minimum value of each channel in a time sequence of M-by- N inputs. In this mode, the block treats each element as a channel.

Resetting the Running Minimum

The block resets the running minimum whenever a reset event is detected at the optional Rst port. The reset sample time must be a positive integer multiple of the input sample time.

You specify the reset event by the Reset port parameter:

- None - Disables the Rst port
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described above)
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a onesample delay at the reset port rate before the block applies the reset.

ROI Processing

To calculate the statistical value within a particular region of interest (ROI) of the input, select the Enable ROI processing check box. This applies to any mode other than the Running mode and when you set the Find the minimum value over parameter to Entire input and you select the Enable ROI processing check box. ROI processing applies only for 2-D inputs.

You can specify a rectangle, line, label matrix, or binary mask ROI type.
Use the binary mask to specify which pixels to highlight or select.
Use the label matrix to label regions. Pixels set to 0 represent the background. Pixels set to 1 represent the first object, pixels set to 2, represent the second object, and so on. Use the Label Numbers port to specify the objects in the label matrix for which the block calculates statistics. The input to this port must be a vector of scalar values that correspond to the labeled regions in the label matrix.

For rectangular ROIs, use the ROI portion to process parameter to specify whether to calculate the statistical value for the entire ROI or just the ROI perimeter. For more information about the format of the input to the ROI port when you set the ROI to a rectangle or a line, see the Draw Shapes block reference page.

ROI Output Statistics

Output = Individual statistics for each ROI

Flag Port Output	Description
0	ROI is completely outside the input image.
1	ROI is completely or partially inside the input image.

Output = Single statistic for all ROIs

Flag Port Output	Description
0	All ROIs are completely outside the input image.
1	At least one ROI is completely or partially inside the input image.

If the ROI is partially outside the image, the block only computes the statistical values for the portion of the ROI that is within the image.

Output = Individual statistics for each ROI

Flag Port Output	Description
0	Label number is not in the label matrix.
1	Label number is in the label matrix.

Output = Single statistic for all ROIs

Flag Port Output	Description
0	None of the label numbers are in the label matrix.
1	At least one of the label numbers is in the label matrix.

Fixed-Point Data Types

The parameters on the Fixed-point pane of the dialog box are only used for complex fixed-point inputs. The sum of the squares of the real and imaginary parts of such an input are formed before a comparison is made, as described in "Value Mode" on page 1-101. The results of the squares of the real and imaginary parts are placed into the product output data type. The result of the sum of the squares is placed into the accumulator data type. These parameters are ignored for other types of inputs.

Parameters

Mode

Specify the block's mode of operation:

- Value and Index - Output both the value and the index location.
- Value - Output the minimum value of each input matrix. For more information, see "Value Mode" on page 1-101
- Index- Output the one-based index location of the minimum value. For more information, see "Index Mode" on page 1-102
- Running - Track the minimum value of the input sequence over time. For more information, see "Running Mode" on page 1-103.

For the Value, Index, and Value and Index modes, the 2-D Minimum block produces identical results as the MATLAB min function when it is called as [y I] = $\min (u,[], D)$, where u and y are the input and output, respectively, D is the dimension, and I is the index.

Find the minimum value over

Specify whether the block should find the minimum of the entire input each row, each column, or dimensions specified by the Dimension parameter.

Reset port

Specify the reset event that causes the block to reset the running minimum. The rate of the reset signal must be a positive integer multiple of the rate of the data signal input. This parameter appears only when you set the Mode parameter to Running. For information about the possible values of this parameter, see "Resetting the Running Minimum" on page 1-103.

Dimension

Specify the dimension (one-based value) of the input signal, over which the minimum is computed. The value of this parameter cannot exceed the number of dimensions in the input signal. This parameter applies only when you set the Find the minimum value over parameter to Specified dimension.

Enable ROI processing

Select this check box to calculate the statistical value within a particular region of each image. This parameter applies only when you set the Find the minimum value over parameter to Entire input, and the block is not in running mode.

ROI type

Specify the type of ROI you want to use. Your choices are Rectangles, Lines, Label matrix, or Binary mask.

When you set this parameter to Rectangles or Lines, the Output flag indicating if ROI is within image bounds check box appears in the dialog box. If you select this check box, the Flag port appears on the block.

When you set this parameter to Label matrix, the Label and Label Numbers ports appear on the block and the Output flag indicating if input label numbers are valid check box appears in the dialog box. If you select this check box, the Flag port appears on the block.

See Output = Individual statistics for each ROI for details.

ROI portion to process

Specify whether you want to calculate the statistical value for the entire ROI or just the ROI perimeter. This parameter applies only when you set the ROI type parameter to Rectangles.

Output

Specify the block output. The block can output a vector of separate statistical values for each ROI or a scalar value that represents the statistical value for all the specified ROIs. This parameter does not apply when you set the ROI type parameter, to Binary mask.

Output flag indicating if ROI is within image bounds

When you select this check box, the Flag port appears on the block. This check box applies only when you set the ROI type parameter to Rectangles or Lines. For a description of the Flag port output, see the tables in "ROI Processing" on page 1-105.

Output flag indicating if label numbers are valid

When you select this check box, the Flag port appears on the block. This check box applies only when you set the ROI type parameter to Label matrix. For a description of the Flag port output, see the tables in "ROI Processing" on page 1-105.

Note The parameters on the Data Types pane are only used for complex fixed-point inputs. The sum of the squares of the real and imaginary parts of such an input are formed before a comparison is made, as described in "Value Mode" on page 1-101. The results of the squares of the real and imaginary parts are placed into the product output data type. The result of the sum of the squares is placed into the accumulator data type. These parameters are ignored for other types of inputs.

Rounding mode

Select the "Rounding Modes" for fixed-point operations.

Saturate on integer overflow

Select the overflow mode for fixed-point operations. See "Precision and Range".

Product output data type

Specify the product output data type. See "Fixed-Point Data Types" on page 1-106 and "Multiplication Data Types" for illustrations depicting the use of the product output data type in this block. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as input
- An expression that evaluates to a valid data type, for example, fixdt ([], 16, 0)

Click the Show data type assistant button \gg to display the Data Type

 Assistant, which helps you set the Product output data type parameter.See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Accumulator data type

Specify the accumulator data type. See "Fixed-Point Data Types" on page 1-106 for illustrations depicting the use of the accumulator data type in this block. You can set this parameter to:

- A rule that inherits a data type, for example, Inherit: Same as input
- An expression that evaluates to a valid data type, for example, fixdt ([] , 16, 0)

Click the Show data type assistant button \gg to display the Data Type
Assistant, which helps you set the Accumulator data type parameter.
See "Specify Data Types Using Data Type Assistant" (Simulink) for more information.

Examples

The ex_vision_2dminimum example finds the minimum value within two ROIs. The model outputs the minimum values and their one-based [xy] coordinate locations.

See Also

2-D Maximum
2-D Mean
MinMax
2D-Histogram
min

Computer Vision Toolbox
Computer Vision Toolbox
Simulink
Computer Vision Toolbox
MATLAB

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

2-D Standard Deviation

Find standard deviation of each input matrix

Library

Statistics
visionstatistics

Description

The Standard Deviation block computes the standard deviation of each row or column of the input, along vectors of a specified dimension of the input, or of the entire input. The Standard Deviation block can also track the standard deviation of a sequence of inputs over a period of time. The Running standard deviation parameter selects between basic operation and running operation.

Port Description

Port	Supported Data Types
Input	- Double-precision floating point - Single-precision floating point
Reset	- Double-precision floating point - Single-precision floating point - Boolean - 8 -, 16-, and 32 -bit signed integers - $8-, 16$-, and 32 -bit unsigned integers

Port	Supported Data Types
ROI	Rectangles and lines: - Double-precision floating point - Single-precision floating point - Boolean - 8-, 16-, and 32-bit signed integers - 8-, 16-, and 32 -bit unsigned integers Binary Mask: - Boolean
Label	- 8-, 16-, and 32-bit unsigned integers
Label Numbers	- 8-, 16-, and 32-bit unsigned integers
Output	- Double-precision floating point - Single-precision floating point
Flag	- Boolean

Basic Operation

When you do not select the Running standard deviation check box, the block computes the standard deviation of each row or column of the input, along vectors of a specified dimension of the input, or of the entire input at each individual sample time, and outputs the array y. Each element in y contains the standard deviation of the corresponding column, row, vector, or entire input. The output y depends on the setting of the Find the standard deviation value over parameter. For example, consider a 3-dimensional input signal of size M-by- N-by- P :

- Entire input - The output at each sample time is a scalar that contains the standard deviation of the entire input.

```
y = std(u(:)) % Equivalent MATLAB code
```

- Each Row - The output at each sample time consists of an M-by-1-by-P array, where each element contains the standard deviation of each vector over the second dimension of the input. For an input that is an M-by- N matrix, the output at each sample time is an M-by- 1 column vector.

```
y = std(u,0,2) % Equivalent MATLAB code
```

- Each Column - The output at each sample time consists of a 1-by- N-by- P array, where each element contains the standard deviation of each vector over the first dimension of the input. For an input that is an M-by- N matrix, the output at each sample time is a $1-$ by $-N$ row vector.

```
y = std(u,0,1) % Equivalent MATLAB code
```

In this mode, the block treats length- M unoriented vector inputs as M-by-1 column vectors.

- Specified Dimension - The output at each sample time depends on Dimension. If Dimension is set to 1 , the output is the same as when you select Each column. If Dimension is set to 2, the output is the same as when you select Each row. If Dimension is set to 3 , the output at each sample time is an M-by- N matrix containing the standard deviation of each vector over the third dimension of the input.

```
y = std(u,0,Dimension) % Equivalent MATLAB code
```

For purely real or purely imaginary inputs, the standard deviation of the j th column of an M-by- N input matrix is the square root of its variance:

$$
y_{j}=\sigma_{j}=\sqrt{\frac{\sum_{i=1}^{M}\left|u_{i j}-\mu_{j}\right|^{2}}{M-1}} \quad 1 \leq j \leq N
$$

For complex inputs, the output is the total standard deviation, which equals the square root of the total variance, or the square root of the sum of the variances of the real and imaginary parts. The standard deviation of each column in an M-by- N input matrix is given by:

$$
\sigma_{j}=\sqrt{\sigma_{j, \mathrm{Re}}^{2}+\sigma_{j, \mathrm{Im}}^{2}}
$$

Note The total standard deviation does not equal the sum of the real and imaginary standard deviations.

Running Operation

When you select the Running standard deviation check box, the block tracks the standard deviation of successive inputs to the block. In this mode, the block treats each element as a channel.

Resetting the Running Standard Deviation

The block resets the running standard deviation whenever a reset event is detected at the optional Rst port. The reset sample time must be a positive integer multiple of the input sample time.

You specify the reset event in the Reset port parameter:

- None disables the Rst port.
- Rising edge - Triggers a reset operation when the Rst input does one of the following:
- Rises from a negative value to a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero (see the following figure)

- Falling edge - Triggers a reset operation when the Rst input does one of the following:
- Falls from a positive value to a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero (see the following figure)

- Either edge - Triggers a reset operation when the Rst input is a Rising edge or Falling edge (as described earlier)
- Non-zero sample - Triggers a reset operation at each sample time that the Rst input is not zero

Note When running simulations in the Simulink MultiTasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a one-sample delay at the reset port rate before the block applies the reset.

ROI Processing

To calculate the statistical value within a particular region of interest (ROI) of the input, select the Enable ROI processing check box. This option is only available when the Find the standard deviation value over parameter is set to Entire input and the Running standard deviation check box is not selected. ROI processing is only supported for 2-D inputs.

Use the ROI type parameter to specify whether the ROI is a rectangle, line, label matrix, or binary mask. A binary mask is a binary image that enables you to specify which pixels to highlight, or select. In a label matrix, pixels equal to 0 represent the background, pixels equal to 1 represent the first object, pixels equal to 2 represent the second object, and so on. When the ROI type parameter is set to Label matrix, the Label and Label Numbers ports appear on the block. Use the Label Numbers port to specify the objects in the label matrix for which the block calculates statistics. The input to this port must be a vector of scalar values that correspond to the labeled regions in the label matrix. For
more information about the format of the input to the ROI port when the ROI is a rectangle or a line, see the Draw Shapes block reference page.

For rectangular ROIs, use the ROI portion to process parameter to specify whether to calculate the statistical value for the entire ROI or just the ROI perimeter.

Use the Output parameter to specify the block output. The block can output separate statistical values for each ROI or the statistical value for all specified ROIs. This parameter is not available if, for the ROI type parameter, you select Binary mask.

If, for the ROI type parameter, you select Rectangles or Lines, the Output flag indicating if ROI is within image bounds check box appears in the dialog box. If you select this check box, the Flag port appears on the block. The following tables describe the Flag port output based on the block parameters.

Output = Individual statistics for each ROI

Flag Port Output	Description
0	ROI is completely outside the input image.
1	ROI is completely or partially inside the input image.

Output = Single statistic for all ROIs

Flag Port Output	Description
0	All ROIs are completely outside the input image.
1	At least one ROI is completely or partially inside the input image.

If the ROI is partially outside the image, the block only computes the statistical values for the portion of the ROI that is within the image.

If, for the ROI type parameter, you select Label matrix, the Output flag indicating if input label numbers are valid check box appears in the dialog box. If you select this check box, the Flag port appears on the block. The following tables describe the Flag port output based on the block parameters.

Output = Individual statistics for each ROI

Flag Port Output	Description
0	Label number is not in the label matrix.
1	Label number is in the label matrix.

Output = Single statistic for all ROIs

Flag Port Output	Description
0	None of the label numbers are in the label matrix.
1	At least one of the label numbers is in the label matrix.

Parameters

Running standard deviation

Enables running operation when selected.

Reset port

Specify the reset event that causes the block to reset the running standard deviation. The sample time of the input to the Rst port must be a positive integer multiple of the input sample time. This parameter appears only when you select the Running standard deviation check box. For more information, see "Resetting the Running Standard Deviation" on page 1-114.

Find the standard deviation value over

Specify whether to find the standard deviation value along rows, columns, entire input, or the dimension specified in the Dimension parameter. For more information, see "Basic Operation" on page 1-112.

Dimension

Specify the dimension (one-based value) of the input signal, over which the standard deviation is computed. The value of this parameter cannot exceed the number of dimensions in the input signal. This parameter is only visible when the Find the standard deviation value over parameter is set to Specified dimension.

Enable ROI Processing

Select this check box to calculate the statistical value within a particular region of each image. This parameter is only available when the Find the standard deviation value over parameter is set to Entire input, and the block is not in running mode.

ROI type

Specify the type of ROI you want to use. Your choices are Rectangles, Lines, Label matrix, or Binary mask.

ROI portion to process

Specify whether you want to calculate the statistical value for the entire ROI or just the ROI perimeter. This parameter is only visible if, for the ROI type parameter, you specify Rectangles.

Output

Specify the block output. The block can output a vector of separate statistical values for each ROI or a scalar value that represents the statistical value for all the specified ROIs. This parameter is not available if, for the ROI type parameter, you select Binary mask.

Output flag indicating if ROI is within image bounds

When you select this check box, a Flag port appears on the block. For a description of the Flag port output, see the tables in "ROI Processing" on page 1-115.

Output flag indicating if label numbers are valid

When you select this check box, a Flag port appears on the block. This check box is visible only when you select Label matrix for the ROI type parameter. For a description of the Flag port output, see the tables in "ROI Processing" on page 1-115.

Example

The ex_vision_2dstd calculates the standard deviation value within two ROIs.

See Also

2-D Mean	Computer Vision Toolbox
2-D Variance	Computer Vision Toolbox
std	MATLAB

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

2-D Variance

Compute variance of input or sequence of inputs
Library: Computer Vision Toolbox / Statistics

Description

The 2-D Variance block computes the unbiased variance of an input array. The input can be a 1-D vector, 2-D matrix, or an N - D-array. The block can compute variance along a specified dimension of the input or the entire input. If you select the Running variance parameter, the block can also track the variance in a sequence of inputs over a time period.

Ports

Input

In - Input array
vector | matrix | N-D- array
Input array, specified as a vector, matrix, or N - D - array. This port is unnamed until you select the Enable ROI processing parameter.
Data Types: single | double | int8 | int16|int32|uint8|uint16|uint32 | fixed point

Rst - Reset port

scalar
Reset port, specified as a scalar. This port specifies the event that causes the block to reset the running variance. The sample time of the Rst input must be a positive integer and a multiple of the input sample time.

Dependencies

To enable this port, select the Running variance parameter and set the Reset port parameter to Rising edge, Falling edge, Either edge, or Non-zero sample.
Data Types: single | double | int8|int16|int32|uint8|uint16|uint32| Boolean

ROI - Region of interest

four-element vector | m-by-4 matrix | M-by- N matrix
Region of interest (ROI), specified as a four-element vector, m-by- 4 matrix, or M-by- N matrix. The input value to this port depends on the ROI type parameter.

Note You can use the ROI port only if the input is a 2-D image.

Dependencies

To enable this port, set the Find the variance value over parameter to Entire input and select the Enable ROI processing parameter.

Data Types: single | double | int8|int16|int32|uint8|uint16|uint32| Boolean|fixed point

Label - Label matrix

matrix of nonnegative integers
Label matrix, specified as a matrix of nonnegative integers. The label matrix represents the objects in an image. The pixels labeled 0 are the background. The pixels labeled 1 make up one object; the pixels labeled 2 make up a second object; and so on. The size of the label matrix must be the same size as the 2-D input.

Dependencies

To enable this port, select the Enable ROI processing parameter and set the ROI type parameter to Label matrix.

Data Types: uint8 | uint16|uint32

Label Numbers - Label values of ROIs

M-element vector

Label values of ROIs, specified as a M-element vector. The value of M can be less than or equal to the number of objects that are labeled in the label matrix.

Dependencies

To enable this port, select the Enable ROI processing parameter and set the ROI type parameter to Label matrix.

Data Types: uint8|uint16|uint32

Output

Out - Computed output variance
 scalar | vector | matrix | N-D-array

Computed output variance, returned as a scalar, vector, matrix, or N - D-array. The size of the returned output variance depends on the size of the input, and the settings for the Running variance and Find the variance value over parameters.

This port is unnamed until you select the Output flag indicating if ROI is within image bounds and the ROI type parameter is set to Rectangles, Lines, or Label matrix.

If Running variance Is Cleared

You can compute variance along any specified dimension of the input or the entire input. The output is a:

- Scalar if the input is of any size and the Find the variance value over parameter is set to Entire input.
- Vector if the input is a matrix and the Find the variance value over parameter is set to any one of Each row, Each column, and Specified dimension. In this case, the Dimension value for Specified dimension can be either 1 or 2.
- Matrix if the input is a 3-D array and the Find the variance value over parameter is set to Specified dimension and the Dimension value is 3 .
- $N-D$ array if the input is an $N-D$ array and the Find the variance value over parameter is set to an option other than Entire input.

If you compute variance along the N th dimension of the input, then the returned output is an (N-1)-D array. In this case, the Dimension value for Specified dimension is set to N.

Example: For a 3-D input array of size M-by- N-by- P, the dimension of the returned output is:

- 1-by- N-by- P if you set the Find the variance value over parameter to Entire row.
- M-by-1-by- P if you set the Find the variance value over parameter to Entire column.
- M-by- N if you set the Find the variance value over parameter to Specified dimension and the Dimension value to 3.

If Running variance Is Selected

When you select the Running variance parameter, the block computes the variance of each sample in the input with respect to all previous samples. The output is of the same size as the input.

Data Types: single | double | int8|int16|int32|uint8|uint16|uint32| fixed point

Flag - Validation for ROI

$0 \mid 1$
Validation for ROI, returned as 0 or 1 . The output value signifies if all of the ROIs specified at the input lie within the image bounds. The output value depends on the values of the Output and ROI Type parameters.

ROI Type	Output	Output from Flag port	Description
- Rectangles - Lines	Individual statistics for each ROI	0	ROI is completely outside the input image.
		1	ROI is either completely or partially inside the input image.
	Single statistic for all ROIs	0	ROI is completely outside the input image.
		1	ROI is either completely or partially inside the input image.

Label matrix	Individual statistics for each ROI	0	Label number is not in the label matrix.
	1	Label number is in the label matrix.	
Single statistic for all ROIs	0	None of the label numbers are in the label matrix.	
	1	At least one of the label numbers is in the label matrix.	

Note If the ROI is partially outside the image, the block computes the variance values only for the portion of the ROI that lies within the image bounds.

Dependencies

To enable this port, select the Output flag indicating if ROI is within image bounds parameter and set the value of ROI type parameter to Rectangle, Lines, or Label Matrix.

Parameters

Main Tab

Running variance - Track running variance

off (default) | on
Select to track the variance of successive inputs to the block. In this mode, the block treats each element as a channel.

Reset port - Reset event

None (default)|Rising edge|Falling edge|Either edge|Non-zero sample
Specify when the block detects a reset event. The block resets the running variance when a reset event is detected at the optional Rst port. The reset sample time must be a positive integer and a multiple of the input sample time.

Specify the reset event as:

- None to disable the Rst port.
- Rising edge to trigger a reset event when the Rst input does one of the following:
- Rises from a negative value to either a positive value or zero
- Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative value to zero

- Falling edge to trigger a reset event when the Rst input does one of the following:
- Falls from a positive value to either a negative value or zero
- Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive value to zero

- Either edge to trigger a reset event when the Rst input is a Rising edge or Falling edge.
- Non-zero sample to trigger a reset event at each sample time, when the Rst input is not zero.

Note When running simulations in the Simulink multitasking mode, reset signals have a one-sample latency. Therefore, when the block detects a reset event, there is a onesample delay at the reset port rate before the block applies the reset.

Dependencies

To enable this parameter, select the Running variance parameter.

Find the variance value over - Dimension along which variance is computed Entire input (default)|Each row|Each column|Specified dimension

Specify the dimension of the input along which the block computes the variance.

- Entire input - Computes variance over the entire input.
- Each row - Computes variance over each row.
- Each column - Computes variance over each column.
- Specified dimension-Computes variance over the dimension specified in the Dimension parameter.
- If Dimension is 1 , the output is the same as when you select Each column.
- If Dimension is 2, the output is the same as when you select Each row.

Dependencies

To enable this parameter, clear the Running variance parameter.

Dimension - Custom dimension
 1 (default) | scalar

Specify the dimension of the input array over which the variance is computed as a onebased value. The value of this parameter must be greater than 0 and less than or equal to the number of dimensions in the input array.

Dependencies

To enable this parameter, set the Find the variance value over parameter to Specified dimension.

ROI Processing

Enable ROI processing - Compute variance within a particular region off (default) | on

Select to calculate variance within a particular ROI in the image.

Note Full ROI processing is available only if you have a Computer Vision Toolbox license. If you do not have a Computer Vision Toolbox license, you can still use ROI processing, but the ROI type is limited to Rectangles.

Dependencies

To enable this parameter, set the Find the variance value over parameter to Entire input.

ROI type - Type of ROI

```
Rectangles (default)|Lines|Label matrix|Binary mask
```

Specify the type of ROI that represents the regions in the image over which the block computes the variance. The type of ROI can be a rectangle, line, label matrix, or a binary mask.

Parameters	Description	
${ } }$	Inputs to the ROI port	

Rectangles	- Four-element row vector [x y width height] - m-by-4 matrix $\left[\begin{array}{cccc} x_{1} & y_{1} & \text { width }_{1} & \text { height }_{1} \\ x_{2} & y_{2} & \text { width }_{2} & \text { height }_{2} \\ \vdots & \vdots & \vdots & \vdots \\ x_{M} & y_{M} & \text { width }_{M} & \text { height }_{M} \end{array}\right.$ where m is the number of rectangles. Each row of the matrix corresponds to different rectangle.	- x and y are the onebased coordinates of the upper left corner of the rectangle. - width and height are the width and height, in pixels, of the rectangle. The values of width and height must be greater than 0 .
Lines	- Four-element row vector $\left[\begin{array}{llll}x_{1} & y_{1} & x_{2} & y_{2}\end{array}\right]$ - m-by-4 matrix $\left[\begin{array}{cccc} x_{11} & y_{11} & x_{12} & y_{12} \\ x_{21} & y_{21} & x_{22} & y_{22} \\ \vdots & \vdots & \vdots & \vdots \\ x_{M 1} & y_{M 1} & x_{M 2} & y_{M 2} \end{array}\right]$ where m is the number of lines. Each row of the matrix corresponds to a different line.	- x_{1} and y_{1} are the coordinates of the beginning of the line. - x_{2} and y_{2} are the coordinates of the end of the line.

Label matrix	M-by-N matrix	Matrix of the same size as the input image. The matrix contains label values that represent different objects in an image. The pixels labeled 0 are the background. The pixels labeled 1 make up one object; the pixels labeled 2 make up a second object; and so on.
Binary mask	Matrix of the same size as the input image. The binary mask classifies image pixels as belonging to either the region of interest or the background. The mask pixel values of 1 indicate that the image pixel belongs to the	
ROI. The mask pixel values		
of 0 indicate that the image		
pixel is part of the		
background.		

Dependencies

To enable this parameter, select the Enable ROI processing parameter.

ROI portion to process - Portion of ROI in which to calculate variance
 Entire ROI (default)|ROI perimeter

Specify the portion of the ROI from which the block has to calculate 2-D variance. The ROI portion is either the entire ROI or the ROI perimeter.

Dependencies

To enable this parameter, select the Enable ROI processing parameter and set the ROI type parameter to Rectangles.

Output - Calculate variance for individual or entire ROI

Individual statistics for each ROI (default)|Single statistic for all ROIs

Specify whether to calculate 2-D variance individually for each ROI or for the entire ROI.

- If you select Individual statistics for each ROI, the block outputs a vector of variance values. The size of the output vector is equal to the number of ROIs.
- If you select Single statistic for all ROIs, the block outputs a scalar value. The scalar value represents the statistical value for all the specified ROIs.

Dependencies

To enable this parameter, select the Enable ROI processing parameter and set the ROI type parameter to Rectangles, Lines, or Label matrix.

Output flag indicating if ROI is within image bounds - Enable Flag port Off (default) | On

Select to expose the Flag port. For a description of the Flag port output, see "Flag" on page 1-0

Dependencies

To enable this parameter, select the Enable ROI processing parameter and set the ROI type parameter to Rectangles, Lines, or Label matrix.

Data Types Tab

For details on the fixed-point block parameters, see "Specify Fixed-Point Attributes for Blocks".

Lock data type settings against change by the fixed-point tools Prevent fixed-point tools from overriding data types
off (default) | on
Select this parameter to prevent the fixed-point tools from overriding the data types you specify in this block. For more information, see "Lock the Output Data Type Setting" (Fixed-Point Designer).

Block Characteristics

Data Types \quad double \| fixed point | integer \| single

Multidimensional Signals	yes
Variable-Size Signals	yes

More About

Variance

The variance of an input is the square of the standard deviation of the input. Variance gives a measure of deviation of the input values from its mean value.

For a purely real or imaginary input, u, of size M-by- N, the variance is:

$$
y=\sigma^{2}=\frac{\sum_{i=1}^{M} \sum_{j=1}^{N}\left|u_{i j}\right|^{2}-\frac{\left|\sum_{i=1}^{M} \sum_{j=1}^{N} u_{i j}\right|^{2}}{M^{*} N}}{M^{*} N-1}
$$

where:

- $u_{i j}$ is the input data element at (i, j).
- M is the length of the j th column.
- N is the number of columns.

For complex inputs, the variance is:

$$
\sigma^{2}=\sigma_{\mathrm{Re}^{2}}+\sigma_{\mathrm{Im}^{2}}
$$

where:

- $\sigma_{R e}{ }^{2}$ is the variance of the real part of the complex input.
- $\sigma_{I m}{ }^{2}$ is the variance of the imaginary part of the complex input.

Extended Capabilities

C/C++ Code Generation
Generate C and $C++$ code using Simulink ${ }^{\circledR}$ Coder $^{\text {TM }}$.

See Also
2-D Mean | 2-D Standard Deviation | var
Introduced before R2006a

Autothreshold

Convert intensity image to binary image

Library

Conversions
visionconversions

Description

The Autothreshold block converts an intensity image to a binary image using a threshold value computed using Otsu's method.

This block computes this threshold value by splitting the histogram of the input image such that the variance of each pixel group is minimized.

Port	Input/Output	Supported Data Types	Complex Values Supported
I	Vector or matrix of intensity values	- Double-precision floating point - Single-precision floating point - Fixed point - 8-, 16-, and 32 -bit signed integer - 8 -, 16-, and 32 -bit unsigned integer	No
BW	Scalar, vector, or matrix that represents a binary image	Boolean	No

Port	Input/Output	Supported Data Types	Complex Values Supported
Th	Threshold value	Same as I port	No
EMetric	Effectiveness metric	Same as I port	No

Use the Thresholding operator parameter to specify the condition the block places on the input values. If you select > and the input value is greater than the threshold value, the block outputs 1 at the BW port; otherwise, it outputs 0 . If you select $<=$ and the input value is less than or equal to the threshold value, the block outputs 1 ; otherwise, it outputs 0 .

Select the Output threshold check box to output the calculated threshold values at the Th port.

Select the Output effectiveness metric check box to output values that represent the effectiveness of the thresholding at the EMetric port. This metric ranges from 0 to 1 . If every pixel has the same value, the effectiveness metric is 0 . If the image has two pixel values or the histogram of the image pixels is symmetric, the effectiveness metric is 1 .

If you clear the Specify data range check box, the block assumes that floating-point input values range from 0 to 1 . To specify a different data range, select this check box. The Minimum value of input and Maximum value of input parameters appear in the dialog box. Use these parameters to enter the minimum and maximum values of your input signal.

Use the When data range is exceeded parameter to specify the block's behavior when the input values are outside the expected range. The following options are available:

- Ignore - Proceed with the computation and do not issue a warning message. If you choose this option, the block performs the most efficient computation. However, if the input values exceed the expected range, the block produces incorrect results.
- Saturate - Change any input values outside the range to the minimum or maximum value of the range and proceed with the computation.
- Warn and saturate - Display a warning message in the MATLAB Command Window, saturate values, and proceed with the computation.
- Error - Display an error dialog box and terminate the simulation.

If you clear the Scale threshold check box, the block uses the threshold value computed by Otsu's method to convert intensity images into binary images. If you select the Scale
threshold check box, the Threshold scaling factor appears in the dialog box. Enter a scalar value. The block multiplies this scalar value with the threshold value computed by Otsu's method and uses the result as the new threshold value.

Fixed-Point Data Types

The following diagram shows the data types used in the Autothreshold block for fixedpoint signals. You can use the default fixed-point parameters if your input has a word length less than or equal to 16.
In this diagram, DT means data type. You can set the product, accumulator, quotient, and effectiveness metric data types in the block mask.

Parameters

Thresholding operator

Specify the condition the block places on the input matrix values. If you select $>$ or $<=$, the block outputs 0 or 1 depending on whether the input matrix values are above, below, or equal to the threshold value.

Output threshold

Select this check box to output the calculated threshold values at the Th port.

Output effectiveness metric

Select this check box to output values that represent the effectiveness of the thresholding at the EMetric port.

Specify data range

If you clear this check box, the block assumes that floating-point input values range from 0 to 1 . To specify a different data range, select this check box.

Minimum value of input

Enter the minimum value of your input data. This parameter is visible if you select the Specify data range check box.

Maximum value of input

Enter the maximum value of your input data. This parameter is visible if you select the Specify data range check box.

When data range is exceeded

Specify the block's behavior when the input values are outside the expected range. Your options are Ignore, Saturate, Warn and saturate, or Error. This parameter is visible if you select the Specify data range check box.

Scale threshold

Select this check box to scale the threshold value computed by Otsu's method.

Threshold scaling factor

Enter a scalar value. The block multiplies this scalar value with the threshold value computed by Otsu's method and uses the result as the new threshold value. This parameter is visible if you select the Scale threshold check box.

Rounding mode

Select the rounding mode for fixed-point operations. This parameter does not apply to the Cast to input DT step shown in "Fixed-Point Data Types" on page 1-135. For this step, Rounding mode is always set to Nearest.

Overflow mode

Select the overflow mode for fixed-point operations.

Product 1, 2, 3, 4

As shown previously, the output of the multiplier is placed into the product output data type and scaling. Use this parameter to specify how to designate the product output word and fraction lengths.

- When you select Specify word length, you can enter the word length of the product values in bits. The block sets the fraction length to give you the best precision.
- When you select Same as input, the characteristics match those of the input to the block. This choice is only available for the Product 4 parameter.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output in bits.
- When you select Slope and bias scaling, you can enter the word length in bits and the slope of the product output. The bias of all signals in the Computer Vision Toolbox software is 0 .

Accumulator 1, 2, 3, 4

As shown previously, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as each element of the input is added to it. Use this parameter to specify how to designate the accumulator word and fraction lengths.

- When you select Same as Product, these characteristics match those of the product output.
- When you select Specify word length, you can enter the word length of the accumulator values in bits. The block sets the fraction length to give you the best precision. This choice is not available for the Accumulator 4 parameter because it is dependent on the input data type.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator in bits.
- When you select Slope and bias scaling, you can enter the word length in bits and the slope of the accumulator. The bias of all signals in the Computer Vision Toolbox software is 0 .

The Accumulator $\mathbf{3}$ parameter is only visible if, on the Main pane, you select the Output effectiveness metric check box.

Quotient

Choose how to specify the word length and fraction length of the quotient data type:

- When you select Specify word length, you can enter the word length of the quotient values in bits. The block sets the fraction length to give you the best precision.
- When you select Binary point scaling, you can enter the word length and the fraction length of the quotient, in bits.
- When you select Slope and bias scaling, you can enter the word length in bits and the slope of the quotient. The bias of all signals in the Computer Vision Toolbox software is 0 .

Eff Metric

Choose how to specify the word length and fraction length of the effectiveness metric data type. This parameter is only visible if, on the Main tab, you select the Output effectiveness metric check box.

- When you select Specify word length, you can enter the word length of the effectiveness metric values, in bits. The block sets the fraction length to give you the best precision.
- When you select Binary point scaling, you can enter the word length and the fraction length of the effectiveness metric in bits.
- When you select Slope and bias scaling, you can enter the word length in bits and the slope of the effectiveness metric. The bias of all signals in the Computer Vision Toolbox software is 0 .

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink documentation.

Example

Example 1.1. Thresholding Intensity Images Using the Autothreshold Block

Convert an intensity image into a binary image. Use the Autothreshold block when lighting conditions vary and the threshold needs to change for each video frame.

You can open the example model by typing
ex_vision_autothreshold
on the MATLAB command line.

See Also

Compare To Constant	Simulink
Relational Operator	Simulink
graythresh	Image Processing Toolbox

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

Topics

"Detect and Track Face"

Introduced before R2006a

Blob Analysis

Statistics for labeled regions
Library: Computer Vision Toolbox / Statistics

Description

The Blob Analysis block calculates statistics for labeled regions in a binary image. The block returns quantities such as the centroid, bounding box, label matrix, and blob count. The Blob Analysis block supports input and output variable-size signals. You can also use the Selector block from Simulink, to select certain blobs based on their statistics.

For information on pixel and spatial coordinate system definitions, see "Image Coordinate Systems" (Image Processing Toolbox) and "Coordinate Systems".

Ports

Input

BW - Binary image

vector | matrix
Binary image, specified as a vector or matrix
Data Types: Boolean

Output

Area - Number of pixels in labeled regions
vector
Number of pixels in labeled regions, returned as a vector.

Dependencies

To enable this port, select the Area parameter.
Data Types: int32

Centroid - Centroid coordinates

M-by-2 matrix

M-by-2 matrix of M number of blobs.
The rows represent the coordinates of the centroid of each region, and M represents the number of blobs.

For example, there are two blobs where the row and column coordinates of their centroids are x_{1}, y_{1} and x_{2}, y_{2}. The block outputs:

$$
\left[\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2}
\end{array}\right]
$$

at the Centroid port.

Dependencies

To enable this port, select the Centroid parameter.
Data Types: double|single|fixed point

BBox - Bounding box coordinates

M-by-4 matrix
Bounding box coordinates, returned as an M-by- 4 matrix of M bounding boxes for blobs. Each row of the matrix defines a bounding box as a four-element vector [x, y,width,height] in pixel coordinates. The rows represent the coordinates of each bounding box, where M represents the number of blobs.

For example, there are two blobs, where x and y define the location of the upper-left corner of the bounding box, and w and h define the width and height of the bounding box. The block outputs

$$
\left[\begin{array}{llll}
x_{1} & y_{1} & w_{1} & h_{1} \\
x_{2} & y_{2} & w_{2} & h_{2}
\end{array}\right]
$$

at the BBox port.

Dependencies

To enable this port, select the Bounding Box parameter.

Parameters

Main Tab

Area - Number of pixels in labeled regions

vector

Number of pixels in labeled regions, returned as a vector.

Dependencies

To enable this port, select the Area parameter.

Data Types: int32

Centroid - Centroid coordinates

M-by-2 matrix
M-by-2 matrix of M number of blobs.
The rows represent the coordinates of the centroid of each region, and M represents the number of blobs.

For example, there are two blobs where the row and column coordinates of their centroids are x_{1}, y_{1} and x_{2}, y_{2}. The block outputs:

$$
\left[\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2}
\end{array}\right]
$$

at the Centroid port.

Dependencies

To enable this port, select the Centroid parameter.
Data Types: double|single|fixed point

BBox - Bounding box coordinates

M-by-4 matrix

Bounding box coordinates, returned as an M-by- 4 matrix of M bounding boxes for blobs. Each row of the matrix defines a bounding box as a four-element vector $[x, y$,width,height $]$ in pixel coordinates. The rows represent the coordinates of each bounding box, where M represents the number of blobs.

For example, there are two blobs, where x and y define the location of the upper-left corner of the bounding box, and w and h define the width and height of the bounding box. The block outputs

$$
\left[\begin{array}{llll}
x_{1} & y_{1} & w_{1} & h_{1} \\
x_{2} & y_{2} & w_{2} & h_{2}
\end{array}\right]
$$

at the BBox port.

Dependencies

To enable this port, select the Bounding Box parameter.

Major axis length - Length of major axis of ellipses

```
off (default) | on
```

Enables the Major axis length port. Select this check box to output a vector that

- Represents the lengths of the major axes of ellipses
- Has the same normalized second central moments as the labeled regions

Data Types: double | single

Minor axis length - Length of minor axis of ellipses

off (default) | on
Enables the Minor axis length port. Select this check box to output a vector that

- Represents the lengths of the minor axes of ellipses
- Has the same normalized second central moments as the labeled regions

Data Types: double | single

Orientation - Orientation

off (default) | on

Enables the Orientation port.

Select this check box to output a vector that represents the angles between the major axes of the ellipses and the x-axis. The angle values are in radians and range between: $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ inclusive.

Data Types: double| single

Eccentricity - Eccentricity

off (default) | on
Enables the Eccentricity port. Select this check box to output a vector that represents the eccentricities of ellipses that have the same second moments as the region.
Data Types: double \| single

Equivalent diameter squared - Equivalent diameter squared off (default) | on

Enables the Equivalent diameter squared port. Select this check box to output a vector that represents the equivalent diameters squared.

Data Types: double|single|fixed point

Extent - Extent

off (default) | on
Enables the Extent port. Select this check box to output a vector that represents the results of dividing the areas of the blobs by the area of their bounding boxes.

Data Types: double|single|fixed point

Perimeter - Perimeter length

off (default) | on
Enables the Perimeter port. Select this check box to output an N-by-1 vector of the perimeter lengths, in pixels, of each blob, where N is the number of blobs.
Data Types: double | single \| fixed point
Statistics output data type - Output data type
double (default) | single | Specify via Data Types tabl

Specify the data type of the outputs as double, single, or Specify via Data Types tab.

Data Types: double | single

Connectivity - Number of labeled regions

8 (default) | 4
Specify the number of labeled regions in each image.
Define which pixels connect to each other. If you want to connect pixels located on the top, bottom, left, and right, select 4. If you want to connect pixels to other pixels on the top, bottom, left, right, and diagonally, select 8 . For more information about this parameter, see the Label block.

The Connectivity parameter also affects how the block calculates the perimeter of a blob. For example, this figure illustrates how the block calculates the perimeter when you set the Connectivity parameter to 4.

The block calculates the distance between the center of each pixel (marked by the black dots) and estimates the perimeter to be 22 .

The next figure illustrates how the block calculates the perimeter of a blob when you set the Connectivity parameter to 8.

The block takes a different path around the blob and estimates the perimeter to be $18+2 \sqrt{2}$.

Data Types: double \| single

Output label matrix - Output label matrix

off (default) | on
Enable the Label port. Select this check box to output the label matrix. The pixels equal to 0 represent the background. The pixels equal to 1 represent the first object. The pixels equal to 2 represent the second object, and so on.

Blob Properties Tab

Maximum number of blobs - Maximum number of blobs
scalar
Specify the maximum number of labeled regions in each input image. The block uses this value to preallocate vectors and matrices to ensure that they are long enough to hold the statistical values. The maximum number of blobs the block outputs depends on both the value of this parameter and the size of the input image. The number of blobs the block outputs may be limited by the input image size.

Warn if maximum number of blobs is exceeded - Warn if maximum number of blobs is exceeded

on (default) | off

Select this parameter to warn if maximum number of blobs is exceeded.
Output actual number of blobs - Number of blobs off (default) |on

Enable the Count port. Select this parameter to output a scalar value that represents the actual number of connected regions in each image.

Specify minimum blob area in pixels - Minimum blob area in pixels 0 (default) | scalar

Select this parameter to specify the minimum blob area in pixels. The blob is labeled if the number of pixels meets the minimum size specified.

Tunable: Yes

Specify maximum blob area in pixels - Maximum blob area in pixels intmax('uint32') (default) | scalar

Select this parameter to specify the maximum blob area in pixels. The blob is labeled if the number of pixels meets the maximum size specified. The maximum allowable value is the maximum of the uint32 data type.

Tunable: Yes

Exclude blobs touching image border - Exclude blobs touching image border
 off (default) | on

Specify this parameter to exclude a labeled blob that contains at least one border pixel.

Output blob statistics as a variable size signal - Output blob statistics as a variable size signal
 off (default) | on

Specify this parameter to output blob statistics as a variable-size signal.

Fill empty spaces in output - Fill empty spaces in output

 off (default) | onSpecify this parameter to fill empty spaces in the statistical vectors with the values you specify in the Fill values parameter.

Dependencies

To enable this parameter, clear the Output blob statistics as a variable size signal parameter.

Fill values - Scalar used to fill empty spaces in output -1 (default) | scalar | vector

Specify a scalar value to fill all the empty spaces in the statistical vectors. If you enter a vector, it must have the same length as the number of selected statistics. The block uses each vector element to fill a different statistics vector. If the empty spaces do not affect your computation, you can clear the Fill empty spaces in outputs parameter.

Dependencies

To enable this parameter, clear the Output blob statistics as a variable size signal parameter.

Data Types Tab

To enable option on the Data Types Tab tab, in the Main tab, set the Select output data type parameter to Specify via Data Types tab. For details on the fixed-point block parameters, see "Specify Fixed-Point Attributes for Blocks".

Block Characteristics

Data Types	Boolean $^{\mathrm{a}} \mid$ double $^{\mathrm{b}} \mid$ fixed $^{\text {point }}{ }^{\text {bc }} \mid$ integer $^{\mathrm{b}} \mid$ single $^{\mathrm{b}}$
Multidimensional Signals	no
Variable-Size Signals	yes

a. Generated code will be restricted to MATLAB host computers when you set the FFT implementation parameter to FFTW, or when the transform length is not a power of two.
b. This data type is supported at the output port(s).
c. Fixed-point data types are not supported at the Major Axis, Minor Axis, Orientation, and Eccentricity output ports.

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\mathrm{Tm}}$.

See Also
Label| regionprops
\section*{Topics}
"Cell Counting"
Introduced before R2006a

Block Matching

Estimate motion between images or video frames
Library: Computer Vision Toolbox / Analysis \& Enhancement

Description

The Block Matching block estimates motion between two images or two video frames by comparing blocks of pixels. The block matches the block of pixels between frames by moving the block of pixels over a search region.

Ports

Input

I/I1 - Image or video frame

scalar | vector | matrix
Image or video frame, specified as a scalar, vector, or matrix. If the Estimate motion between parameter is set to Two images, the name of this port changes to I1.

Data Types: single | double | int8 | int16|int32|uint8|uint16|uint32| fixed point

I2 - Image or video frame

scalar | vector | matrix
Image or video frame, specified as a scalar, vector, or matrix.

Dependencies

To enable this port, set the Estimate motion between parameter to Two images.
Data Types: single|double | int8|int16|int32|uint8|uint16|uint32|
fixed point

Output

|V|^2 - Velocity magnitudes
 scalar | vector | matrix

Velocity magnitudes, returned as a scalar, vector, or matrix.
Data Types: single | double | int8| int16|int32|uint8|uint16|uint32| fixed point

V - Velocity components in complex form
 scalar | vector | matrix

Velocity components in complex form, returned as a scalar, vector, or matrix.

Dependencies

To expose this port, set the Velocity output parameter to Horizontal and vertical components in complex form.

Data Types: single | double | int8| int16|int32|uint8|uint16|uint32| fixed point

Parameters

Main Tab

Estimate motion between - Estimate motion between images or frames
Current frame and N-th frame back (default)|Two images
Specify whether to estimate the motion between two images or two video frames. Select Two images to estimate the motion between two images. Select Current frame and N -th frame back to estimate the motion between two video frames that are N frames apart.

Dependencies

Set this parameter to Current frame and \mathbf{N}-th frame back to expose the \mathbf{N} parameter.

N - Number of frames

1 (default) | scalar

Specify a scalar value that represents the number of frames between the reference frame and the current frame.

Dependencies

To enable this parameter, set the Estimate motion between parameter to Current frame and N -th frame back.

Search method - Block match search method

Exhaustive (default) | Three-step
Specify how the block locates the block of pixels in the current frame and the next frame that best matches the block of pixels.

- Exhaustive - The block selects the location of the block of pixels in the next frame by moving the block over the search region one pixel at a time. This process is computationally expensive.
- Three-step - The block searches for the block of pixels in the next frame that best matches the block of pixels in the current frame by using a steadily decreasing step size. The block begins with a step size approximately equal to half the maximum search range. In each step, the block compares the central point of the search region to eight search points located on the boundaries of the region and moves the central point to the search point whose values is the closest to that of the central point. The block then reduces the step size by half, and begins the process again. This option is less computationally expensive, though it might not find the optimal solution.

Block matching criteria - Block matching criteria

Mean square error (MSE) (default)|Mean absolute difference (MAD)
Specify how the block measures the similarity of the block of pixels in the current frame to the block of pixels in the next frame.

If you select Mean square error (MSE), the block estimates the displacement of the center pixel of the block as the $\left(d_{1}, d_{2}\right)$ values that minimize this MSE equation:

$$
\operatorname{MSE}\left(d_{1}, d_{2}\right)=\frac{1}{N_{1} \times N_{2}} \sum_{\left(n_{1}, n_{2}\right), \in B} \sum_{\in}\left[s\left(n_{1}, n_{2}, k\right)-s\left(n_{1}+d_{1}, n_{2}+d_{2}, k+1\right)\right]^{2}
$$

In the previous equation, B is an $N_{1} \times N_{2}$ block of pixels, and $s(x, y, k)$ denotes a pixel location at (x, y) in frame k.

If you select Mean absolute difference (MAD), the Block Matching block estimates the displacement of the center pixel of the block as the (d_{1}, d_{2}) values that minimize this MAD equation:

$$
\operatorname{MAD}\left(d_{1}, d_{2}\right)=\frac{1}{N_{1} \times N_{2}} \sum_{\left(n_{1}, n_{2}\right), \in B}\left|s\left(n_{1}, n_{2}, k\right)-s\left(n_{1}+d_{1}, n_{2}+d_{2}, k+1\right)\right|
$$

Block size [height width] - Block size

[17 17] (default)| two-element vector

Specify the size of the block of pixels.

Overlap size [r c] - Block overlap

[0 0] (default)| two-element vector
Specify the overlap (in pixels) of two subdivisions of the input image.

STEP 2: Establish the search region in frame $\mathrm{k}+\mathrm{l}$.
STEP 3: Search for the new block location in frame $k+1$.

Maximum displacement [rc] - Maximum displacement
[7 7] (default)| two-element vector

Specify the maximum number of pixels any center pixel in a block of pixels might move from image to image or frame to frame. The block uses this value to determine the size of the search region.

Velocity output - Velocity output

Magnitude-squared (default)|Horizontal and vertical components in complex form

Specify the output. If you select Magnitude-squared, the block outputs an optical flow matrix where each element is in the form $u^{2}+v^{2}$. If you select Horizontal and vertical components in complex form, the block outputs an optical flow matrix where each element is in the form $u+j v$. The real part of each value is the horizontal velocity component and the imaginary part of each value is the vertical velocity component.

Data Types Tab

For details on the fixed-point block parameters, see "Specify Fixed-Point Attributes for Blocks".

Block Characteristics

| Data Types | double \| fixed point | integer | single |
| :--- | :--- |
| Multidimensional
 Signals | no |
| Variable-Size
 Signals | no |

Algorithms

Block Matching Search

Suppose the input to the block is frame k. The block performs the following steps:
1 Subdivide the frame using the values for the Block size [height width] and Overlap [r c] parameters. For this example, Overlap [r c] equals [0 0].

2 For each subdivision or block in frame $k+1$, a search region is established based on the value of the Maximum displacement [r c] parameter.
3 Search for the new block location using either the Exhaustive or Three-step search method.

STEP 2: Establish the search region in frame $\mathrm{k}+\mathrm{l}$.

STEP I: Subdivide the image in frame k.

STEP 3: Search for the new block location in frame $k+1$.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\mathrm{TM}}$.

See Also
Optical Flow | opticalFlow|opticalFlowHS|opticalFlowLK|opticalFlowLKDoG
Introduced before R2006a

Block Processing

Repeat user-specified operation on submatrices of input matrix

Library

Utilities
visionutilities

Description

The Block Processing block extracts submatrices of a user-specified size from each input matrix. It sends each submatrix to a subsystem for processing, and then reassembles each subsystem output into the output matrix.

Note Because you modify the Block Processing block's subsystem, the link between this block and the block library is broken when you click-and-drag a Block Processing block into your model. As a result, this block will not be automatically updated if you upgrade to a newer version of the Computer Vision Toolbox software. If you right-click on the block and select Mask>Look Under Mask, you can delete blocks from this subsystem without
triggering a warning. Lastly, if you search for library blocks in a model, this block will not be part of the results.

The blocks inside the subsystem dictate the frame status of the input and output signals, whether single channel or multichannel signals are supported, and which data types are supported by this block.

Use the Number of inputs and Number of outputs parameters to specify the number of input and output ports on the Block Processing block.

Use the Block size parameter to specify the size of each submatrix in cell array format. Each vector in the cell array corresponds to one input; the block uses the vectors in the order you enter them. If you have one input port, enter one vector. If you have more than one input port, you can enter one vector that is used for all inputs or you can specify a different vector for each input. For example, if you want each submatrix to be 2-by-3, enter $\left\{\left[\begin{array}{ll}2 & 3\end{array}\right]\right\}$.

Use the Overlap parameter to specify the overlap of each submatrix in cell array format. Each vector in the cell array corresponds to the overlap of one input; the block uses the vectors in the order they are specified. If you enter one vector, each overlap is the same size. For example, if you want each 3 -by- 3 submatrix to overlap by 1 row and 2 columns, enter \{[12]\}.

The Traverse order parameter determines how the block extracts submatrices from the input matrix. If you select Row-wise, the block extracts submatrices by moving across the rows. If you select Column-wise, the block extracts submatrices by moving down the columns.

Click the Open Subsystem button to open the block's subsystem. Click-and-drag blocks into this subsystem to define the processing operation(s) the block performs on the submatrices. The input to this subsystem are the submatrices whose size is determined by the Block size parameter.

Note When you place an Assignment block inside a Block Processing block's subsystem, the Assignment block behaves as though it is inside a For Iterator block. For a description of this behavior, see the "Iterated Assignment" section of the Assignment block reference page.

Parameters

Number of inputs

Enter the number of input ports on the Block Processing block.

Add port to supply subsystem parameters

Add an input port to the block to supply subsystem parameters. When you check this option, a port (\mathbf{P}) is added to the block.

Number of outputs

Enter the number of output ports on the Block Processing block.

Block size

Specify the size of each submatrix in cell array format. Each vector in the cell array corresponds to one input.

Overlap

Specify the overlap of each submatrix in cell array format. Each vector in the cell array corresponds to the overlap of one input.

Traverse order

Determines how the block extracts submatrices from the input matrix. If you select Row-wise, the block extracts submatrices by moving across the rows. If you select Column-wise, the block extracts submatrices by moving down the columns.

Open Subsystem

Click this button to open the block's subsystem. Click-and-drag blocks into this subsystem to define the processing operation(s) the block performs on the submatrices.

See Also

For Iterator	Simulink
blockproc	Image Processing Toolbox

See Also

Topics

"Video Compression"
Introduced before R2006a

Bottom-hat

Perform bottom-hat filtering on intensity or binary images

Bottom-hat

Library

Morphological Operations
visionmorphops

Description

Use the Bottom-hat block to perform bottom-hat filtering on an intensity or binary image using a predefined neighborhood or structuring element. Bottom-hat filtering is the equivalent of subtracting the input image from the result of performing a morphological closing operation on the input image. This block uses flat structuring elements only.

ort	Input/Output	Supported Data Types	Complex Values Supported
	Vector or matrix of intensity values	- Double-precision floating point - Single-precision floating point - Fixed point - Boolean - 8 -, 16 -, and 32 -bit signed integer - 8-, 16-, and 32-bit unsigned integer	No
Jhood	Matrix or vector of ones and zeros that represents the neighborhood values	Boolean	No

1-162

ort	Input/Output	Supported Data Types	Complex Values Supported
Sutput	Scalar, vector, or matrix that represents the filtered image	Same as I port	No

If your input image is a binary image, for the Input image type parameter, select Binary. If your input image is an intensity image, select Intensity.

Use the Neighborhood or structuring element source parameter to specify how to enter your neighborhood or structuring element values. If you select Specify via dialog, the Neighborhood or structuring element parameter appears in the dialog box. If you select Input port, the Nhood port appears on the block. Use this port to enter your neighborhood values as a matrix or vector of 1 s and 0 s. You can only specify a structuring element using the dialog box.

Use the Neighborhood or structuring element parameter to define the region the block moves throughout the image. Specify a neighborhood by entering a matrix or vector of 1 s and 0 s . Specify a structuring element with the strel function from the Image Processing Toolbox. If the structuring element is decomposable into smaller elements, the block executes at higher speeds due to the use of a more efficient algorithm.

Parameters

Input image type

If your input image is a binary image, select Binary. If your input image is an intensity image, select Intensity.

Neighborhood or structuring element source

Specify how to enter your neighborhood or structuring element values. Select Specify via dialog to enter the values in the dialog box. Select Input port to use the Nhood port to specify the neighborhood values. You can only specify a structuring element using the dialog box.

Neighborhood or structuring element

If you are specifying a neighborhood, this parameter must be a matrix or vector of 1 s and 0s. If you are specifying a structuring element, use the strel function from the Image Processing Toolbox. This parameter is visible if, for the Neighborhood or structuring element source parameter, you select Specify via dialog.

See Also

Closing	Computer Vision Toolbox software
Dilation	Computer Vision Toolbox software
Erosion	Video and Image Processing Blockset software
Label	Computer Vision Toolbox software
Opening	Computer Vision Toolbox software
Top-hat	Computer Vision Toolbox software
imbothat	Image Processing Toolbox software
strel	Image Processing Toolbox software

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

Introduced before R2006a

Chroma Resampling

Downsample or upsample chrominance components of images

Library

Conversions
visionconversions

Description

The Chroma Resampling block downsamples or upsamples chrominance components of pixels to reduce the bandwidth required for transmission or storage of a signal.

Port	Input/Output	Supported Data Types	Complex Values Supported
Cb	Matrix that represents one chrominance component of an image	• Double-precision floating point - Single-precision floating point 8-bit unsigned integer	No
Cr	Matrix that represents one chrominance component of an image	Same as Cb port	No

The data type of the output signals is the same as the data type of the input signals.

Chroma Resampling Formats

The Chroma Resampling block supports the formats shown in the following diagram.

4:4:4

4:2:0 MPEG1

4:2:2

4:2:0 MPEG2

4:1:1

Oy pixel
$\triangle \mathrm{Cb}$ and Cr pixel

Downsampling

If, for the Resampling parameter, you select $4: 4: 4$ to $4: 2: 2$, 4:4:4 to 4:2:0 (MPEG1), 4:4:4 to 4:2:0 (MPEG2), 4:4:4 to 4:1:1, 4:2:2 to $4: 2: 0$ (MPEG1), or $4: 2: 2$ to $4: 2: 0$ (MPEG2), the block performs a downsampling operation. When the block downsamples from one format to another, it can bandlimit the input signal by applying a lowpass filter to prevent aliasing.

If, for the Antialiasing filter parameter, you select Default, the block uses a built-in lowpass filter to prevent aliasing.

If, for the Resampling parameter, you select $4: 4: 4$ to $4: 2: 2$,
4:4:4 to 4:2:0 (MPEG1), 4:4:4 to 4:2:0 (MPEG2), or 4:4:4 to 4:1:1 and, for the Antialiasing filter parameter, you select User-defined, the Horizontal filter
coefficients parameter appears on the dialog box. Enter the filter coefficients to apply to your input.

If, for the Resampling parameter, you select 4:4:4 to 4:2:0 (MPEG1),
4:4:4 to 4:2:0 (MPEG2), 4:2:2 to 4:2:0 (MPEG1), or
4:2:2 to 4:2:0 (MPEG2) and, for the Antialiasing filter parameter, you select
User-defined. Vertical filter coefficients parameters appear on the dialog box. Enter an even number of filter coefficients to apply to your input signal.

If, for the Antialiasing filter parameter, you select None, the block does not filter the input signal.

Upsampling

If, for the Resampling parameter, you select 4:2:2 to 4:4:4,
4:2:0 (MPEG1) to 4:2:2, 4:2:0 (MPEG1) to 4:4:4, 4:2:0 (MPEG2) to 4:2:2, 4:2:0 (MPEG2) to $4: 4: 4$, or $4: 1: 1$ to $4: 4: 4$, the block performs an upsampling operation.

When the block upsamples from one format to another, it uses interpolation to approximate the missing chrominance values. If, for the Interpolation parameter, you select Linear, the block uses linear interpolation to calculate the missing values. If, for the Interpolation parameter, you select Pixel replication, the block replicates the chrominance values of the neighboring pixels to create the upsampled image.

Row-Major Data Format

The MATLAB environment and the Computer Vision Toolbox software use column-major data organization. However, the Chroma Resampling block gives you the option to process data that is stored in row-major format. When you select the Input image is transposed (data order is row major) check box, the block assumes that the input buffer contains contiguous data elements from the first row first, then data elements from the second row second, and so on through the last row. Use this functionality only when you meet all the following criteria:

- You are developing algorithms to run on an embedded target that uses the row-major format.
- You want to limit the additional processing required to take the transpose of signals at the interfaces of the row-major and column-major systems.

When you use the row-major functionality, you must consider the following issues:

- When you select this check box, the signal dimensions of the Chroma Resampling block's input are swapped.
- All the Computer Vision Toolbox blocks can be used to process data that is in the rowmajor format, but you need to know the image dimensions when you develop your algorithms.

For example, if you use the 2-D FIR Filter block, you need to verify that your filter coefficients are transposed. If you are using the Rotate block, you need to use negative rotation angles, etc.

- Only three blocks have the Input image is transposed (data order is row major) check box. They are the Chroma Resampling, Deinterlacing, and Insert Text blocks. You need to select this check box to enable row-major functionality in these blocks. All other blocks must be properly configured to process data in row-major format.

Use the following two-step workflow to develop algorithms in row-major format to run on an embedded target.

Step 1:
Create block diagram
Algorithm blocks

Parameters

Resampling

Specify the resampling format.

Antialiasing filter

Specify the lowpass filter that the block uses to prevent aliasing. If you select Default, the block uses a built-in lowpass filter. If you select User-defined, the Horizontal filter coefficients and/or Vertical filter coefficients parameters appear on the dialog box. If you select None, the block does not filter the input signal. This parameter is visible when you are downsampling the chrominance values.

Horizontal filter coefficients

Enter the filter coefficients to apply to your input signal. This parameter is visible if, for the Resampling parameter, you select 4:4:4 to 4:2:2, 4:4:4 to 4:2:0 (MPEG1), 4:4:4 to 4:2:0 (MPEG2), or 4:4:4 to 4:1:1 and, for the Antialiasing filter parameter, you select User-defined.

Vertical filter coefficients

Enter the filter coefficients to apply to your input signal. This parameter is visible if, for the Resampling parameter, you select 4:4:4 to 4:2:0 (MPEG1), 4:4:4 to 4:2:0 (MPEG2), 4:2:2 to 4:2:0 (MPEG1), or 4:2:2 to 4:2:0 (MPEG2) and, for the Antialiasing filter parameter, you select User-defined.

Interpolation

Specify the interpolation method that the block uses to approximate the missing chrominance values. If you select Linear, the block uses linear interpolation to calculate the missing values. If you select Pixel replication, the block replicates the chrominance values of the neighboring pixels to create the upsampled image. This parameter is visible when you are upsampling the chrominance values. This parameter is visible if the Resampling parameter is set to $4: 2: 2$ to $4: 4: 4$ 4:2:0 (MPEG1) to $4: 4: 4,4: 2: 0$ (MPEG2) to $4: 4: 4,4: 1: 1$ to $4: 4: 4,4: 2: 0$ (MPEG1) to $4: 2: 2$, or $4: 2: 0$ (MPEG2) to $4: 2: 2$.

Input image is transposed (data order is row major)

When you select this check box, the block assumes that the input buffer contains data elements from the first row first, then data elements from the second row second, and so on through the last row.

References

[1] Haskell, Barry G., Atul Puri, and Arun N. Netravali. Digital Video: An Introduction to MPEG-2. New York: Chapman \& Hall, 1996.
[2] Recommendation ITU-R BT.601-5, Studio Encoding Parameters of Digital Television for Standard 4:3 and Wide Screen 16:9 Aspect Ratios.
[3] Wang, Yao, Jorn Ostermann, Ya-Qin Zhang. Video Processing and Communications. Upper Saddle River, NJ: Prentice Hall, 2002.

See Also

Autothreshold	Computer Vision Toolbox software
Color Space Conversion	Computer Vision Toolbox software
Image Complement	Computer Vision Toolbox software

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Introduced before R2006a

Closing

Perform morphological closing on binary or intensity images

Library

Morphological Operations
visionmorphops

Description

The Closing block performs a dilation operation followed by an erosion operation using a predefined neighborhood or structuring element. This block uses flat structuring elements only.

ort	Input/Output	Supported Data Types	Complex Values Supported
	Vector or matrix of intensity values	- Double-precision floating point - Single-precision floating point - Fixed point - Boolean - 8-, 16-, and 32 -bit signed integer - $8-16$-, and 32 -bit unsigned integer	No
Jhood	Matrix or vector of ones and zeros that represents the neighborhood values	Boolean	No

ort	Input/Output	Supported Data Types	Complex Values Supported
Jutput	Vector or matrix of intensity values that represents the closed image	Same as I port	No

The output signal has the same data type as the input to the I port.
Use the Neighborhood or structuring element source parameter to specify how to enter your neighborhood or structuring element values. If you select Specify via dialog, the Neighborhood or structuring element parameter appears in the dialog box. If you select Input port, the Nhood port appears on the block. Use this port to enter your neighborhood values as a matrix or vector of 1 s and 0 s . You can only specify a structuring element using the dialog box.

Use the Neighborhood or structuring element parameter to define the region the block moves throughout the image. Specify a neighborhood by entering a matrix or vector of 1 s and 0 s . Specify a structuring element with the strel function from the Image Processing Toolbox. If the structuring element is decomposable into smaller elements, the block executes at higher speeds due to the use of a more efficient algorithm.

Parameters

Neighborhood or structuring element source

Specify how to enter your neighborhood or structuring element values. Select Specify via dialog to enter the values in the dialog box. Select Input port to use the Nhood port to specify the neighborhood values. You can only specify a structuring element using the dialog box.

Neighborhood or structuring element

If you are specifying a neighborhood, this parameter must be a matrix or vector of 1 s and 0s. If you are specifying a structuring element, use the strel function from the Image Processing Toolbox. This parameter is visible if, for the Neighborhood or structuring element source parameter, you select Specify via dialog.

References

[1] Soille, Pierre. Morphological Image Analysis. 2nd ed. New York: Springer, 2003.

See Also

Bottom-hat	Computer Vision Toolbox software
Dilation	Computer Vision Toolbox software
Erosion	Computer Vision Toolbox software
Label	Computer Vision Toolbox software
Opening	Computer Vision Toolbox software
Top-hat	Computer Vision Toolbox software
imclose	Image Processing Toolbox software
strel	Image Processing Toolbox software

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

Introduced before R2006a

Color Space Conversion

Convert color information between color spaces

Library: Computer Vision Toolbox / Conversions
$\mathrm{F}^{\prime} \mathrm{G}^{\prime} \mathrm{B}^{\prime}$ to
Y'CbGr

CobrSpace Conversion

Description

The Color Space Conversion block converts color information between color spaces. Use the Conversion parameter to specify the color spaces you are converting between.

- R'G'B' to Y'CbCr
- Y'CbCr to R'G'B'
- R'G'B' to intensity
- R'G'B' to HSV
- HSV to R'G'B'
- sR'G'B' to XYZ
- XYZ to sR'G'B'
- sR'G'B' to L*a*b*
- L*a*b* to sR'G'B'

Ports

Input

Input - Input

M-by- N-by- P color matrix
Input color information, specified as an M-by- N-by- P color matrix of P color planes.
Data Types: single | double | int8|uint8

$\mathbf{R}^{\mathbf{\prime}}$ - R plane
 M-by- N matrix

R plane of the RGB color information, specified as an M-by- N matrix.
Data Types: single | double | int8 | uint8

G' - G plane

M-by- N matrix
G plane of the RGB color information, specified as an M-by- N matrix.
Data Types: single | double | int8|uint8

B' - B plane

M-by- N matrix
B plane of the RGB color information, specified as an M-by- N matrix.
Data Types: single | double | int8|uint8

$\mathrm{Y}^{\mathbf{\prime}}$ - Luma signal component
 M-by- N matrix

Luma signal component, specified as an M-by- N matrix.
Data Types: single | double | int8|uint8

Cb - Chrominance component

M-by- N matrix
Chrominance component, specified as an M-by- N matrix.
Data Types: single | double | int8|uint8

Cr - Chrominance component

M-by- N matrix
Chrominance component, specified as an M-by- N matrix.
Data Types: single | double | int8|uint8

I' - Intensity values

M-by- N-by- P color video
Intensity values specified as an M-by- N matrix.

Data Types: single | double | int8|uint8

H - Hue component

M-by- N matrix
Hue component, specified as an M-by- N matrix.
Data Types: single | double

S - Saturation component

M-by- N matrix
Saturation component, specified as an M-by- N matrix.
Data Types: single | double

V - Brightness component

M-by- N matrix
Brightness component, specified as an M-by- N matrix.
Data Types: single | double
X $-X$ component
M-by- N matrix
X component, specified as an M-by- N matrix.
Data Types: single | double

Y - Y component

M-by- N matrix
Y component, specified as an M-by- N matrix.
Data Types: single | double

Z - Z component

M-by- N matrix
Z component, specified as an M-by- N matrix.
Data Types: single | double

L* - Luminance portion

M-by- N matrix

Luminance component, specified as an M-by- N matrix.
Data Types: single | double
a* - a* component
M-by-N matrix
a* component, specified as an M-by- N matrix.
Data Types: single | double
b* - b* component
M-by- N matrix
b^{*} component, specified as an M-by- N matrix.
Data Types: single | double

Output

Input - Input

M-by- N-by- P color matrix
Input color information, specified as an M-by- N-by- P color matrix of P color planes.

- If the input is uint8, then $\mathrm{Y}^{\prime} \mathrm{CbCr}$ is uint8, where Y is in the range [16 235], and Cb and Cr are in the range [16 240].
- If the input is a double, then Y^{\prime} is in the range [16/255 235/255] and Cb and Cr are in the range [16/255 240/255].

Data Types: single | double | int8|uint8

R' - R plane

M-by- N matrix
R plane of the RGB color information, specified as an M-by- N matrix.
Data Types: single | double | int8|uint8

G' - G plane

M-by- N matrix
G plane of the RGB color information, specified as an M-by- N matrix.

Data Types: single | double | int8|uint8

B' - B plane

M-by- N matrix
B plane of the RGB color information, specified as an M-by- N matrix.
Data Types: single | double | int8|uint8
Y^{\prime} - Luma signal component
M-by- N matrix
Luma signal component, specified as an M-by- N matrix.
Data Types: single | double | int8|uint8

Cb - Chrominance component

M-by- N matrix
Chrominance component, specified as an M-by- N matrix.
Data Types: single | double | int8|uint8
Cr - Chrominance component
M-by- N matrix
Chrominance component, specified as an M-by- N matrix.
Data Types: single | double | int8|uint8

I' - Intensity values

M-by- N-by- P color video
Intensity values specified as an M-by- N matrix.
Data Types: single | double | int8 | uint8

H - Hue component
 M-by- N matrix

Hue component, specified as an M-by- N matrix.
Data Types: single | double

S - Saturation component

M-by- N matrix

Saturation component, specified as an M-by- N matrix.
Data Types: single | double

V - Brightness component

M-by- N matrix
Brightness component, specified as an M-by- N matrix.
Data Types: single | double

$\mathrm{X}-\mathrm{X}$ component

M-by- N matrix
X component, specified as an M-by- N matrix.
Data Types: single | double

Y - Y component
 M-by- N matrix

Y component, specified as an M-by- N matrix.
Data Types: single | double

Z - Z component

M-by- N matrix
Z component, specified as an M-by- N matrix.
Data Types: single | double

L* - Luminance portion

M-by- N matrix
Luminance component, specified as an M-by- N matrix.
Data Types: single | double
a* - a* component
M-by- N matrix
a* component, specified as an M-by- N matrix.
Data Types: single | double

```
b* - b* component
M-by-N matrix
b* component, specified as an M-by-N matrix.
Data Types: single | double
```


Parameters

```
Conversion - Conversion
R'G'B' to Y'CbCr (default)|Y'CbCr to R'G'B'|R'G'B' to intensity|R'G'B'
to HSV|HSV to R'G'B'|sR'G'B' to XYZ|XYZ to sR'G'B'|sR'G'B' to
L*a*b*
```

Specify the conversion color spaces as one of the following:

- R'G'B' to Y'CbCr
- Y'CbCr to R'G'B'
- R'G'B' to intensity
- R'G'B' to HSV
- HSV to R'G'B'
- sR'G'B' to XYZ
- XYZ to sR'G'B'
- sR'G'B' to L*a*b*
- L*a*b* to sR'G'B'

Use conversion specified by - Conversion standard Rec. 601 (SDTV) (default)|Rec. 709 (HDTV)

Specify the standard to convert your values between the R'G'B' and $\mathrm{Y}^{\prime} \mathrm{CbCr}$ color spaces as either Rec. 601 (SDTV) or Rec. 709 (HDTV).

Dependencies

This parameter is visible when you set the Conversion to R'G'B' to $\mathrm{Y}^{\prime} \mathrm{CbCr}$ or Y'CbCr to R'G'B'.

Scanning standard - Scanning standard

1125/60/2:1 (default)| 1250/50/2:1

Specify the scanning standard to convert between the R'G'B' and $\mathrm{Y}^{\prime} \mathrm{CbCr}$ color spaces as either 1125/60/2: 1 or $1250 / 50 / 2$: 1 .

Dependencies

This parameter is visible when you set the Use conversion specified by parameter to Rec. 709 (HDTV).

White point - White point

D50 (default) | D55 | D65

Specify the reference white point.

Dependencies

This parameter is visible when you set the Conversion parameter to sR'G'B' to L*a*b* or L*a*b* to sR'G'B'.

Image signal - Image signal input
 One multidimensional signal (default)|Separate color signals

Specify how to input and output a color signal. If you select One multidimensional signal, the block accepts an M-by- N-by- P color signal, where P is the number of color planes, at one port. If you select Separate color signals, additional ports appear on the block. Each port accepts one M-by- N plane of color signal stream.

Note The prime notation indicates that the signals are gamma corrected.

Block Characteristics

| Data Types | Boolean \| double | integer | single |
| :--- | :--- |
| Multidimensional
 Signals | yes |
| Variable-Size
 Signals | yes |

Algorithms

Conversion Between R'G'B' and $\mathrm{Y}^{\prime} \mathrm{CbCr}$ Color Spaces

The following equations define $\mathrm{R}^{\prime} \mathrm{G}^{\prime} \mathrm{B}^{\prime}$ to $\mathrm{Y}^{\prime} \mathrm{CbCr}$ conversion and $\mathrm{Y}^{\prime} \mathrm{CbCr}$ to $\mathrm{R}^{\prime} \mathrm{G}^{\prime} \mathrm{B}^{\prime}$ conversion:

$$
\begin{aligned}
& {\left[\begin{array}{l}
Y^{\prime} \\
C b \\
C r
\end{array}\right]=\left[\begin{array}{c}
16 \\
128 \\
128
\end{array}\right]+A \times\left[\begin{array}{c}
R^{\prime} \\
G^{\prime} \\
B^{\prime}
\end{array}\right]} \\
& {\left[\begin{array}{l}
R^{\prime} \\
G^{\prime} \\
B^{\prime}
\end{array}\right]=B \times\left(\left[\begin{array}{c}
Y^{\prime} \\
C b \\
C r
\end{array}\right]-\left[\begin{array}{c}
16 \\
128 \\
128
\end{array}\right]\right)}
\end{aligned}
$$

The values in matrices A and B are based on your choices for the Use conversion specified by and Scanning standard parameters.

Conversion from R'G'B' to Intensity

The following equation defines conversion from the $\mathrm{R}^{\prime} \mathrm{G}^{\prime} \mathrm{B}$ ' color space to intensity:

$$
\text { intensity }=\left[\begin{array}{lll}
0.299 & 0.587 & 0.114
\end{array}\right]\left[\begin{array}{l}
R^{\prime} \\
G^{\prime} \\
B^{\prime}
\end{array}\right]
$$

Conversion Between R'G'B' and HSV Color Spaces

The R'G'B' to HSV conversion is defined by the following equations. In these equations, MAX and MIN represent the maximum and minimum values of each R'G'B' triplet, respectively. H, S, and V vary from 0 to 1 , where 1 represents the greatest saturation and value.

$$
\begin{aligned}
& H=\left\{\begin{array}{c}
\left(\frac{G^{\prime}-B^{\prime}}{M A X-M I N}\right) / 6, \text { if } R^{\prime}=M A X \\
\left(2+\frac{B^{\prime}-R^{\prime}}{M A X-M I N}\right) / 6, \text { if } G^{\prime}=M A X \\
\left(4+\frac{R^{\prime}-G^{\prime}}{M A X-M I N}\right) / 6, \text { if } B^{\prime}=M A X
\end{array}\right. \\
& S=\frac{M A X-M I N}{M A X} \\
& V=M A X
\end{aligned}
$$

The HSV to R'G'B' conversion is defined by the following equations:

$$
\begin{aligned}
& H_{i}=\lfloor 6 H\rfloor \\
& f=6 H-H_{i} \\
& p=1-S \\
& q=1-f S \\
& t=1-(1-f) S \\
& \text { if } H_{i}=0, R_{t m p}=1, G_{t m p}=t, B_{t m p}=p \\
& \text { if } H_{i}=1, R_{t m p}=q, G_{t m p}=1, B_{t m p}=p \\
& \text { if } H_{i}=2, R_{t m p}=p, G_{t m p}=1, B_{t m p}=t \\
& \text { if } H_{i}=3, R_{t m p}=p, G_{t m p}=q, B_{t m p}=1 \\
& \text { if } H_{i}=4, R_{t m p}=t, G_{t m p}=p, B_{t m p}=1 \\
& \text { if } H_{i}=5, R_{t m p}=1, G_{t m p}=p, B_{t m p}=q \\
& u=V / \max \left(R_{t m p}, G_{t m p}, B_{t m p}\right) \\
& R^{\prime}=u R_{t m p} \\
& G^{\prime}=u G_{t m p} \\
& B^{\prime}=u B_{t m p}
\end{aligned}
$$

Conversion Between sR'G'B' and XYZ Color Spaces

The sR'G'B' to XYZ conversion is a two-step process. First, the block converts the gammacorrected sR'G'B' values to linear sRGB values using the following equations:

If $R^{\prime}{ }_{S R G B}, G^{\prime}{ }_{s R G B}, B_{S R G B}^{\prime} \leq 0.03928$
$R_{S R G B}=R_{s R G B}^{\prime} / 12.92$
$G_{s R G B}=G_{s R G B}^{\prime} / 12.92$
$B_{S R G B}=B^{\prime}{ }_{s R G B} / 12.92$
otherwise, if $R_{S R G B}^{\prime}, G_{S R G B}^{\prime}, B_{s R G B}^{\prime}>0.03928$

$$
\begin{aligned}
& R_{S R G B}=\left[\left(R_{s R G B}^{\prime}+0.055\right) / 1.055\right]^{2.4} \\
& G_{S R G B}=\left[\left(G_{s R G B}^{\prime}+0.055\right) / 1.055\right]^{2.4} \\
& B_{S R G B}=\left[\left(B_{s R G B}^{\prime}+0.055\right) / 1.055\right]^{2.4}
\end{aligned}
$$

Then the block converts the sRGB values to XYZ values using the following equation:

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{llll}
0.41239079926596 & 0.35758433938388 & 0.18048078840183 \\
0.21263900587151 & 0.71516867876776 & 0.07219231536073 \\
0.01933081871559 & 0.11919477979463 & 0.95053215224966
\end{array}\right] \times\left[\begin{array}{c}
R_{S R G B} \\
G_{s R G B} \\
B_{S R G B}
\end{array}\right]
$$

The XYZ to sR'G'B' conversion is also a two-step process. First, the block converts the XYZ values to linear sRGB values using the following equation:

$$
\left[\begin{array}{l}
R_{s R G B} \\
G_{S R G B} \\
B_{S R G B}
\end{array}\right]=\left[\begin{array}{llll}
0.41239079926596 & 0.35758433938388 & 0.18048078840183 \\
0.21263900587151 & 0.71516867876776 & 0.07219231536073 \\
0.01933081871559 & 0.11919477979463 & 0.95053215224966
\end{array}\right]^{-1} \times\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
$$

Then the block applies gamma correction to obtain the sR'G'B' values. This process is described by the following equations:

$$
\begin{aligned}
& \text { If } R_{S R G B}, G_{s R G B}, B_{S R G B} \leq 0.00304 \\
& R_{s R G B}^{\prime}=12.92 R_{s R G B} \\
& G_{s R G B}^{\prime}=12.92 G_{s R G B} \\
& B_{s R G B}^{\prime}=12.92 B_{s R G B} \\
& \text { otherwise, if } R_{s R G B}, G_{s R G B}, B_{S R G B}>0.00304 \\
& R_{s R G B}^{\prime}=1.055 R_{s R G B}(1.0 / 2.4)-0.055 \\
& G_{s R G B}^{\prime}=1.055 G_{s R G B}^{(1.0 / 2.4)}-0.055 \\
& B_{s R G B}^{\prime}=1.055 B_{s R G B}^{(1.0 / 2.4)}-0.055
\end{aligned}
$$

Note Computer Vision Toolbox software uses a D65 white point, which is specified in Recommendation ITU-R BT.709, for this conversion. In contrast, the Image Processing Toolbox conversion is based on ICC profiles, and it uses a D65 to D50 Bradford adaptation transformation to the D50 white point. If you are using these two products and comparing results, you must account for this difference.

Conversion Between sR'G'B' and L*a*b* Color Spaces

The Color Space Conversion block converts sR'G'B' values to L*a*b* values in two steps. First it converts sR'G'B' to XYZ values using the equations described in "Conversion

Between sR'G'B' and XYZ Color Spaces" on page 1-184. Then it uses the following equations to transform the XYZ values to L*a*b* values. Here, X_{n}, Y_{n}, and Z_{n} are the tristimulus values of the reference white point you specify using the White point parameter:

$$
\begin{aligned}
& L^{*}=116\left({ }^{Y}-16, \text { for } Y / Y_{n}>0.008856\right. \\
& L^{*}=903.3 Y / Y_{n}, \text { otherwise } \\
& a^{*}=500\left(f\left(X / X_{n}\right)-f\left(Y / Y_{n}\right)\right) \\
& b^{*}=200\left(f\left(Y / Y_{n}\right)-f\left(Z / Z_{n}\right)\right), \\
& \text { where } f(t)=t^{1 / 3}, \text { for } t>0.008856 \\
& f(t)=7.787 t+16 / 166, \text { otherwise }
\end{aligned}
$$

The block converts L***b* values to sR'G'B' values in two steps as well. The block transforms the $L^{*} a^{*} b^{*}$ values to XYZ values using these equations:

For $Y / Y_{n}>0.008856$

$$
X=X_{n}\left(P+a^{*} / 500\right)^{3}
$$

$$
Y=Y_{n} P^{3}
$$

$$
Z=Z_{n}\left(P-b^{*} / 200\right)^{3}
$$

where $P=\left(L^{*}+16\right) / 116$

References

[1] Poynton, Charles A. A Technical Introduction to Digital Video. New York: John Wiley \& Sons, 1996.
[2] Recommendation ITU-R BT.601-5, Studio Encoding Parameters of Digital Television for Standard 4:3 and Wide Screen 16:9 Aspect Ratios.
[3] Recommendation ITU-R BT.709-5. Parameter values for the HDTV standards for production and international programme exchange.
[4] Stokes, Michael, Matthew Anderson, Srinivasan Chandrasekar, and Ricardo Motta, "A Standard Default Color Space for the Internet - sRGB." November 5, 1996.
[5] Berns, Roy S. Principles of Color Technology, 3rd ed. New York: John Wiley \& Sons, 2000.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\mathrm{TM}}$.

See Also

Chroma Resampling | applycform | hsv2rgb|makecform|rgb2gray|rgb2hsv| rgb2ycbcr |ycbcr2rgb

Introduced before R2006a

Compositing

Combine pixel values of two images, overlay one image over another, or highlight selected pixels

Compositing

Library

Text \& Graphics

visiontextngfix

Description

You can use the Compositing block to combine two images. Each pixel of the output image is a linear combination of the pixels in each input image. This process is defined by the following equation:

$$
O(i, j)=(1-X) * I 1(i, j)+X * I 2(i, j)
$$

You can define the amount by which to scale each pixel value before combining them using the opacity factor, X, where , $0 \leq X \leq 1$.

You can use the Compositing block to overlay one image over another image. The masking factor and the location determine which pixels are overwritten. Masking factors can be 0 or 1 , where 0 corresponds to not overwriting pixels and 1 corresponds to overwriting pixels.

You can also use this block to highlight selected pixels in the input image. The block uses a binary input image at the Mask port, to specify which pixels to highlight.

Note This block supports intensity and color images.

Fixed-Point Data Types

The following diagram shows the data types used in the Compositing block for fixed-point signals. These data types applies when the Operation parameter is set to Blend.

You can set the product output, accumulator, and output data types in the block mask as discussed in the next section.

Parameters

Operation

Specify the operation you want the block to perform. If you choose Blend, the block linearly combines the pixels of one image with another image. If you choose Binary mask, the block overwrites the pixel values of one image with the pixel values of another image. If you choose Highlight selected pixels, the block uses the binary image input at the Mask port. Using this image, the block then determines which pixels are set to the maximum value supported by their data type.

Blend

If, for the Operation parameter, you choose Blend, the Opacity factor(s) source parameter appears on the dialog box. Use this parameter to indicate where to specify the opacity factor(s).

- If you choose Specify via dialog, the Opacity factor(s) parameter appears on the dialog box. Use this parameter to define the amount by which the block scales each pixel values for input image at the Image 2 port before combining them with the pixel values of the input image at Image 1 port. You can enter a scalar value used for all pixels or a matrix of values that is the same size as the input image at the Image 2 port.
- If you choose Input port, the Factor port appears on the block. The input to this port must be a scalar or matrix of values as described for the Opacity factor(s) parameter. If the input to the Image 1 and Image 2 ports is floating point, the input to this port must be the same floating-point data type.

Binary mask

If, for the Operation parameter, you choose Binary mask, the Mask source parameter appears on the dialog box. Use this parameter to indicate where to specify the masking factor(s).

- If you choose Specify via dialog, the Mask parameter appears on the dialog box. Use this parameter and the location source of the image to define which pixels are overwritten. You can enter 0 or 1 to use for all pixels in the image, or a matrix of 0 s and 1 s that defines the factor for each pixel.
- If you choose Input port, the Factor port appears on the block. The input to this port must be a 0 or 1 whose data type is Boolean. Or, a matrix of 0 s or 1 s whose data type is Boolean, as described for the Mask parameter.

Highlight selected pixels

If, for the Operation parameter, you choose Highlight selected pixels, the block uses the binary image input at the Mask port to determine which pixels are set to the maximum value supported by their data type. For example, for every pixel value set to 1 in the binary image, the block sets the corresponding pixel in the input image to the maximum value supported by its data type. For every 0 in the binary image, the block leaves the corresponding pixel value alone.

Opacity factor(s) source

Indicate where to specify any opacity factors. Your choices are Specify via dialog and Input port. This parameter is visible if, for the Operation parameter, you choose Blend.

Opacity factor(s)

Define the amount by which the block scales each pixel value before combining them. You can enter a scalar value used for all pixels or a matrix of values that defines the factor for each pixel. This parameter is visible if, for the Opacity factor(s) source parameter, you choose Specify via dialog. Tunable.

Mask source

Indicate where to specify any masking factors. Your choices are Specify via dialog and Input port. This parameter is visible if, for the Operation parameter, you choose Binary mask.

Mask

Define which pixels are overwritten. You can enter 0 or 1, which is used for all pixels, or a matrix of 0 s and 1 s that defines the factor for each pixel. This parameter is visible if, for the Mask source parameter, you choose Specify via dialog. Tunable.

Location source

Use this parameter to specify where to enter the location of the upper-left corner of the image input at input port Image2. You can choose either Specify via dialog or Input port.

When you choose Specify via dialog, you can set the Location [x y] parameter.
When you choose Input port, the Location port appears on the block. The input to this port must be a two-element vector as described for the Location [x y] parameter.

Location [x y]

Enter a two-element vector that specifies the row and column position of the upperleft corner of the image input at Image 2 port. The position is relative to the upperleft corner of the image input at Image 1 port. This parameter is visible if, for the Location source parameter, you choose Specify via dialog. Tunable.

Positive values move the image down and to the right; negative values move the image up and to the left. If the first element is greater than the number of rows in the Image1 matrix, the value is clipped to the total number of rows. If the second element is greater than the number of columns in the input Image 1 matrix, the value is clipped to the total number of columns.

These parameters apply only when the Operation parameter is set to Blend.

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Opacity factor

Choose how to specify the word length and fraction length of the opacity factor:

- When you select Same word length as input, these characteristics match those of the input to the block.
- When you select Specify word length, enter the word length of the opacity factor.
- When you select Binary point scaling, you can enter the word length of the opacity factor, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, of the opacity factor. The bias of all signals in the Computer Vision Toolbox software is 0 .

Product output

As the previous figure shows, the block places the output of the multiplier into the product output data type and scaling. Use this parameter to specify how to designate this product output word and fraction lengths.

- When you select Same as first input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. The bias of all signals in the Computer Vision Toolbox software is 0 .

Accumulator

As the previous figure shows, the block takes inputs to the accumulator and casts them to the accumulator data type. The output of the adder remains in the accumulator data type as each element of the input is added to it.

- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as first input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. The bias of all signals in the Computer Vision Toolbox software software is 0 .

Output

Choose how to specify the word length and fraction length of the output of the block:

- When you select Same as first input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. The bias of all signals in the Computer Vision Toolbox software is 0 .

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink documentation.

Supported Data Types

Port	Input/Output	Supported Data Types	Complex Values Supported
Image 1	M-by- N matrix of intensity values or an M-by- N-by- P color video signal where P is the number of color planes	- Double-precision floating point - Single-precision floating point - Fixed point - Boolean - 8-, 16-, and 32 -bit signed integer - 8-, 16-, and 32-bit unsigned integer	No
Image 2	M-by- N matrix of intensity values or an M-by- N-by- P color video signal where P is the number of color planes	Same as Image 1 port	No
Factor	Scalar or matrix of opacity or masking factor	- Double-precision floating point - Single-precision floating point - Fixed point - Boolean - $8-16$-, and 32 -bit signed integer - 8-, 16-, and 32-bit unsigned integer	No

Port	Input/Output	Supported Data Types	Complex Values Supported
Mask	Binary image that specifies which pixels to highlight	Same as Factor port When the Operation parameter is set to Highlight selected pixels, the input to the Mask port must be a Boolean data type.	No
Location	Two-element vector $[x$ y], that specifies the position of the upper- left corner of the image input at port I2	Double-precision floating point. (Only supported if the input to the Image 1 and Image 2 ports is a floating-point data type.) Single-precision floating point. (Only supported if the input to the Image 1 and Image 2 ports is a floating-point data type.) 8-, 16-, and 32-bit signed integer 8-, 16-, and 32-bit unsigned integer	No
Output	Vector or matrix of intensity or color values	Same as Image 1 port	

See Also

Insert Text	Computer Vision Toolbox
Draw Markers	Computer Vision Toolbox
Draw Shapes	Computer Vision Toolbox

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Introduced before R2006a

Contrast Adjustment

Adjust image contrast by linearly scaling pixel values

Contrast Adjustment

Library

Analysis \& Enhancement
visionanalysis

Description

The Contrast Adjustment block adjusts the contrast of an image by linearly scaling the pixel values between upper and lower limits. Pixel values that are above or below this range are saturated to the upper or lower limit value, respectively.

Mathematically, the contrast adjustment operation is described by the following equation, where the input limits are [low_in high_in] and the output limits are [low_out high_out]:

$$
\begin{aligned}
& \}
\end{aligned}
$$

Port	Input/Output	Supported Data Types	Complex Values Supported
I	Vector or matrix of intensity values	- Double-precision floating point - Single-precision floating point - Fixed point - 8-, 16-, and 32 -bit signed integer - 8-, 16-, and 32-bit unsigned integer	No
Output	Scalar, vector, or matrix of intensity values or a scalar, vector, or matrix that represents one plane of the RGB video stream	Same as I port	No

Specifying upper and lower limits

Use the Adjust pixel values from and Adjust pixel values to parameters to specify the upper and lower input and output limits. All options are described below.

Input limits

Use the Adjust pixel values from parameter to specify the upper and lower input limits. If you select Full input data range [min max], uses the minimum input value as the lower input limit and the maximum input value as the upper input limit.
If you select User-defined, the Range [low high] parameter associated with this option appears. Enter a two-element vector of scalar values, where the first element corresponds to the lower input limit and the second element corresponds to the upper input limit.
If you select Range determined by saturating outlier pixels, the Percentage of pixels to saturate [low high] (in \%), Specify number of histogram bins (used to calculate the range when outliers are eliminated), and Number of histogram bins parameters appear on the block. The block uses these parameter values to calculate the input limits in this three-step process:

1 Find the minimum and maximum input values, [min_in max_in].
2 Scale the pixel values from [min_in max_in] to [0 num_bins-1], where num_bins is the scalar value you specify in the Number of histogram bins parameter. This parameter always displays the value used by the block. Then the block calculates the
histogram of the scaled input. For additional information about histograms, see the 2D-Histogram block reference page.
3 Find the lower input limit such that the percentage of pixels with values smaller than the lower limit is at most the value of the first element of the Percentage of pixels to saturate [low high] (in \%) parameter. Similarly, find the upper input limit such that the percentage of pixels with values greater than the upper limit is at least the value of the second element of the parameter.

Output limits

Use the Adjust pixel values to parameter to specify the upper and lower output limits. If you select Full data type range, the block uses the minimum value of the input data type as the lower output limit and the maximum value of the input data type as the upper out
If you select User-defined range, the Range [low high] parameter appears on the block. Enter a two-element vector of scalar values, where the first element corresponds to the lower output limit and the second element corresponds to the upper output limit.

For INF, -INF and NAN Input Values

If any input pixel value is either INF or -INF, the Contrast Adjustment block will change the pixel value according to how the parameters are set. The following table shows how the block handles these pixel values.

If Adjust pixel values from parameter is set to...	Contrast Adjustment block will:
Full data range [min,max]	Set the entire output image to the lower limit of the Adjust pixel values to parameter setting.
Range determined by saturating outlier pixels	Lower and higher limits of the Adjust pixel values to parameter set to - INF and INF, respectively.
User defined range	

If any input pixel has a NAN value, the block maps the pixels with valid numerical values according to the user-specified method. It maps the NAN pixels to the lower limit of the Adjust pixels values to parameter.

Examples

See "Adjust the Contrast of Intensity Images" in the Computer Vision Toolbox User's Guide.

Fixed-Point Data Types

The following diagram shows the data types used in the Contrast Adjustment block for fixed-point signals:

SUB.SYSTEMS:
$===========$
S=====
Gakulate the pixel value that conesponds
Gabulate the poxel value that conesponds
to Thr in the cumulative histogram (CDF).

Parameters

Adjust pixel values from

Specify how to enter the upper and lower input limits. Your choices are Full input data range [min max], User-defined, and Range determined by saturating outlier pixels.

Range [low high]

Enter a two-element vector of scalar values. The first element corresponds to the lower input limit, and the second element corresponds to the upper input limit. This parameter is visible if, for the Adjust pixel values from parameter, you select User defined.

Percentage of pixels to saturate [low high] (in \%)

Enter a two-element vector. The block calculates the lower input limit such that the percentage of pixels with values smaller than the lower limit is at most the value of
the first element. It calculates the upper input limit similarly. This parameter is visible if, for the Adjust pixel values from parameter, you select Range determined by saturating outlier pixels.

Specify number of histogram bins (used to calculate the range when outliers are eliminated)

Select this check box to change the number of histogram bins. This parameter is editable if, for the Adjust pixel values from parameter, you select Range determined by saturating outlier pixels.

Number of histogram bins

Enter the number of histogram bins to use to calculate the scaled input values. This parameter is available if you select the Specify number of histogram bins (used to calculate the range when outliers are eliminated) check box.

Adjust pixel values to

Specify the upper and lower output limits. If you select Full data type range, the block uses the minimum value of the input data type as the lower output limit and the maximum value of the input data type as the upper output limit. If you select User defined range, the Range [low high] parameter appears on the block.

Range [low high]

Enter a two-element vector of scalar values. The first element corresponds to the lower output limit and the second element corresponds to the upper output limit. This parameter is visible if, for the Adjust pixel values to parameter, you select Userdefined range

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Product 1

The product output type when the block calculates the ratio between the input data range and the number of histogram bins.

As shown in the previous figure, the output of the multiplier is placed into the product output data type and scaling. Use this parameter to specify how to designate this product output word and fraction lengths:

When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. The bias of all signals in the Computer Vision Toolbox software is 0 .

Product 2

The product output type when the block calculates the bin location of each input value.

As shown in the previous figure, the output of the multiplier is placed into the product output data type and scaling. Use this parameter to specify how to designate this product output word and fraction lengths:

When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. The bias of all signals in the Computer Vision Toolbox software is 0 .

This parameter is visible if, for the Adjust pixel values from parameter, you select Range determined by saturating outlier pixels.

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink documentation.

See Also

2D-Histogram	Computer Vision Toolbox software
Histogram Equalization	Computer Vision Toolbox software

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

Introduced in R2006b

Corner Detection

Calculate corner metric matrix and find corners in images
Library: Computer Vision Toolbox / Analysis \& Enhancement

Corner Detection

Description

The Corner Detection block finds corners in an image by using the Harris corner detection (by Harris and Stephens), minimum eigenvalue (by Shi and Tomasi), or local intensity comparison (based on the Accelerated Segment Test, (FAST) method by Rosten and Drummond) method. The block finds the corners in the image based on the pixels that have the largest corner metric values.

Ports

Input

I - Input image

matrix of intensity values
Input image, specified as a matrix of intensity values.
Data Types: single | double | int8|int16|int32|uint8|uint16|uint32| fixed point

Output

Loc - Corner locations

M-by-2 matrix
Corner locations, returned as an M-by-2 matrix of [x y] coordinates. M represents the number of corners and is less than or equal to the Maximum number of corners parameter.

Data Types: uint32

Metric - Corner metric values

matrix
Corner metric values, returned as a matrix of intensity values. The returned matrix is the same size as the input image.

Dependencies

TTo enable this port, set the Output parameter to Corner location and metric matrix or Metric matrix.
Data Types: single | double | int8| int16|int32|uint8|uint16|uint32| fixed point

Parameters

Main Tab

Method - Corner detection method

Harris corner detection (Harris \& Stephens) (default)|Minium eigenvalue (Shi \& Tomasi)|Local intensity comparison (Rosen \& Drummond)

Specify the corner detection method as Harris corner detection (Harris \& Stephens), Minimum eigenvalue (Shi \& Tomasi), or Local intensity comparison (Rosen \& Drummond).

To increase accurate results, use Minium eigenvalue (Shi \& Tomasi). For the fastest computation, use Local intensity comparison (Rosen \& Drummond). For a balance between accuracy and computation, use Harris corner detection (Harris \& Stephens). For more information on each method, see the "Algorithms" on page 1-209 section.

After the block determines that a pixel is a possible corner, it computes its corner metric using the following equation:

$$
R=\max \left(\sum_{j: I_{j} \geq I_{p}+T}\left|I_{p}-I_{j}\right|-T, \sum_{j: I_{j} \leq I_{p}-T}\left|I_{p}-I_{j}\right|-T\right)
$$

Sensitivity factor (0<k<0.25) - Sensitivity factor 0.04 (default) | scalar

Specify the sensitivity factor, k. As k decreases, the likelihood that the algorithm can detect sharp corners increases.

Tunable: Yes

Dependencies

To enable this parameter, set the Method parameter to Harris corner detection (Harris \& Stephens).

Coefficients for separable smoothing filter - Filter coefficients fspecial('gaussian', [1 5], 1.5) (default) | vector

Specify a vector of filter coefficients for the smoothing filter.

Dependencies

To enable this parameter, set the Method parameter to Harris corner detection

 (Harris \& Stephens) or Minimum eigenvalue (Shi \& Tomasi).
Intensity comparison threshold - Intensity threshold

0.1 (default) | scalar

Specify the intensity threshold value used to find valid surrounding pixels.
Tunable: Yes

Dependencies

To enable this parameter, set the Method parameter to Local intensity comparison (Rosten \& Drummond).

```
Maximum angle to be considered a corner (in degrees) - Maximum corner angle 157.5 (default) | scalar
```

Specify the maximum corner angle.
Tunable: Yes

Dependencies

- To enable this parameter, set the Method parameter to Local intensity comparison (Rosten \& Drummond).
- This parameter is tunable for simulation only.

Output - Block output

Corner location (default)|Corner location and metric matrix|Metric matrix

Specify the block output as Corner location, Corner location and metric matrix, and Metric matrix.

Set this parameter to Corner location or Corner location and metric matrix to expose the Maximum number of corners, Minimum metric value that indicates a corner, and Neighborhood size (suppress region around detected corners) parameters.

Maximum number of corners - Maximum number of corners 200 (default) | integer

Specify the maximum number of corners you want the block to find. T

Dependencies

To enable this parameter, set the Output parameter to Corner location or Corner location and metric matrix.

Minimum metric value that indicates a corner - Minimum corner metric 0.0005 (default) | scalar

Specify the minimum corner metric value.
Tunable: Yes
Dependencies
To enable this parameter, set the Output parameter to Corner location or Corner location and metric matrix.

Neighborhood size - Neighborhood size

[11 11] (default) | 2 -element vector

Specify the neighborhood size as a two-element vector of positive odd integers, [row, column]. Specify the size as the neighborhood around the corner metric value over which the block zeros out the values.

Dependencies

To enable this parameter, set the Output parameter to Corner location or Corner location and metric matrix.

Output variable size signal - Variable size signal

on (default) | off

Select this parameter to output a variable size signal.

Data Types Tab

For details on the fixed-point block parameters, see "Specify Fixed-Point Attributes for Blocks".

Block Characteristics

| Data Types | Booleana $^{\text {a }}$ double \| fixed point | integer | single |
| :--- | :--- |
| Multidimensional
 Signals | no |
| Variable-Size
 Signals | yes |

a. This data type is not supported for the Local Intensity Comparison method.

Algorithms

Determine final corner values

To determine the final corner values, the block follows this process:
1 Find the pixel with the largest corner metric value.
2 Verify that the metric value is greater than or equal to the value you specified for the Minimum metric value that indicates a corner parameter.

3 Suppress the region around the corner value by the size defined in the Neighborhood size (suppress region around detected corners) parameter.

The block repeats this process until it finds all the corners in the image or it finds the number of corners you specified in the Maximum number of corners parameter.

The corner metric values computed by the Minimum eigenvalue and Local intensity comparison methods are always nonnegative. The corner metric values computed by the Harris corner detection method can be negative.

Minimum Eigenvalue Method

The method is more computationally expensive than the Harris corner detection algorithm because it directly calculates the eigenvalues of the sum of the squared difference matrix, M.

The sum of the squared difference matrix, M, is defined as follows:

$$
M=\left[\begin{array}{ll}
A & C \\
C & B
\end{array}\right]
$$

The previous equation is based on the following values:

$$
\begin{gathered}
A=\left(I_{x}\right)^{2} \otimes w \\
B=\left(I_{y}\right)^{2} \otimes w \\
C=\left(I_{x} I_{y}\right)^{2} \otimes w
\end{gathered}
$$

where I_{x} and I_{y} are the gradients of the input image, I, in the x and y direction. The \otimes symbol denotes a convolution operation.

Use the Coefficients for separable smoothing filter parameter to define a vector of filter coefficients. The block multiplies this vector of coefficients by its transpose to create a matrix of filter coefficients, w.

The block calculates the smaller eigenvalue of the sum of the squared difference matrix. This minimum eigenvalue corresponds to the corner metric matrix.

Harris Corner Method

The Harris corner detection method avoids the explicit computation of the eigenvalues of the sum of squared differences matrix by solving for the corner metric matrix, R :

$$
R=A B-C^{2}-k(A+B)^{2}
$$

See the Minimum Eigenvalue Method section for the defintiions of A, B, and C.
The variable k corresponds to the sensitivity factor. You can specify its value using the Sensitivity factor ($\mathbf{0}<\mathbf{k}<\mathbf{0} .25$) parameter. As k decreases, the likelihood that the algorithm can detect sharp corners increases.

Use the Coefficients for separable smoothing filter parameter to define a vector of filter coefficients. The block multiplies this vector of coefficients by its transpose to create a matrix of filter coefficients, w.

Local Intensity Method

The method determines that a pixel is a possible corner if it has either, N contiguous valid bright surrounding pixels, or N contiguous dark surrounding pixels.

Suppose that p is the pixel under consideration and j is one of the pixels surrounding p. The locations of the other surrounding pixels are denoted by the shaded areas in the following figure. The shaded areas in this figure denote the locations of other surrounding pixels.

I_{p} and I_{j} are the intensities of pixels p and j, respectively. Pixel j is a valid bright surrounding pixel if $I_{j}-I_{p} \geq T$. Similarly, pixel j is a valid dark surrounding pixel if $I_{p}-I_{j} \geq T$. In these equations, T is the value you specified for the Intensity comparison threshold parameter.

The block repeats this process to determine whether the block has N contiguous valid surrounding pixels. The value of N is related to the value you specify for the Maximum angle to be considered a corner (in degrees) parameter, as shown in this table.

Number of Valid Surrounding Pixels and Angle

Number of Valid Surrounding Pixels	Angle (degrees)
15	22.5
14	45
13	67.5
12	90
11	112.5
10	135
9	157.5

References

[1] Harris, C. and M Stephens. "A Combined Corner and Edge Detector." Proceedings of the 4th Alvey Vision Conference, 147-151. August 1988.
[2] Shi, J. and C. Tomasi. "Good Features to Track." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 593-600. June 1994.
[3] Rosten, E. and T. Drummond. "Fusing Points and Lines for High Performance Tracking." Proceedings of the IEEE International Conference on Computer Vision Vol. 2, 1508-1511. October 2005.

Extended Capabilities

C/C++ Code Generation

Generate C and $C++$ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\text {TM }}$.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\mathrm{TM}}$.

These diagrams show the data types used in the Corner Detection block for fixed-point signals. These diagrams apply to the Harris corner detection and minimum eigenvalue methods only.

Smoothing

Corner Metric by Minimum Eigenvalue Algorithm
The following table summarizes the variables used in the previous diagrams.

Variable Name	Definition
IN_DT	Input data type
MEM_DT	Memory data type
OUT_DT	Metric output data type
COEF_DT	Coefficients data type

See Also

Estimate Geometric Transformation | Find Local Maxima | detectSURFFeatures | extractFeatures|matchFeatures

Introduced in R2007b

Deinterlacing

Remove motion artifacts by deinterlacing input video signal

Deinterlacing

Library

Analysis \& Enhancement
visionanalysis

Description

The Deinterlacing block takes the input signal, which is the combination of the top and bottom fields of the interlaced video, and converts it into deinterlaced video using line repetition, linear interpolation, or vertical temporal median filtering.

Note This block supports intensity and color images on its ports.

ort	Input/Output	Supported Data Types	Complex Values Supported
nput	Combination of top and bottom fields of interlaced video	-Double-precision floating point Single-precision floating point No	Fixed point

ort	Input/Output	Supported Data Types	Complex Values Supported
utput	Frames of deinterlaced video	Same as Input port	No

Use the Deinterlacing method parameter to specify how the block deinterlaces the video.

The following figure illustrates the block's behavior if you select Line repetition.

Line Repetition

Original Interlaced Video

		Top Field			Botiom Field		
Row 1	A	B	C	Row 1			
Row 2			Row 2	D	E	F	
Row 3	G	H	I	Row 3			
Row 4				Row 4	J	K	L
Row 5	M	N	0	Row 5			
Row 6				Row 6	P	Q	R

Block Input Block Output - Deinterlaced Video

Row 1	A	B	C	Row 1	A	B	C
Row 2	D	E	F	Row 2	A	B	C
Row 3	G	H	I	Row 3	G	H	I
Row 4	J	K	L	Row 4	G	H	I
Row 5	M	N	O	Row 5	M	N	O
Row 6	P	Q	R	Row 6	M	N	O

The following figure illustrates the block's behavior if you select Linear interpolation.

Linear Interpolation

Original Interlaced Video

Top Field					Bottom Field		
Row 1	A	B	C	Row 1			
Row 2				Row 2	D	E	F
Row 3	G	H	1	Row 3			
Row 4				Row 4	J	K	L
Row 5	M	N	0	Row 5			
Row 6				Row 6	P	Q	R
Block Input					Block Output - Deinterlaced Video		
Row 1	A	B	C	Row 1	A	B	C
Row 2	D	E	F	Row 2	$(A+G) / 2$	$(\mathrm{B}+\mathrm{H}) / 2$	$(C+1) / 2$
Row 3	G	H	1	Row 3	G	H	1
Row 4	J	K	L	Row 4	$(\mathrm{G}+\mathrm{M}) / 2$	$(\mathrm{H}+\mathrm{N}) / 2$	$(1+0) / 2$
Row 5	M	N	0	Row 5	M	N	0
Row 6	P	Q	R	Row 6	M	N	0

The following figure illustrates the block's behavior if you select Vertical temporal median filtering.

Top Field					Bottom Field		
Row 1	A	B	C	Row 1			
Row 2				Row 2	D	E	F
Row 3	G	H	1	Row 3			
Row 4				Row 4	J	K	L
Row 5	M	N	0	Row 5			
Row 6				Row 6	P	Q	R
		Block Input			Block Outp	out - Deinterlaced V	Video
Row 1	A	B	C	Row 1	A	B	C
Row 2	D	E	F	Row 2	median([A, $\mathrm{D}, \mathrm{G}])$	median([B,E,H])	median([C,F,I])
Row 3	G	H	1	Row 3	G	H	1
Row 4	J	K	L	Row 4	median([G,J,M])	median([H,K,N])	median([I,, , 0])
Row 5	M	N	0	Row 5	M	N	0
Row 6	P	Q	R	Row 6	M	N	0

Row-Major Data Format

The MATLAB environment and the Computer Vision Toolbox software use column-major data organization. However, the Deinterlacing block gives you the option to process data that is stored in row-major format. When you select the Input image is transposed (data order is row major) check box, the block assumes that the input buffer contains contiguous data elements from the first row first, then data elements from the second row
second, and so on through the last row. Use this functionality only when you meet all the following criteria:

- You are developing algorithms to run on an embedded target that uses the row-major format.
- You want to limit the additional processing required to take the transpose of signals at the interfaces of the row-major and column-major systems.

When you use the row-major functionality, you must consider the following issues:

- When you select this check box, the first two signal dimensions of the Deinterlacing block's input are swapped.
- All the Computer Vision Toolbox blocks can be used to process data that is in the rowmajor format, but you need to know the image dimensions when you develop your algorithms.

For example, if you use the 2-D FIR Filter block, you need to verify that your filter coefficients are transposed. If you are using the Rotate block, you need to use negative rotation angles, etc.

- Only three blocks have the Input image is transposed (data order is row major) check box. They are the Chroma Resampling, Deinterlacing, and Insert Text blocks. You need to select this check box to enable row-major functionality in these blocks. All other blocks must be properly configured to process data in row-major format.

Use the following two-step workflow to develop algorithms in row-major format to run on an embedded target.

Example

The following example shows you how to use the Deinterlacing block to remove motion artifacts from an image.

1 Open the example model by typing
ex_deinterlace
at the MATLAB command prompt.
2 Double-click the Deinterlacing block. The model uses this block to remove the motion artifacts from the input image. The Deinterlacing method parameter is set to Vertical temporal median filtering.

3 Run the model.
The original image that contains the motion artifacts appears in the Input Image window.

The clearer output image appears in the Output Image window.

Fixed-Point Data Types
The following diagram shows the data types used in the Deinterlacing block for fixedpoint signals.

You can set the product output, accumulator, and output data types in the block mask as discussed in the next section.

Parameters

Deinterlacing method

Specify how the block deinterlaces the video. Your choices are Line repetition, Linear interpolation, or Vertical temporal median filtering.

Input image is transposed (data order is row major)

When you select this check box, the block assumes that the input buffer contains data elements from the first row first, then data elements from the second row second, and so on through the last row.

Note The parameters on the Data Types pane are only available if, for the Deinterlacing method, you select Linear interpolation.

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Accumulator

As depicted in the previous figure, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as each element of the input is added to it. Use this parameter to specify how to designate this accumulator word and fraction lengths:

- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as input, these characteristics match those of the input.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

Output

Choose how to specify the output word length and fraction length:

- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of 0 .

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink documentation.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

Introduced before R2006a

Demosaic

Demosaic Bayer's format images

Library

Conversions
visionconversions

Description

The following figure illustrates a 4-by-4 image in Bayer's format with each pixel labeled R, G, or B.

B	G	B	G
G	R	G	R
B	G	B	G
G	R	G	R

The Demosaic block takes in images in Bayer's format and outputs RGB images. The block performs this operation using a gradient-corrected linear interpolation algorithm or a bilinear interpolation algorithm.

Port	Input/Output	Supported Data Types	Complex Values Supported
I	Matrix of intensity values - If, for the Interpolation algorithm parameter, you select Bilinear, the number of rows and columns must be greater than or equal to 3. If, for the Interpolation algorithm parameter, you select Gradient - corrected linear, the number of rows and columns must be greater than or equal to 5.	-	Double-precision floating point Single-precision floating point Fixed point $8-, 16-$, and 32-bit signed integer $8-, 16$ and 32-bit unsigned integer
No			
R, G, B	Matrix that represents one plane of the input RGB video stream. Outputs from the R, G, or B ports have the same data type.	Same as I port	No
Image	M-by-N matrix of intensity values or an M-by-N-by-P color video signal where P is the number of color planes.	Same as I port	No

Use the Interpolation algorithm parameter to specify the algorithm the block uses to calculate the missing color information. If you select Bilinear, the block spatially averages neighboring pixels to calculate the color information. If you select Gradient corrected linear, the block uses a Weiner approach to minimize the mean-squared error in the interpolation. This method performs well on the edges of objects in the image. For more information, see [1].

Use the Sensor alignment parameter to specify the alignment of the input image. Select the sequence of R, G and B pixels that correspond to the 2 -by- 2 block of pixels in the top-
left corner of the image. You specify the sequence in left-to-right, top-to-bottom order. For example, for the image at the beginning of this reference page, you would select BGGR.

Both methods use symmetric padding at the image boundaries. For more information, see the Image Pad block reference page.

Use the Output image signal parameter to specify how to output a color video signal. If you select One multidimensional signal, the block outputs an M-by-N-by-P color video signal, where P is the number of color planes, at one port. If you select Separate color signals, additional ports appear on the block. Each port outputs one M-by-N plane of an RGB video stream.

Fixed-Point Data Types

The following diagram shows the data types used in the Demosaic block for fixed-point signals.

You can set the product output and accumulator data types in the block mask as discussed in the next section.

Parameters

Interpolation algorithm

Specify the algorithm the block uses to calculate the missing color information. Your choices are Bilinear or Gradient-corrected linear.

Sensor alignment

Select the sequence of R, G and B pixels that correspond to the 2-by-2 block of pixels in the top left corner of the image. You specify the sequence in left-to-right, top-tobottom order.

Output image signal

Specify how to output a color video signal. If you select One multidimensional signal, the block outputs an M-by-N-by-P color video signal, where P is the number of color planes, at one port. If you select Separate color signals, additional ports appear on the block. Each port outputs one M-by-N plane of an RGB video stream.

Rounding mode

Select the rounding mode for fixed-point operations.

Overflow mode

Select the overflow mode for fixed-point operations.

Product output

As depicted in the previous figure, the output of the multiplier is placed into the product output data type and scaling. Use this parameter to specify how to designate this product output word and fraction lengths:

When you select Same as input, these characteristics match those of the input to the block.

When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

Accumulator

As depicted in the previous figure, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as each element of the input is added to it. Use this parameter to specify how to designate this accumulator word and fraction lengths:

- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as input, these characteristics match those of the input.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

Lock data type settings against change by the fixed-point tools

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink documentation.

References

[1] Malvar, Henrique S., Li-wei He, and Ross Cutler. "High-Quality Linear Interpolation for Demosaicing of Bayer-Patterned Color Images." Microsoft Research, May 2004. http://research.microsoft.com/pubs/102068/Demosaicing_ICASSP04.pdf.
[2] Gunturk, Bahadir K., John Glotzbach, Yucel Altunbasak, Ronald W. Schafer, and Russel M. Mersereau, "Demosaicking: Color Filter Array Interpolation," IEEE Signal Processing Magazine, Vol. 22, Number 1, January 2005.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

Introduced in R2006b

Dilation

Find local maxima in binary or intensity image

Library

Morphological Operations
visionmorphops

Description

The Dilation block rotates the neighborhood or structuring element 180 degrees. Then it slides the neighborhood or structuring element over an image, finds the local maxima, and creates the output matrix from these maximum values. If the neighborhood or structuring element has a center element, the block places the maxima there, as illustrated in the following figure.

If the neighborhood or structuring element does not have an exact center, the block has a bias toward the lower-right corner, as a result of the rotation. The block places the maxima there, as illustrated in the following figure.

This block uses flat structuring elements only.

ort	Input/Output	Supported Data Types	Complex Values Supported
	Vector or matrix of intensity values	- Double-precision floating point - Single-precision floating point - Fixed point - Boolean - 8-, 16-, and 32-bit signed integer - 8-, 16-, and 32-bit unsigned integer	No
Jhood	Matrix or vector of ones and zeros that represents the neighborhood values	Boolean	No
Jutput	Vector or matrix of intensity values that represents the dilated image	Same as I port	No

The output signal has the same data type as the input to the I port.
Use the Neighborhood or structuring element source parameter to specify how to enter your neighborhood or structuring element values. If you select Specify via dialog, the Neighborhood or structuring element parameter appears in the dialog box. If you select Input port, the Nhood port appears on the block. Use this port to enter your neighborhood values as a matrix or vector of 1 s and 0 s. You can only specify a structuring element using the dialog box.

Use the Neighborhood or structuring element parameter to define the neighborhood or structuring element that the block applies to the image. Specify a neighborhood by entering a matrix or vector of 1 s and 0 s. Specify a structuring element with the strel
function from the Image Processing Toolbox. If the structuring element is decomposable into smaller elements, the block executes at higher speeds due to the use of a more efficient algorithm. If you enter an array of STREL objects, the block applies each object to the entire matrix in turn.

Parameters

Neighborhood or structuring element source

Specify how to enter your neighborhood or structuring element values. Select Specify via dialog to enter the values in the dialog box. Select Input port to use the Nhood port to specify the neighborhood values. You can only specify a structuring element using the dialog box.

Neighborhood or structuring element

If you are specifying a neighborhood, this parameter must be a matrix or vector of 1 s and 0s. If you are specifying a structuring element, use the strel function from the Image Processing Toolbox. This parameter is visible if, for the Neighborhood or structuring element source parameter, you select Specify via dialog.

References

[1] Soille, Pierre. Morphological Image Analysis. 2nd ed. New York: Springer, 2003.

See Also

Bottom-hat	Computer Vision Toolbox software
Closing	Computer Vision Toolbox software
Erosion	Computer Vision Toolbox software
Label	Computer Vision Toolbox software
Opening	Computer Vision Toolbox software
Top-hat	Computer Vision Toolbox software
imdilate	Image Processing Toolbox software
strel	Image Processing Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Introduced before R2006a

Draw Markers

Draw markers by embedding predefined shapes on output image

Draw Markers

Library

Text \& Graphics
visiontextngfix

Description

The Draw Markers block can draw multiple circles, x-marks, plus signs, stars, or squares on images by overwriting pixel values. Overwriting the pixel values embeds the shapes.

This block uses Bresenham's circle drawing algorithm to draw circles and Bresenham's line drawing algorithm to draw all other markers.

Port Description

'ort	Input/Output	Supported Data Types	Complex Values Supported
mage	M-by- N matrix of intensity values or an M -by- N-by- P color values where P is the number of color planes	- Double-precision floating point - Single-precision floating point - Fixed-point - Boolean - 8-, 16-, and 32 -bit signed integer - 8 -, 16-, and 32 -bit unsigned integer	No
2, G, B	Scalar, vector, or matrix that represents one plane of the input RGB video stream. Inputs to the R, G, and B ports must have the same dimensions and data type.	Same as Image port	No
ts	M-by-2 matrix of [x y] coordinates, $\left[\begin{array}{cc} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \vdots & \vdots \\ x_{M} & y_{M} \end{array}\right]$ where M is the total number of markers and each [x y] pair defines the center of a marker.	- Double-precision floating point - Single-precision floating point - 8-, 16-, and 32-bit signed integer - 8 -, 16-, and 32 -bit unsigned integer If the input to the Image port is an integer, fixed-point, or boolean data type, the input to the Pts port must also be an integer data type.	No
रII	Four-element vector of integers [x y width height] that define a rectangular area in which to draw the markers. The first two elements represent the one-based [x y] coordinates of the upper-left corner of the area. The second two elements represent the width and height of the area.	- Double-precision floating point - Single-precision floating point - 8-, 16-, and 32-bit signed integer - 8 -, 16-, and 32 -bit unsigned integer	No
Ir	P-element vector or M-by- P matrix where P is the number of color planes.	Same as Image port	No

ort	Input/Output	Supported Data Types	Complex Values Supported
Sutput	Scalar, vector, or matrix of pixel values that contain the marker(s)	Same as Image port	No

The output signal is the same size and data type as the inputs to the Image, R, G, and B ports.

Parameters

Marker shape

Specify the type of marker(s) to draw. Your choices are Circle, X-mark, Plus, Star, or Square.

When you select Circle, X-mark, or Star, and you select the Use antialiasing check box, the block performs a smoothing algorithm. The algorithm is similar to the poly2mask function to determine which subpixels to draw.

Marker size

Enter a scalar value that represents the size of the marker, in pixels.
Enter a scalar value, M, that defines a ($2 M+1$)-by- $(2 M+1)$ pixel square into which the marker fits. M must be greater than or equal to 1.

Filled

Select this check box to fill the marker with an intensity value or a color. This parameter is visible if, for the Marker shape parameter, you choose Circle or Square.

When you select the Filled check box, the Fill color source, Fill color and Opacity factor (between 0 and 1) parameters appear in the dialog box.

Fill color source

Specify source for fill color value. You can select Specify via dialog or Input port. This parameter appears when you select the Filled check box. When you select Input port, the color input port clr appears on the block.

Fill color

If you select Black, the marker is black. If you select White, the marker is white. If you select User-specified value, the Color value(s) parameter appears in the dialog box. This parameter is visible if you select the Filled check box.

Border color source

Specify source for the border color value to either Specify via dialog or Input port. Border color options are visible when the fill shapes options are not selected. This parameter is visible if you select the Filled check box. When you select Input port, the color input port clr appears on the block.

Border color

Specify the appearance of the shape's border. If you select Black, the border is black. If you select White, the border is white. If you select User-specified value, the Color value(s) parameter appears in the dialog box. This parameter is visible if you clear the Fill shapes check box.

Color value(s)

Specify an intensity or color value for the marker's border or fill. This parameter appears when you set the Border color or Fill color parameters to User specified value. Tunable.

The following table describes what to enter for the color value based on the block input and the number of shapes you are drawing.

Block Input	Color Value(s) for Drawing One Marker or Multiple Markers with the Same Color	Color Value(s) for Drawing Multiple Markers with Unique Color
Intensity	Scalar intensity value	R-element vector where R is the image
Color image	P-element vector where P is the markers number of color planes	P-by- R matrix where P is the number of color planes and R is the number of markers

For each value in the parameter, enter a number between the minimum and maximum values that can be represented by the data type of the input image. If you enter a value outside this range, the block produces an error message.

Opacity factor (between 0 and 1)

Specify the opacity of the shading inside the marker, where 0 indicates transparent and 1 indicates opaque. This parameter appears when you select the Filled check box. This parameter is tunable.

The following table describes what to enter for the Opacity factor(s) (between $\mathbf{0}$ and 1) parameter based on the block input and the number of markers you are drawing.

Opacity Factor value for Drawing One Marker or Multiple Markers with the Same Color	Opacity Factor value for Drawing Multiple Marker with Unique Color
Scalar intensity value	R-element vector where R is the number of markers

Draw markers in

Specify the area in which to draw the markers. When you select Entire image, you can draw markers in the entire image. When you select Specify region of interest via port, the ROI port appears on the block. Enter a four-element vector, [x y width height], where [$x y$] are the coordinates of the upper-left corner of the area.

Use antialiasing

Perform a smoothing algorithm on the marker. This parameter is visible if, for the Marker shape parameter, you select Circle, X-mark, or Star.

Image signal

Specify how to input and output a color video signal. When you select One multidimensional signal, the block accepts an M-by- N-by- P color video signal, where P is the number of color planes, at one port. When you select Separate color signals, additional ports appear on the block. Each port accepts one M-by- N plane of an RGB video stream.

See Also

Draw Shapes	Computer Vision Toolbox software
Insert Text	Computer Vision Toolbox software

Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Introduced before R2006a

Draw Shapes

Draw rectangles, lines, polygons, or circles on images
Library: Computer Vision Toolbox / Text \& Graphics

Description

The Draw Shapes block draws rectangles, lines, polygons, or circles on images by overwriting pixel values. As a result, the shapes are embedded in the output image. The block uses Bresenham's line drawing algorithm to draw lines, polygons, and rectangles and Bresenham's circle drawing algorithm to draw circles. The output signal is the same size and data type as the inputs to the Image, \mathbf{R}, \mathbf{G}, and \mathbf{B} ports.

You can set the shape fill or border color via the input port or by manually entering the values in the Block Parameters window. Use the color parameters to determine the appearance of the rectangles, lines, polygons, or circles.

Ports

Input

Image - Input image

M-by- N matrix of intensity values $\mid M$-by- N-by- P color values
Input image, specified as either an M-by- N matrix of intensity values or an M-by- N-by- P matrix of color values with P color planes.

Data Types: single | double | int8 | int16|int32|uint8|uint16|uint32| Boolean|fixed point

R - Red video stream
scalar | vector | matrix

Red video stream, specified as a scalar, vector, or a matrix. The input represents one plane of the RGB video stream. The \mathbf{R}, \mathbf{G}, and \mathbf{B} ports must have the same dimensions and data type.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8 | int16|int32|uint8|uint16|uint32| Boolean|fixed point

G - Green video stream

scalar | vector | matrix
Green video stream, specified as a scalar, vector, or a matrix. The input represents one plane of the RGB video stream. The \mathbf{R}, \mathbf{G}, and \mathbf{B} ports must have the same dimensions and data type.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single|double | int8|int16|int32|uint8|uint16|uint32| Boolean|fixed point

B - Blue ideo stream

scalar | vector | matrix
Blue video stream, specified as a scalar, vector, or a matrix. The input represents one plane of the RGB video stream. The \mathbf{R}, \mathbf{G}, and \mathbf{B} ports must have the same dimensions and data type.

Dependencies

To enable this port, set the Image signal parameter to Separate color signals.
Data Types: single | double | int8|int16|int32|uint8|uint16|uint32| Boolean|fixed point

Pts - Shape coordinates

M-by-3 matrix | M-by-4 matrix | M-by-2L
Shape coordinates. The format of the points depends on the type of shape you specify with the Shape parameter.

- Rectangles $-M$-by- 4 matrix of M rectangles. The format for each rectangle must be, [x y width height].

Shape	Input to the Pts Port	Drawn Shape
Single Rectangle	Four-element row vector in the format [x y width height], where: - x and y are the one-based coordinates of the upper-left corner of the rectangle. - width and height are the width and height in pixels, of the rectangle. The values of width and height must be greater than 0 .	(x, y) ($\mathrm{x}+$ width $-1, \mathrm{y}+$ height
M Rectangles	M-by-4 matrix in the format $\left[\begin{array}{cccc} x_{1} & y_{1} & \text { width }_{1} & \text { height }_{1} \\ x_{2} & y_{2} & \text { width }_{2} & \text { height }_{2} \\ \vdots & \vdots & \vdots & \vdots \\ x_{M} & y_{M} & \text { width }_{M} & \text { height }_{M} \end{array}\right]$,where each row of the matrix corresponds to a different rectangle and is of the same form as the vector for a single rectangle.	$\mathrm{M}=2$ ($\mathrm{x}_{1}, \mathrm{y}_{1}$) (x, y) ($\mathrm{x}_{2}+$ width $2-1, \mathrm{y}_{2}+$ height2-1)

- Lines - M-by- $2 L$ matrix of M polylines. The format for each polyline must be of the form $[x 1, y 1, x 2, y 2, \ldots, x L, y L]$.

Shape	Input to the Pts Port	Drawn Shape
Single Line	Four-element row vector in the format [x_{1} $\left.y_{1} x_{2} y_{2}\right]$, where: - x_{1} and y_{1} are the coordinates of the beginning of the line. - x_{2} and y_{2} are the coordinates of the end of the line.	
M Lines	M-by-4 matrix in the format $\left[\begin{array}{cccc} x_{11} & y_{11} & x_{12} & y_{12} \\ x_{21} & y_{21} & x_{22} & y_{22} \\ \vdots & \vdots & \vdots & \vdots \\ x_{M 1} & y_{M 1} & x_{M 2} & y_{M 2} \end{array}\right]$, where each row of the matrix corresponds to a different line and is of the same form as the vector for a single line.	
Single Polyline with (L-1) Segments	Vector of size $2 L$, where L is the number of vertices, in the format, $\left[x_{1}, y_{1}, x_{2}\right.$, $y_{2}, \ldots, x_{L}, y_{L}$, where - x_{1} and y_{1} are the coordinates of the beginning of the first line segment. - x_{2} and y_{2} are the coordinates of the end of the first line segment and the beginning of the second line segment. - x_{L} and y_{L} are the coordinates of the end of the $(L-1)^{\text {th }}$ line segment. The polyline always contains ($L-1$) number of segments because the first and last vertex points do not connect. The block produces an error message when the number of rows is less than two or not a multiple of two.	

Shape	Input to the Pts Port	Drawn Shape
M Polylines with (L-1) Segments	M-by-2L matrix in the format $\left[\begin{array}{ccccccc} x_{11} & y_{11} & x_{12} & y_{12} & \cdots & x_{1 L} & y_{1 L} \\ x_{21} & y_{21} & x_{22} & y_{22} & \cdots & x_{2 L} & y_{2 L} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{M 1} & y_{M 1} & x_{M 2} & y_{M 2} & \cdots & x_{M L} & y_{M L} \end{array}\right]$, where each row of the matrix corresponds to a different polyline and is of the same form as the vector for a single polyline. When you require one polyline to contain less than ($L-1$) number of segments, fill the matrix by repeating the coordinates of the last vertex. The block produces an error message if the number of rows is less than two or not a multiple of two.	

- Polygons $-M$-by- $2 L$ matrix of M polygons. The format for each polygon must be of the form $[x 1, y 1, x 2, y 2, \ldots, x L, y L]$. The points are specified in consecutive order to form a polygon.

Shape	Input to the Pts Port	Drawn Shape
Single Polygon with L line segments	Row vector of size $2 L$, where L is the number of vertices, in the format [$x_{1} y_{1}$ $\left.x_{2} y_{2} \ldots x_{L} y_{L}\right]$, where: - x_{1} and y_{1} are the coordinates of the beginning of the first line segment. - x_{2} and y_{2} are the coordinates of the end of the first line segment and the beginning of the second line segment. - x_{L} and y_{L} are the coordinates of the end of the $(L-1)^{\text {th }}$ line segment and the beginning of the $L^{\text {th }}$ line segment. The block connects [$x_{1} y_{1}$] to [$x_{L} y_{L}$] to complete the polygon. The block produces an error if the number of rows is negative or not a multiple of two.	
M Polygons with the largest number of line segments in any line being L	M-by-2L matrix in the format $\left[\begin{array}{ccccccc} x_{11} & y_{11} & x_{12} & y_{12} & \cdots & x_{1 L} & y_{1 L} \\ x_{21} & y_{21} & x_{22} & y_{22} & \cdots & x_{2 L} & y_{2 L} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{M 1} & y_{M 1} & x_{M 2} & y_{M 2} & \cdots & x_{M L} & y_{M L} \end{array}\right]$, where each row of the matrix corresponds to a different polygon and is of the same form as the vector for a single polygon. If some polygons are shorter than others, repeat the ending coordinates to fill the polygon matrix. The block produces an error message if the number of rows is less than two or is not a multiple of two.	*Added $L=5$ matrix entry equal to $L=4$ entry equal to $L=4$ value, because this polyline contains one less number of segments segments.

- Circles - M-by-3 matrix of M circles. The format for each circle must be, [x y radius].

Shape	Input to the Pts Port	Drawn Shape
Single Circle	Three-element row vector in the format [x y radius], where: - x and y are coordinates for the center of the circle. - radius is the radius of the circle, which must be greater than 0 .	
M Circles	M-by-3 matrix in the format $\left[\begin{array}{ccc} x_{1} & y_{1} & \text { radius }_{1} \\ x_{2} & y_{2} & \text { radius }_{2} \\ \vdots & \vdots & \vdots \\ x_{M} & y_{M} & \operatorname{radius}_{M} \end{array}\right]$, where each row of the matrix corresponds to a different circle and is of the same form as the vector for a single circle.	

Dependencies

- Double-precision floating point is only supported if the input to the Image or \mathbf{R}, \mathbf{G}, and \mathbf{B} ports is floating point.
- Single-precision floating point (only supported if the input to the Image or \mathbf{R}, \mathbf{G}, and B ports is floating point).

Data Types: single|double|int8|int16|int32|uint8|uint16|uint32

ROI - Region of interest

four-element vector

Region of interest, specified as a four-element vector [x y width height]. The region defines a rectangular area to draw shapes. The first two elements represent the onebased coordinates of the upper-left corner of the area. The second two elements represent the width and height of the area.

Dependencies

To enable this port, set the ROI port appears when you set the Draw shapes in parameter to Specify region of interest via port.

```
Data Types: single|double| int8| int16| int32|uint8|uint16|uint32 |
Boolean|fixed point
```


Clr - Color of shape

P-element vector | M-by- P matrix
Color of shape, specified as either a P-element vector or an M-by- P matrix of M number of shapes and P number of color planes. You can specify a color (RGB) for each shape, or specify one color for all shapes.

Dependencies

To enable this port, set the Border color source parameter to Input port.
Data Types: single | double | int8 | int16|int32|uint8|uint16|uint32 | Boolean|fixed point

Output

Port_1 - Output image

scalar | vector | matrix
Output image, returned as a scalar, vector, or matrix.
Data Types: single | double | int8|int16|int32|int64|uint8|uint16| uint32|uint64|Boolean|fixed point|enumerated|bus

Parameters

Main Tab

Fill Shapes - Fill color

 off (default) | onSelect Fill Shapes to specify an intensity value or a color.

Note If you are generating code and you select the Fill shapes check box, the word length of the block input(s) cannot exceed 16 bits.

Fill color source - Source for fill color

Specify via dialog (default)|Input port
Specify the source for the fill color value to either Specify via dialog or Input port.

Dependencies

To enable this parameter, select Fill shapes.

Fill color - Shape fill color

Black (default)|White|User-specified value
Specify the shape fill color.

Dependencies

To enable this parameter, select the Fill shapes parameter.

Border color source - Border color source

 (default) |Specify the source for the border color value to either Specify via dialog or Input port.

Dependencies

To enable this parameter, select the Fill shapes parameter.

Border color - Border color

Black (default)|White|User-specified value
Specify the appearance of the shape's border. You can specify Black, White, or Userspecified value. This table describes what to enter for the color value based on the block input and the number of shapes you are drawing.

Block Input	Color Value(s) for Drawing One Shape or Multiple Shapes with the Same Color	Color Value(s) for Drawing Multiple Shapes with Unique Colors
Intensity image	Scalar intensity value	R-element vector where R is the number of shapes
Color image	P-element vector where P is the number of color planes	R-by- P matrix where P is the number of color planes and R is the number of shapes

For each value in the Color Value(s) parameter, enter a number between the minimum and maximum values that can be represented by the data type of the input image. If you enter a value outside this range, the block produces an error message.

Dependencies

To enable this parameter, clear the Fill shapes parameter.

Color value(s) - Color value

color value | intensity value
Specify an intensity or color value for the shape's border or fill.
Tunable: Yes
Dependencies
To enable this parameter set the Border color or Fill color parameter to Userspecified value.

Opacity factor (between 0 and 1) - Opacity factor

 value in the range $[0,1] \mid R$-element vectorSpecify the opacity of the shading inside the shape, where 0 is transparent and 1 is opaque.

Opacity Factor value for Drawing One Shape or Multiple Shapes with the Same Color	Opacity Factor value for Drawing Multiple Shapes with Unique Colors
Scalar intensity value	R-element vector where R is the number of shapes

Dependencies

To enable this parameter, clear the Fill shapes parameter.

Use antialiasing - Smoothing algorithm

 off | onPerform a smoothing algorithm on the line, polygon, or circle.

Dependencies

- To enable this parameter, set the Shape parameter to either Lines, Polygons, or Circles.

Image Signal - Image signal

Specify how to input and output a color video signal. Select the color video signal as one of the following:

- One multidimensional signal - The block accepts an M-by- N-by- P color video signal, where P is the number of color planes, at one port.
- Separate color signals - Enables the R,G, and B input ports. Each port accepts one M-by- N plane of an RGB video stream.

Data Types Tab

For details on the fixed-point block parameters, see "Specify Fixed-Point Attributes for Blocks".

Block Characteristics

| Data Types | Boolean \| double \| fixed point | integer \| single |
| :--- | :--- |
| Multidimensional
 Signals | yes |
| Variable-Size
 Signals | yes |

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

Fixed-Point Conversion

Design and simulate fixed-point systems using Fixed-Point Designer ${ }^{\mathrm{Tm}}$.

See Also

Draw Markers | Insert Text
Introduced before R2006a

Edge Detection

Find edges of objects in images using Sobel, Prewitt, Roberts, or Canny method Library: Computer Vision Toolbox / Analysis \& Enhancement

Edge Detection

Description

The Edge Detection block finds edges of objects in an input image. The Sobel, Prewitt, or Roberts methods find the edges by approximating the gradient magnitude of the image. The block then convolves the input matrix with the Sobel, Prewitt, or Roberts kernel. The Canny method finds edges by looking for the local maxima of the gradient of the input image. The block then calculates the gradient using the derivative of the Gaussian filter.

Ports

Input

I - Input image

matrix
Input image, specified as a matrix of intensity values.

Dependencies

The Canny method does not support 8 -bit, 16 -bit, or 32-bit signed fixed-point integers or 8 -bit, 16 -bit, or 32 -bit unsigned integers.

```
Data Types: single| double | int8| int16| int32|uint8|uint16|uint32 |
fixed point
```


Th - Threshold source

matrix

Threshold source, specified as a matrix of intensity values.

Dependencies

The Canny method does not support 8 -bit, 16 -bit, or 32-bit signed fixed-point integers or 8 -bit, 16 -bit, or 32 -bit unsigned integers.

```
Data Types: single| double | int8| int16| int32|uint8|uint16|uint32 |
fixed point
```


Output

Edge - Edge detections matrix

Edge detections, returned as a binary image.

Data Types: Boolean

Gv - Matrix of gradient responses

matrix

Matrix of gradient responses to the vertical edges.

Dependencies

- The Canny method does not support 8 -bit, 16 -bit, or 32 -bit signed fixed-point integers or 8 -bit, 16 -bit, or 32 -bit unsigned integers.
- To enable this port, set the Method parameter to Sobel or the Prewittmethod.

Data Types: single | double | int8| int16|int32|uint8|uint16|uint32| fixed point

Gh - Matrix of gradient responses

matrix
Matrix of gradient responses to the horizontal edges.

Dependencies

- The Canny method does not support 8 -bit, 16 -bit, or 32 -bit signed fixed-point integers or 8 -bit, 16 -bit, or 32 -bit unsigned integers.
- To enable this port, set the Method parameter to Sobel or Prewitt.

```
Data Types: single|double|int8| int16| int32|uint8|uint16|uint32|
fixed point
```


G45 - Matrix of gradient responses to edges at 45 degrees

 matrixMatrix of gradient responses to edges at 45 degrees.

Dependencies

- The Canny method does not support 8-bit, 16 -bit, or 32 -bit signed or unsigned fixedpoint integers.
- To enable this port, set the Method parameter to Roberts.

```
Data Types: single|double| int8| int16| int32|uint8|uint16|uint32 |
fixed point
```


G135 - Matrix of gradient responses to edges at 135 degrees

 matrixMatrix of gradient responses to edges at 135 degrees.

Dependencies

- The Canny method does not support fixed point, 8-, 16-, 32-bit signed integers, or 8-, 16-, 32-bit unsigned integers.
- To enable this port, set the Method parameter to Roberts.

```
Data Types: single | double| int8| int16| int32|uint8|uint16|uint32 |
``` fixed point

\section*{Parameters}

\section*{Method - Edge detection method}

Sobel (default) | Prewitt | Roberts | Canny
Specify which algorithm to use to find edges. Select one of the following methods:
- Sobel
- Prewitt
- Roberts
- Canny

\section*{Output Type - Output image type}

Binary image (default)|Gradient components | Binary image and gradient components

Specify the format of the Edge output.
\begin{tabular}{|l|l|l|}
\hline Algorithm Method & Output Type & Output at Edge Port \\
\hline All & Binary image & \begin{tabular}{l}
Boolean matrix where the zero \\
elements of this correspond to the \\
edge pixels and the zero elements \\
correspond to the background \\
pixels.
\end{tabular} \\
\hline Sobel, Prewitt & Gradient component & \begin{tabular}{l}
Gradient components that \\
correspond to the horizontal and \\
vertical edge responses at the Gh \\
and Gv ports.
\end{tabular} \\
\hline Roberts & Gradient components & \begin{tabular}{l}
Gradient components that \\
correspond to the 45 and 135 \\
degree edge responses at the G45 \\
and G135 ports.
\end{tabular} \\
\hline All & \begin{tabular}{l}
Binary image and \\
gradient components
\end{tabular} & \begin{tabular}{l}
Both the binary image and the \\
gradient components of the image.
\end{tabular} \\
\hline
\end{tabular}

\section*{User-defined threshold - User-defined threshold port}
off (default) | on
Enable the Th port.
Threshold scale factor: (used to automatically calculate threshold
value) - Threshold scale factor
4 (default) | scalar
Specify the threshold scale factor to automatically calculate threshold value. The block computes the automatic threshold using the mean of the gradient magnitude squared image and multiplies the value of this parameter with the automatic threshold value to determine a new threshold value.

\section*{Dependencies}

To enable this parameter, clear User-defined threshold.

\section*{Threshold source - Threshold source \\ Input port (default)|Specify via dialog}

Specify threshold source. Enter a threshold value that is within the range of your input data. If you choose Input port, use the Th port to specify a threshold value. This value must have the same data type as the input data. Gradient magnitudes above the threshold value correspond to edges.

\section*{Dependencies}

To enable this parameter, select User-defined threshold.

\section*{Edge Thinning - Edge thinning}
off (default) | on
Select this parameter to reduce the thickness of the edges in your output images. This option requires additional processing time and memory resources.

Note This block is most efficient in terms of memory usage and processing time when you clear the Edge thinning check box and use the Threshold source parameter to specify a threshold value.

\section*{Data Types Tab}

For information about the fixed-point block parameters, see "Specify Fixed-Point Attributes for Blocks" .

\section*{Block Characteristics}
\begin{tabular}{|l|l|}
\hline Data Types & double \| fixed point | integer \| single \\
\hline \begin{tabular}{l}
Multidimensional \\
Signals
\end{tabular} & no \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Variable-Size \\
Signals
\end{tabular} & yes \\
\hline
\end{tabular}

\section*{References}
[1] Gonzales, Rafael C. and Richard E. Woods. Digital Image Processing. 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 2002.
[2] Pratt, William K. Digital Image Processing, 2nd ed. NY: John Wiley \& Sons, 1991.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{Fixed-Point Conversion}

Design and simulate fixed-point systems using Fixed-Point Designer \({ }^{\mathrm{TM}}\).
When you select the Normalized output check box, the block input cannot be fixed point.

\section*{See Also}
edge

\section*{Introduced before R2006a}

\section*{Erosion}

Find local minima in binary or intensity images

\section*{Library}

Morphological Operations
visionmorphops

\section*{Description}

The Erosion block slides the neighborhood or structuring element over an image, finds the local minima, and creates the output matrix from these minimum values. If the neighborhood or structuring element has a center element, the block places the minima there, as illustrated in the following figure.

If the neighborhood or structuring element does not have an exact center, the block has a bias toward the upper-left corner and places the minima there, as illustrated in the following figure.

This block uses flat structuring elements only.
\begin{tabular}{|c|c|c|c|}
\hline ort & Input/Output & Supported Data Types & Complex Values Supported \\
\hline & Vector or matrix of intensity values & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- Boolean \\
- 8-, 16-, and 32-bit signed integer \\
- 8-, 16-, and 32 -bit unsigned integer
\end{tabular} & No \\
\hline Jhood & Matrix or vector of 1s and 0s that represents the neighborhood values & Boolean & No \\
\hline Sutput & Vector or matrix of intensity values that represents the eroded image & Same as I port & No \\
\hline
\end{tabular}

The output signal is the same data type as the input to the I port.
Use the Neighborhood or structuring element source parameter to specify how to enter your neighborhood or structuring element values. If you select Specify via dialog, the Neighborhood or structuring element parameter appears in the dialog box. If you select Input port, the Nhood port appears on the block. Use this port to enter your neighborhood values as a matrix or vector of 1 s and 0 s . You can only specify a structuring element using the dialog box.

Use the Neighborhood or structuring element parameter to define the neighborhood or structuring element that the block applies to the image. Specify a neighborhood by entering a matrix or vector of 1 s and 0 s . Specify a structuring element with the strel function from the Image Processing Toolbox. If the structuring element is decomposable into smaller elements, the block executes at higher speeds due to the use of a more efficient algorithm. If you enter an array of STREL objects, the block applies each object to the entire matrix in turn.

\section*{Parameters}

\section*{Neighborhood or structuring element source}

Specify how to enter your neighborhood or structuring element values. Select Specify via dialog to enter the values in the dialog box. Select Input port to use the Nhood port to specify the neighborhood values. You can only specify a structuring element using the dialog box.

\section*{Neighborhood or structuring element}

If you are specifying a neighborhood, this parameter must be a matrix or vector of 1 s and 0s. If you are specifying a structuring element, use the strel function from the Image Processing Toolbox. This parameter is visible if, for the Neighborhood or structuring element source parameter, you select Specify via dialog.

\section*{References}
[1] Soille, Pierre. Morphological Image Analysis. 2nd ed. New York: Springer, 2003.

\section*{See Also}
\begin{tabular}{|l|l|}
\hline Bottom-hat & Computer Vision Toolbox software \\
\hline Closing & Computer Vision Toolbox software \\
\hline Dilation & Computer Vision Toolbox software \\
\hline Label & Computer Vision Toolbox software \\
\hline Opening & Computer Vision Toolbox software \\
\hline Top-hat & Computer Vision Toolbox software \\
\hline imerode & Image Processing Toolbox software \\
\hline strel & Image Processing Toolbox software \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\author{
C/C++ Code Generation \\ Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\). \\ Introduced before R2006a
}

\section*{Estimate Geometric Transformation}

\author{
Estimate geometric transformation from matching point pairs \\ Library: Computer Vision Toolbox / Geometric Transformations
}

\section*{Description}

Use the Estimate Geometric Transformation block to find the transformation matrix which maps the greatest number of point pairs between two images. A point pair refers to a point in the input image and its related point on the image created using the transformation matrix. You can select to use the RANdom SAmple Consensus (RANSAC) or the Least Median Squares algorithm to exclude outliers and to calculate the transformation matrix. You can also use all input points to calculate the transformation matrix.

\section*{Ports}

\section*{Input}

\section*{Pts1 - Point coordinates}

M-by-2 matrix
Point coordinates, specified as an M-by-2 matrix of one-based [\(x y\)] point coordinates, where \(M\) represents the number of points.

The block outputs the same data type for the transformation matrix as the Pts1 and Pts 2 image points.
Data Types: single | double | int8| int16|int32|uint8|uint16|uint32

\section*{Pts2 - Point coordinates}

M-by-2 matrix

Point coordinates, specified as an \(M\)-by-2 matrix of one-based [\(x\) y] point coordinates, where \(M\) represents the number of points.

The block outputs the same data type for the transformation matrix as the Pts1 and Pts 2 image points.

Data Types: single|double|int8|int16|int32|uint8|uint16|uint32

\section*{Output}

\section*{Num - Number of valid points}
\(M\)-by-2 matrix
Scalar value that represents the number of valid points in Pts1 and Pts 2.
Data Types: int8|int16|int32|uint8|uint16|uint32

\section*{TForm - Transformation}

3-by-2 matrix | 3-by-3 matrix
Transformation, returned as either a 3-by-2 or a 3-by-3 matrix. The block outputs the same data type for the transformation matrix as the Pts1 and Pts 2 image points.

\section*{Dependencies}
- When Pts1 and Pts 2 are single or double, the output transformation matrix will also have single or double data type.
- When Pts1 and Pts 2 images are built-in integers, the option is available to set the transformation matrix data type to either Single or Double.

\section*{Data Types: single | double}

\section*{Inlier - Points used}

M-by-1 vector
Points used to calculate TForm, returned as an \(M\)-by-1 vector.

\section*{Dependencies}
- The Inlier port appears when you enable the Output Boolean signal indicating which point pairs are inliers parameter.

\section*{Data Types: Boolean}

\section*{Parameters}

\section*{Transformation type - Transformation type \\ Affine (default) | Nonreflective similarity|Projective}

Specify the transformation type as either Nonreflective similarity, Affine, or Projective. See "Transformations" on page 1-275 for a more detailed discussion.

\section*{Dependencies}

You can set additional parameters depending on the transformation type:
- For Projective transformation, you can specify a scalar algebraic distance threshold for determining inliers.
- For Affine or Projective transformation, you can specify the distance threshold for determining inliers in pixels.

\section*{Find and exclude outliers - Find and exclude outliers on (default) | off}

Enable to find and exclude outliers from the input points and use only the inlier points to calculate the transformation matrix. When you turn this parameter off, all input points are used to calculate the transformation matrix.

\section*{Method - Method to find outliers}

RANdom SAmple Consensus (RANSAC) (default)|Least Median of Squares
Select the method to find outliers as either RANdom SAmple Consensus (RANSAC) or Least Median of Squares See "RANSAC and Least Median Squares Algorithms" on page 1-274 for a more detailed discussion.

\section*{Dependencies}

This parameter appears when you enable the Find and exclude outliers check box.

\section*{Algebraic distance threshold for determining inliers - Algebraic distance threshold for determining inliers}
1.5 (default) | scalar

Specify a scalar threshold value for determining inliers. The threshold controls the upper limit used to find the algebraic distance in the RANSAC algorithm.

\section*{Dependencies}

This parameter appears when you set the Method parameter to Random Sample Consensus (RANSAC) and the Transformation type parameter to Projective.

\section*{Distance threshold for determining inliers (in pixels) - Distance threshold for determining inliers (in pixels)}
1.5 (default) | scalar

Specify the upper limit distance a point can differ from the projection location of its corresponding point.

\section*{Dependencies}

This parameter appears when you set the Method parameter to Random Sample Consensus (RANSAC) and you set the value of the Transformation type parameter to Nonreflective similarity or Affine.

Determine number of random samplings using - Determine number of random samplings using
Specified value (default)|Desired confidence
Select Specified value to enter a positive integer value for the number of random samplings. Select Desired confidence to set the number of random samplings as a percentage and a maximum number.

\section*{Dependencies}

This parameter appears when you select the Find and exclude outliers check box, and you set the value of the Method parameter to Random Sample Consensus (RANSAC).

\section*{Number of random samplings - Number of random samplings}

500 (default) | scalar
Specify the number of random samplings for the algorithm to perform.

\section*{Dependencies}

This parameter appears when you set the value of the Determine number of random samplings using parameter to Specified value.

Desired confidence (in \%) - Desired confidence (in \%)
99 (default) | scalar

Specify a percent desired confidence by entering a number between 0 and 100. The value represents the probability of the algorithm to find the largest group of points that can be mapped by a transformation matrix.

\section*{Dependencies}

This parameter appears when you set the Determine number of random samplings using parameter to Desired confidence.

\section*{Maximum number of random samplings - Maximum number of random samplings \\ 1000 (default) | integer}

Specify an integer number for the maximum number of random samplings.

\section*{Dependencies}

This parameter appears when you set the Method parameter to Random Sample Consensus (RANSAC) and you set the value of the Determine number of random samplings using parameter to Desired confidence.
```

Stop sampling earlier when a specified percentage of point pairs are
determined to be inlier - Stop sampling
off (default) | on

```

Enable this parameter to stop random sampling when a percentage of input points have been found as inliers.

\section*{Dependencies}

This parameter appears when you set the Method parameter to Random Sample Consensus (RANSAC).

Perform additional iterative refinement of the transformation matrix - Perform additional iterative refinement
off (default) | on
Specify whether to perform refinement on the transformation matrix.

\section*{Dependencies}

This parameter appears when you select Find and exclude outliers check box.

Output Boolean signal indicating which point pairs are inliers Output Boolean signal
off (default) | on
Enable this parameter to output the inlier point pairs that were used to calculate the transformation matrix.

\section*{Dependencies}
- This parameter appears when you select the Find and exclude outliers check box.
- The block will not use this parameter with signed or double, data type points.

\section*{When Pts1 and Pts2 are built-in integers, set transformation matrix date type to - Set transformation matrix date type \\ Single (default) | Double}

Specify transformation matrix data type as Single or Double when the input points are built-in integers.

\section*{Dependencies}

The block will not use this parameter with signed or double, data type points.
Allow variable-sized signal input - Allow variable-sized signal input on (default) | off

Enable this parameter to allow variable-sized signal input.
Dependencies

\section*{Block Characteristics}
\begin{tabular}{|l|l|}
\hline Data Types & double | integer \({ }^{\text {a }} \mid\) single \\
\hline \begin{tabular}{l}
Multidimensional \\
Signals
\end{tabular} & no \\
\hline \begin{tabular}{l}
Variable-Size \\
Signals
\end{tabular} & yes \\
\hline
\end{tabular}
a. Generated code will be restricted to MATLAB host computers when you set the FFT implementation parameter to FFTW, or when the transform length is not a power of two.

\section*{Algorithms}

\section*{RANSAC and Least Median Squares Algorithms}

The RANSAC algorithm relies on a distance threshold. A pair of points, \(p_{i}^{a}\) (image \(a\), Pts1) and \(p_{i}^{b}\) (image \(b\), Pts 2) is an inlier only when the distance between \(p_{i}^{b}\) and the projection of \(p_{i}^{a}\) based on the transformation matrix falls within the specified threshold. The distance metric used in the RANSAC algorithm is as follows:
\[
d=\sum_{i=1}^{N u m} \min \left(D\left(p_{i}^{b}, \psi\left(p_{i}^{a}: H\right)\right), t\right)
\]

The Least Median Squares algorithm assumes at least \(50 \%\) of the point pairs can be mapped by a transformation matrix. The algorithm does not need to explicitly specify the distance threshold. Instead, it uses the median distance between all input point pairs. The distance metric used in the Least Median of Squares algorithm is as follows:
\[
d=\operatorname{median}\left(D\left(p_{1}^{b}, \psi\left(p_{1}^{a}: H\right)\right), D\left(p_{2}^{b}, \psi\left(p_{2}^{a}: H\right)\right), \ldots, D\left(p_{N u m}^{b}, \psi\left(p_{N}^{a}: H\right)\right)\right)
\]

For both equations:
\(p_{i}^{a}\) is a point in image \(a\) (Pts1)
\(p_{i}^{b}\) is a point in image \(b\) (Pts2)
\(\psi\left(p_{i}^{a}: H\right)\) is the projection of a point on image \(a\) based on transformation matrix \(H\)
\(D\left(p_{i}^{b}, p_{j}^{b}\right)\) is the distance between two point pairs on image \(b\)
\(t\) is the threshold
Numis the number of points
The smaller the distance metric, the better the transformation matrix and therefore the more accurate the projection image.

\section*{Transformations}

The Estimate Geometric Transformation block supports Nonreflective similarity, Affine, and Projective transformation types, which are described in this section.

Nonreflective similarity transformation supports translation, rotation, and isotropic scaling. It has four degrees of freedom and requires two pairs of points.

The transformation matrix is: \(H=\left[\begin{array}{cc}h_{1} & -h_{2} \\ h_{2} & h_{1} \\ h_{3} & h_{4}\end{array}\right]\)
The projection of a point \(\left[\begin{array}{ll}x & y\end{array}\right]\) by His: \(\left[\begin{array}{ll}\widehat{x} & \widehat{y}\end{array}\right]=\left[\begin{array}{lll}x & y & 1\end{array}\right] H\)
affine transformation supports nonisotropic scaling in addition to all transformations that the nonreflective similarity transformation supports. It has six degrees of freedom that can be determined from three pairs of noncollinear points.

The transformation matrix is: \(H=\left[\begin{array}{ll}h_{1} & h_{4} \\ h_{2} & h_{5} \\ h_{3} & h_{6}\end{array}\right]\)
The projection of a point \(\left[\begin{array}{ll}x & y\end{array}\right]\) by His: \(\left[\begin{array}{ll}\widehat{x} & \widehat{y}\end{array}\right]=\left[\begin{array}{lll}x & y & 1\end{array}\right] H\)
Projective transformation supports tilting in addition to all transformations that the affine transformation supports.

The transformation matrix is : \(h=\left[\begin{array}{lll}h_{1} & h_{4} & h_{7} \\ h_{2} & h_{5} & h_{8} \\ h_{3} & h_{6} & h_{9}\end{array}\right]\)
The projection of a point \([x y]\) by His represented by homogeneous coordinates as:
\(\left[\begin{array}{lll}\widehat{u} & \widehat{v} & \widehat{w}\end{array}\right]=\left[\begin{array}{lll}x & y & 1\end{array}\right] H\)

\section*{Distance Measurement}

For computational simplicity and efficiency, this block uses algebraic distance. The algebraic distance for a pair of points, \(\left[\begin{array}{ll}x^{a} & y^{a}\end{array}\right]^{T}\) on image \(a\), and \(\left[\begin{array}{ll}x^{b} & y^{b}\end{array}\right]\) on image \(b\), according to transformation \(H\), is defined as follows;

For projective transformation:
\(D\left(p_{i}^{b}, \psi\left(p_{i}^{a}: H\right)\right)=\left(\left(\widehat{u}^{a}-\widehat{w}^{a} x^{b}\right)^{2}+\left(\widehat{v}^{a}-\widehat{w}^{a} y^{b}\right)^{2}\right)^{\frac{1}{2}}\), where \(\left[\widehat{u}^{a} \widehat{v}^{a} \widehat{w}^{a}\right]=\left[\begin{array}{ll}x^{a} & y^{a} \\ 1\end{array}\right] H\)
For Nonreflective similarity or affine transformation:
\(D\left(p_{i}^{b}, \psi\left(p_{i}^{a}: H\right)\right)=\left(\left(\widehat{x}^{a}-x^{b}\right)^{2}+\left(\widehat{y}^{a}-\widehat{y}^{b}\right)^{2}\right)^{\frac{1}{2}}\),
where \(\left[\begin{array}{ll}\widehat{x}^{a} & \widehat{y}^{a}\end{array}\right]=\left[\begin{array}{lll}x^{a} & y^{a} & 1\end{array}\right] H\)

\section*{Algorithm}

The block performs a comparison and repeats it \(K\) number of times between successive transformation matrices. If you select the Find and exclude outliers option, the RANSAC and Least Median Squares (LMS) algorithms become available. These algorithms calculate and compare a distance metric. The transformation matrix that produces the smaller distance metric becomes the new transformation matrix that the next comparison uses. A final transformation matrix is resolved when either:
- K number of random samplings is performed
- The RANSAC algorithm, when enough number of inlier point pairs can be mapped, (dynamically updating \(K\))

The Estimate Geometric Transformation algorithm follows these steps:

1 A transformation matrix \(H\) is initialized to zeros
2 Set count \(=0\) (Randomly sampling).
3 While count < K, where K is total number of random samplings to perform, perform the following;
a Increment the count; count \(=\) count +1 .
b Randomly select pair of points from images \(a\) and \(b\), (2 pairs for Nonreflective similarity, 3 pairs for affine, or 4 pairs for projective).
c Calculate a transformation matrix \(H\), from the selected points.
d If Hhas a distance metric less than that of \(H\), then replace \(H\) with \(H\).
(Optional for RANSAC algorithm only)
i Update K dynamically.
ii Exit out of sampling loop if enough number of point pairs can be mapped by H.

4 Use all point pairs in images \(a\) and \(b\) that can be mapped by \(H\) to calculate a refined transformation matrix \(H\)
5 Iterative Refinement, (Optional for RANSAC and LMS algorithms)
a Denote all point pairs that can be mapped by \(H\) as inliers.
b Use inlier point pairs to calculate a transformation matrix \(H\).
c If \(H\) has a distance metric less than that of \(H\), then replace \(H\) with \(H\), otherwise exit the loop.

\section*{Number of Random Samplings}

The number of random samplings can be specified by the user for the RANSAC and Least Median Squares algorithms. You can use an additional option with the RANSAC algorithm, which calculates this number based on an accuracy requirement. The Desired Confidence level drives the accuracy.

The calculated number of random samplings, \(K\) used with the RANSAC algorithm, is as follows:
\[
K=\frac{\log (1-p)}{\log \left(1-q^{S}\right)}
\]
where
- \(\quad p\) is the probability of independent point pairs belonging to the largest group that can be mapped by the same transformation. The probability is dynamically calculated
based on the number of inliers found versus the total number of points. As the probability increases, the number of samplings, \(K\), decreases.
- \(q\) is the probability of finding the largest group that can be mapped by the same transformation.
- \(s\) is equal to the value 2,3 , or 4 for Nonreflective similarity, affine, and projective transformation, respectively.

\section*{Iterative Refinement of Transformation Matrix}

The transformation matrix calculated from all inliers can be used to calculate a refined transformation matrix. The refined transformation matrix is then used to find a new set of inliers. This procedure can be repeated until the transformation matrix cannot be further improved. This iterative refinement is optional.

\section*{References}
[1] R. Hartley and A. Ziserman, "Multiple View Geometry in Computer Vision," Second edition, Cambridge University Press, 2003

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{Fixed-Point Conversion}

Design and simulate fixed-point systems using Fixed-Point Designer \({ }^{\mathrm{TM}}\).

\author{
See Also \\ cp2tform \\ Introduced in R2008a
}

\title{
Find Local Maxima
}

Find local maxima in matrices
Library: Computer Vision Toolbox / Statistics

\section*{Description}

The Find Local Maxima block finds the local maxima in a given input matrix. The block finds the local maxima of values within a region specified by the neighborhood size. The block compares the values in the search region to a user-specified threshold and identifies a value that is greater than or equal to the threshold as the local maximum. The threshold and the neighbourhood size must be chosen such that the block detects only the true local maxima and eliminates false peaks.

The input to this block can also be a Hough matrix generated from the Hough Transform block. The Find Local Maxima block outputs the one-based [\(x\) y] coordinates of the detected local maxima. The data sent to all input ports must be the same data type.

\section*{Ports}

\section*{Input}

\section*{I - Input}

M-by- \(N\) matrix
Input, specified as the \(M\)-by- \(N\) matrix in which you want to detect the local maxima. If the input is a Hough matrix output from the Hough Transform block, select the Input is Hough matrix spanning full theta range parameter.

Data Types: single | double | int8| int16|int32|uint8|uint16|uint32| fixed point

\section*{Th — Threshold for detecting local maxima}

\author{
scalar
}

Threshold for the detecting local maxima, specified as a scalar.

\section*{Dependencies}

To enable this port, set the Source of threshold value parameter to Input port.
Data Types: single | double | int8|int16|int32|uint8|uint16|uint32| fixed point

\section*{Output}

\section*{Idx - Coordinates of local maxima}
\(P\)-by-2 matrix
Coordinates of the local maxima, returned as a \(P\)-by- 2 matrix of one-based [\(x y\)] coordinates. \(P\) represents the number of local maxima.

Data Types: single | double | uint8|uint16|uint32

\section*{Count - Number of local maxima}
scalar
Number of local maxima, returned as a scalar.

\section*{Dependencies}

To enable this port, clear the check box for the Output variable size signal parameter.
Data Types: single | double | uint8 | uint16|uint32

\section*{Parameters}
```

Maximum number of local maxima - Maximum number of local maxima to
detect
2 (default) | positive integer

```

Specify the maximum number of local maxima to detect in the input matrix. The value must be a positive integer greater than 0 .

\section*{Neighborhood size - Size of neighborhood region}
[5 7] (default) | 2-element vector

Specify the size of the neighborhood region as a two-element vector in the form [\(r c]\). The vector specifies the window size \(r \times c\), within which the block determines the local maxima. The window size must be greater than or equal to \(1 \times 1\).

\section*{Source of threshold value - Source to enter the threshold value Specify via dialog (default)|Input port}

Specify the source for entering the threshold value. If you select Input port, the Th port is exposed on the block. If you select Specify via dialog, the Threshold parameter is exposed.

\section*{Threshold - Threshold for detecting local maxima}
scalar
Specify a scalar value that represents the threshold for detecting the local maxima.

\section*{Dependencies}

To enable this parameter, set the Source of threshold value parameter to Specify via dialog.

\section*{Input is Hough matrix spanning full theta range - Whether input is a Hough matrix \\ off (default) | on}

Select the parameter, if the input to this block is the Hough matrix output from the Hough Transform block. The Find Local Maxima block assumes that the input is a Hough matrix that is antisymmetric about the rho axis, with values of theta from -pi/2 to pi/2 radians. As a result, if the local maximum is near the boundary and its neighborhood region outside the Hough matrix, the block ignores the corresponding antisymmetric maximum.

\section*{Index output data type - Data type for coordinates of local maximums uint32 (default) | double | single | uint8 | uint16}

Specify the data type for the coordinates of local maximums returned at the output port Idx.

\section*{Output variable size signal - Support input signals of varying length on (default) | off}

Specify if the model supports input signals of varying length.

\section*{Count output data type - Data type for number of local maximums uint32 (default) | double | single | uint8 | uint16}

Specify the data type for the number of local maximums returned at the output port Count.

\section*{Dependencies}

To enable this parameter, clear the Output variable size signal parameter.

\section*{Block Characteristics}
\begin{tabular}{|l|l|}
\hline Data Types & double | fixed point | integer | single \\
\hline \begin{tabular}{l}
Multidimensional \\
Signals
\end{tabular} & no \\
\hline \begin{tabular}{l}
Variable-Size \\
Signals
\end{tabular} & yes \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\author{
See Also \\ Corner Detection | Hough Lines | hough | houghpeaks \\ Introduced before R2006a
}

\section*{Frame Rate Display}

Calculate average update rate of input signal
```

33.2854

```

Frame Rate
Display

\section*{Library}

Sinks
visionsinks

\section*{Description}

The Frame Rate Display block calculates and displays the average update rate of the input signal. This rate is in relation to the wall clock time. For example, if the block displays 30 , the model is updating the input signal 30 times every second. You can use this block to check the video frame rate of your simulation. During code generation, Simulink Coder does not generate code for this block.

Note This block supports intensity and color images on its port.
\begin{tabular}{|c|c|c|c|}
\hline Port & Input & Supported Data Types & Complex Values Supported \\
\hline Input & M-by-N matrix of intensity values or an M-by-N-by-P color video signal where P is the number of color planes & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- Boolean \\
- 8-, 16-, and 32-bit signed integer \\
- 8 -, 16-, and 32 -bit unsigned integer
\end{tabular} & No \\
\hline
\end{tabular}

Use the Calculate and display rate every parameter to control how often the block updates the display. When this parameter is greater than 1 , the block displays the average update rate for the specified number of video frames. For example, if you enter 10, the block calculates the amount of time it takes for the model to pass 10 video frames to the block. It divides this time by 10 and displays this average video frame rate on the block.

Note If you do not connect the Frame Rate Display block to a signal line, the block displays the base (fastest) rate of the Simulink model.

\section*{Parameters}

\section*{Calculate and display rate every}

Use this parameter to control how often the block updates the display.

\section*{See Also}
\begin{tabular}{|l|l|}
\hline To Multimedia File & Computer Vision Toolbox software \\
\hline To Video Display & Computer Vision Toolbox software \\
\hline Video To Workspace & Computer Vision Toolbox software \\
\hline Video Viewer & Computer Vision Toolbox software \\
\hline
\end{tabular}

\section*{Introduced before R2006a}

\section*{From Multimedia File}

Read video frames and audio samples from compressed multimedia file

From Multimedia File

\section*{Library}

\section*{Sources}
visionsources

\section*{Description}

The From Multimedia File block reads audio samples, video frames, or both from a multimedia file. The block imports data from the file into a Simulink model.

Note This block supports code generation for the host computer that has file I/O available. You cannot use this block with Simulink Desktop Real-Time \({ }^{\mathrm{TM}}\) software because that product does not support file I/O.

The generated code for this block relies on prebuilt library files. You can run this code outside the MATLAB environment, or redeploy it, but be sure to account for these extra library files when doing so. The packNGo function creates a single zip file containing all of the pieces required to run or rebuild this code. See packNGo for more information.

To run an executable file that was generated from a model containing this block, you may need to add precompiled shared library files to your system path. See "Simulink Coder", "Simulink Shared Library Dependencies", and "Accelerating Simulink Models" for details.

This block allows you to read WMA/WMV streams to disk or across a network connection. Similarly, the To Multimedia File block allows you to write WMA/WMV streams to disk or
across a network connection. If you want to play an MP3/MP4 file in Simulink, but you do not have the codecs, you can re-encode the file as WMA/WMV, which are supported by the Computer Vision Toolbox.
\begin{tabular}{|l|l|}
\hline Platform & Supported File Name Extensions \\
\hline All Platforms & AVI (.avi) \\
\hline Windows \(^{\circledR}\) & \begin{tabular}{l}
Image: \\
.jpg, .bmp
\end{tabular} \\
\hline & \begin{tabular}{l}
Video: \\
MPEG (.mpeg) \\
MPEG-2 (.mp2) \\
MPEG-1.mpg \\
MPEG-4, including H.264 encoded video (.mp4, . m4v) \\
Motion JPEG 2000 (.mj2) \\
Windows Media Video (.wmv, . asf, . asx, .asx) \\
and any format supported by Microsoft DirectShow® 9.0 or higher.
\end{tabular} \\
\hline & \begin{tabular}{l}
Audio: \\
WAVE (.wav) \\
Windows Media Audio File (.wma) \\
Audio Interchange File Format (.aif, .aiff) \\
Compressed Audio Interchange File Format(.aifc), \\
MP3 (.mp3) \\
Sun Audio (.au) \\
Apple (.snd)
\end{tabular} \\
\hline & \begin{tabular}{l}
Video: \\
.avi \\
Motion JPEG 2000 (.mj2) \\
MPEG-4, including H.264 encoded video (.mp4, .m4v) \\
Apple QuickTime Movie (.mov) \\
and any format supported by QuickTime as listed on http:// \\
support.apple.com/kb/HT3775.
\end{tabular} \\
\hline Macintosh & \begin{tabular}{l}
Audio: \\
Uncompressed .avi
\end{tabular} \\
\hline Linux \({ }^{\circledR}\) & \begin{tabular}{l}
Motion JPEG 2000 (.mj2) \\
Any format supported by your installed plug-ins for GStreamer 0.1 \\
or higher, as listed on http://gstreamer.freedesktop.org/ \\
documentation/plugins.html, including Ogg Theora (.ogg).
\end{tabular} \\
\hline
\end{tabular}

\section*{Ports}

The output ports of the From Multimedia File block change according to the content of the multimedia file. If the file contains only video frames, the Image, intensity \(\mathbf{I}\), or \(\mathbf{R}, \mathbf{G}, \mathbf{B}\) ports appear on the block. If the file contains only audio samples, the Audio port appears on the block. If the file contains both audio and video, you can select the data to emit. The following table describes available ports.
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline Image & \(M\)-by- \(N\)-by- \(P\) color video signal where \(P\) is the number of color planes. \\
\hline I & \(M\)-by- \(N\) matrix of intensity values. \\
\hline R, G, B & \begin{tabular}{l}
Matrix that represents one plane of the RGB video stream. Outputs from the \\
R, G, or B ports must have same dimensions.
\end{tabular} \\
\hline Audio & Vector of audio data. \\
\hline Y, Cb, Cr & \begin{tabular}{l}
Matrix that represents one frame of the YCbCr video stream. The Y, Cb, Cr \\
ports produce the following outputs: \\
Y: \(M x N\) \\
Cb: \(M x \frac{N}{2}\) \\
Cr: \(M x \frac{N}{2}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Sample Rates}

The sample rate that the block uses depends on the audio and video sample rate. While the FMMF block operates at a single rate in Simulink, the underlying audio and video streams can produce different rates. In some cases, when the block outputs both audio and video, makes a small adjustment to the video rate.

\section*{Sample Time Calculations Used for Video and Audio Files}

Sample time \(=\frac{\text { ceil }(\text { AudioSampleRate } / \text { FPS })}{\text { AudioSampleRate }}\).

When audio sample time, \(\frac{\text { AudioSampleRate }}{F P S}\) is noninteger, the equation cannot reduce to 1 \(\overline{F P S}\).
In this case, to prevent synchronization problems, the block drops the corresponding video frame when the audio stream leads the video stream by more than \(\frac{1}{F P S}\).
In summary, the block outputs one video frame at each Simulink time step. To calculate the number of audio samples to output at each time step, the block divides the audio sample rate by the video frame rate (fps). If the audio sample rate does not divide evenly by the number of video frames per second, the block rounds the number of audio samples up to the nearest whole number. If necessary, the block periodically drops a video frame to maintain synchronization for large files.

\section*{Parameters}

\section*{File name}

Specify the name of the multimedia file from which to read. The block determines the type of file (audio and video, audio only, or video only) and provides the associated parameters.

If the location of the file does not appear on your MATLAB path, use the Browse button to specify the full path. Otherwise, if the location of this file appears on your MATLAB path, enter only the file name. On Windows platforms, this parameter supports URLs that point to MMS (Microsoft Media Server) streams.

\section*{Inherit sample time from file}

Select the Inherit sample time from file check box if you want the block sample time to be the same as the multimedia file. If you clear this check box, enter the block sample time in the Desired sample time parameter field. The file that the From Multimedia File block references, determines the block default sample time. You can also set the sample time for this block manually. If you do not know the intended sample rate of the video, let the block inherit the sample rate from the multimedia file.

\section*{Desired sample time}

Specify the block sample time. This parameter becomes available if you clear the Inherit sample time from file check box.

\section*{Number of times to play file}

Enter a positive integer or inf to represent the number of times to play the file.

\section*{Output end-of-file indicator}

Use this check box to determine whether the output is the last video frame or audio sample in the multimedia file. When you select this check box, a Boolean output port labeled EOF appears on the block. The output from the EOF port defaults to 1 when the last video frame or audio sample is output from the block. Otherwise, the output from the EOF port defaults to 0 .

\section*{Multimedia outputs}

Specify Video and audio, Video only, or Audio only output file type. This parameter becomes available only when a video signal has both audio and video.

\section*{Samples per audio channel}

Specify number of samples per audio channel. This parameter becomes available for files containing audio.

\section*{Output color format}

Specify whether you want the block to output RGB, Intensity, or YCbCr 4:2:2 video frames. This parameter becomes available only for a signal that contains video. If you select RGB, use the Image signal parameter to specify how to output a color signal.

\section*{Image signal}

Specify how to output a color video signal. If you select One multidimensional signal, the block outputs an \(M\)-by- \(N\)-by- \(P\) color video signal, where \(P\) is the number of color planes, at one port. If you select Separate color signals, additional ports appear on the block. Each port outputs one \(M\)-by- \(N\) plane of an RGB video stream. This parameter becomes available only if you set the Image color space parameter to RGB and the signal contains video.

\section*{Audio output sampling mode}

Select Sample based or Frame based output. This parameter appears when you specify a file containing audio for the File name parameter.

\section*{Audio output data type}

Set the data type of the audio samples output at the Audio port. This parameter becomes available only if the multimedia file contains audio. You can choose double, single, int16, or uint8 types.

\section*{Video output data type}

Set the data type of the video frames output at the \(\mathbf{R}, \mathbf{G}, \mathbf{B}\), or Image ports. This parameter becomes available only if the multimedia file contains video. You can choose double, single, int8, uint8, int16, uint16, int32, uint32, or Inherit from file types.

\section*{Supported Data Types}

For source blocks to display video data properly, double- and single-precision floatingpoint pixel values must be between 0 and 1. For other data types, the pixel values must be between the minimum and maximum values supported by their data type.
\begin{tabular}{|c|c|c|}
\hline Port & Supported Data Types & Supports Complex Values? \\
\hline Image & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- 8-, 16-, and 32 -bit signed integers \\
- 8-, 16-, and 32 -bit unsigned integers
\end{tabular} & No \\
\hline R, G, B & Same as the Image port & No \\
\hline Audio & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- 16-bit signed integers \\
- 8-bit unsigned integers
\end{tabular} & No \\
\hline Y, Cb, Cr & Same as the Image port & No \\
\hline
\end{tabular}

\section*{See Also}

To Multimedia Fil
"Specify Sample Time" (Simulink)

Computer Vision Toolbox
Simulink

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
Usage notes and limitations:
The executable generated from this block relies on prebuilt dynamic library files (. dll files) included with MATLAB. Use the packNGo function to package the code generated from this block and all the relevant files in a compressed zip file. Using this zip file, you can relocate, unpack, and rebuild your project in another development environment where MATLAB is not installed. For more details, see .

\section*{Introduced before R2006a}

\section*{Gamma Correction}

Apply or remove gamma correction from images or video streams

\section*{Library}

Conversions
visionconversions

\section*{Description}

Use the Gamma Correction block to apply or remove gamma correction from an image or video stream. For input signals normalized between 0 and 1, the block performs gamma correction as defined by the following equations. For integers and fixed-point data types, these equations are generalized by applying scaling and offset values specific to the data type:
\[
\begin{aligned}
& S_{L S}=\frac{1}{\frac{\gamma}{B_{P}^{\left(1 / r^{-1)}\right.}}-\gamma B_{P}+B_{P}} \\
& F_{S}=\frac{\gamma S_{L S}}{B_{P}^{\left(1 / r^{-1)}\right.}}
\end{aligned}
\]
\[
\begin{aligned}
& C_{O}=F_{S} B_{P}^{1 / \gamma}-S_{L S} B_{P} \\
& I^{\prime}=\left\{\begin{array}{cc}
S_{L S} I, & I \leq B_{p} \\
F_{S} I^{\frac{1}{\gamma}}-C_{O}, & I>B_{p}
\end{array}\right\}
\end{aligned}
\]
\(S_{\mathrm{LS}}\) is the slope of the straight line segment. \(B_{\mathrm{P}}\) is the break point of the straight line segment, which corresponds to the Break point parameter. \(F_{\mathrm{S}}\) is the slope matching factor, which matches the slope of the linear segment to the slope of the power function segment. \(C_{0}\) is the segment offset, which ensures that the linear segment and the power function segments connect. Some of these parameters are illustrated by the following diagram.

For normalized input signals, the block removes gamma correction, which linearizes the input video stream, as defined by the following equation:
\[
I=\left\{\begin{array}{cc}
\frac{I^{\prime}}{S_{L S}}, & I^{\prime} \leq S_{L S} B_{p} \\
\left(\frac{I^{\prime}+C_{O}}{F_{S}}\right)^{\gamma}, & I^{\prime}>S_{L S} B_{p}
\end{array}\right\}
\]

Typical gamma values range from 1 to 3. Most monitor gamma values range from 1.8 to 2.2. Check with the manufacturer of your hardware to obtain the exact gamma value. Gamma function parameters for some common standards are shown in the following table:
\begin{tabular}{|l|l|l|l|}
\hline Standard & Slope & Break Point & Gamma \\
\hline CIE L* & 9.033 & 0.008856 & 3 \\
\hline \begin{tabular}{l}
Recommendation ITU-R BT.709-3, Parameter \\
Values for the HDTV Standards for \\
Production and International Programme \\
Exchange
\end{tabular} & 4.5 & 0.018 & \(20 / 9\) \\
\hline sRGB & 12.92 & 0.00304 & 2.4 \\
\hline
\end{tabular}

Note This block supports intensity and color images on its ports.

The properties of the input and output ports are summarized in the following table:
\begin{tabular}{|l|l|l|l|}
\hline Port & Input/Output & Supported Data Types & \begin{tabular}{l}
Complex \\
Values \\
Supported
\end{tabular} \\
\hline I & \begin{tabular}{l}
M-by-N matrix of intensity values or \\
an M-by-N-by-P color video signal \\
where P is the number of color \\
planes
\end{tabular} & \begin{tabular}{l}
Double-precision floating point \\
Single-precision floating point \\
Fixed point (up to 16-bit word \\
length)
\end{tabular} & No \\
& & \begin{tabular}{l}
- \begin{tabular}{l}
8- and 16-bit signed integer \\
\(8-\) and 16-bit unsigned integer
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Port & Input/Output & Supported Data Types & \begin{tabular}{l}
Complex \\
Values \\
Supported
\end{tabular} \\
\hline \(\mathrm{I}^{\prime}\) & \begin{tabular}{l}
M-by-N matrix of intensity values or \\
an M-by-N-by-P color video signal \\
where P is the number of color \\
planes
\end{tabular} & Same as I port & No \\
\hline
\end{tabular}

Use the Operation parameter to specify the block's operation. If you want to perform gamma correction, select Gamma. If you want to linearize the input signal, select Degamma.

If, for the Operation parameter, you select Gamma, use the Gamma parameter to enter the desired gamma value of the output video stream. This value must be greater than or equal to 1. If, for the Operation parameter, you select De-gamma, use the Gamma parameter to enter the gamma value of the input video stream.

Select the Linear segment check box if you want the gamma curve to have a linear portion near black. If you select this check box, the Break point parameter appears on the dialog box. Enter a scalar value that indicates the \(I\)-axis value of the end of the linear segment. The break point is shown in the first diagram of this block reference page.

\section*{Parameters}

Operation
Specify the block's operation. Your choices are Gamma or De-gamma.

\section*{Gamma}

If, for the Operation parameter, you select Gamma, enter the desired gamma value of the output video stream. This value must be greater than or equal to 1 . If, for the Operation parameter, you select De-gamma, enter the gamma value of the input video stream.

\section*{Linear segment}

Select this check box if you want the gamma curve to have a linear portion near the origin.

\section*{Break point}

Enter a scalar value that indicates the \(I\)-axis value of the end of the linear segment. This parameter is visible if you select the Linear segment check box.

\section*{References}
[1] Poynton, Charles. Digital Video and HDTV Algorithms and Interfaces. San Francisco, CA: Morgan Kaufman Publishers, 2003.

\section*{See Also}
\begin{tabular}{|l|l|}
\hline Color Space Conversion & Computer Vision Toolbox software \\
\hline imadjust & Image Processing Toolbox software \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{Introduced before R2006a}

\section*{Gaussian Pyramid}

Perform Gaussian pyramid decomposition
```

Gaussian
Pyramid
Gaussian
Pyramid

```

\section*{Library}

Transforms
visiontransforms

\section*{Description}

The Gaussian Pyramid block computes Gaussian pyramid reduction or expansion to resize an image. The image reduction process involves lowpass filtering and downsampling the image pixels. The image expansion process involves upsampling the image pixels and lowpass filtering. You can also use this block to build a Laplacian pyramid. For more information, see "Examples" on page 1-300.

Note This block supports intensity and color images on its ports.
\begin{tabular}{|c|c|c|c|}
\hline Port & Output & Supported Data Types & \begin{tabular}{l}
Complex \\
Values \\
Supported
\end{tabular} \\
\hline Input & \begin{tabular}{l}
In Reduce mode, the input can be an M-by-N matrix of intensity values or an M-by-N-by-P color video signal where P is the number of color planes. \\
In Expand mode, the input can be a scalar, vector, or M-by-N matrix of intensity values or an M-by-N-by-P color video signal where P is the number of color planes.
\end{tabular} & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- 8-, 16-, 32-bit signed integer \\
- 8-, 16-, 32-bit unsigned integer
\end{tabular} & No \\
\hline Output & \begin{tabular}{l}
In Reduce mode, the output can be a scalar, vector, or matrix that represents one level of a Gaussian pyramid. \\
In Expand mode, the output can be a matrix that represents one level of a Gaussian pyramid.
\end{tabular} & Same as Input port & No \\
\hline
\end{tabular}

Use the Operation parameter to specify whether to reduce or expand the input image. If you select Reduce, the block applies a lowpass filter and then downsamples the input image. If you select Expand, the block upsamples and then applies a lowpass filter to the input image.

Use the Pyramid level parameter to specify the number of times the block upsamples or downsamples each dimension of the image by a factor of 2 . For example, suppose you have a 4 -by- 4 input image. You set the Operation parameter to Reduce and the Pyramid level to 1 . The block filters and downsamples the image and outputs a 2 -by- 2 pixel output image. If you have an M -by- N input image and you set the Operation parameter to Reduce, you can calculate the dimensions of the output image using the following equation:
\[
\operatorname{ceil}\left(\frac{M}{2}\right)-\operatorname{by}-\operatorname{ceil}\left(\frac{N}{2}\right)
\]

You must repeat this calculation for each successive pyramid level. If you have an M-by-N input image and you set the Operation parameter to Expand, you can calculate the dimensions of the output image using the following equation:
\[
\left[(M-1) 2^{l}+1\right]-\text { by }-\left[(N-1) 2^{l}+1\right]
\]

In the previous equation, \(l\) is the scalar value from 1 to inf that you enter for the Pyramid level parameter.

Use the Coefficient source parameter to specify the coefficients of the lowpass filter. If you select Default separable filter [1/4-a/2 1/4 a 1/4 1/4-a/2], use the a parameter to define the coefficients in the vector of separable filter coefficients. If you select Specify via dialog, use the Coefficient for separable filter parameter to enter a vector of separable filter coefficients.

\section*{Examples}

The following example model shows how to construct a Laplacian pyramid:
1 Open this model by typing ex_laplacian at the MATLAB command prompt.

2 Run the model to see the following results.

You can construct a Laplacian pyramid if the dimensions of the input image, R-by-C, satisfy \(R=M_{R} 2^{N}+1\) and \(C=M_{C} 2^{N}+1\), where \(M_{R}, M_{C}\), and \(N\) are integers. In this example, you have an input matrix that is 256 -by- 256 . If you set \(M_{R}\) and \(M_{C}\) equal to 63 and \(N\) equal to 2 , you find that the input image needs to be 253 -by- 253 . So you use a Submatrix block to crop the dimensions of the input image to 253 -by- 253 .

\section*{Fixed-Point Data Types}

The following diagram shows the data types used in the Gaussian Pyramid block for fixedpoint signals:

You can set the coefficients table, product output, accumulator, and output data types in the block mask.

\section*{Parameters}

\section*{Operation}

Specify whether you want to reduce or expand the input image.

\section*{Pyramid level}

Specify the number of times the block upsamples or downsamples each dimension of the image by a factor of 2 .

\section*{Coefficient source}

Determine how to specify the coefficients of the lowpass filter. Your choices are Default separable filter [1/4-a/2 1/4 a 1/4 1/4-a/2] or Specify via dialog.

\section*{a}

Enter a scalar value that defines the coefficients in the default separable filter [1/4a/2 1/4 a 1/4 1/4-a/2]. This parameter is visible if, for the Coefficient source parameter, you select Default separable filter [1/4-a/2 1/4 a 1/4 1/4a/2].

\section*{Coefficients for separable filter}

Enter a vector of separable filter coefficients. This parameter is visible if, for the Coefficient source parameter, you select Specify via dialog.

\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

\section*{Coefficients}

Choose how to specify the word length and the fraction length of the coefficients:
- When you select Same word length as input, the word length of the coefficients match that of the input to the block. In this mode, the fraction length of the coefficients is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the coefficients.
- When you select Specify word length, you can enter the word length of the coefficients, in bits. The block automatically sets the fraction length to give you the best precision.
- When you select Binary point scaling, you can enter the word length and the fraction length of the coefficients, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the coefficients. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

\section*{Product output}

As shown in the previous figure, the output of the multiplier is placed into the product output data type and scaling. Use this parameter to specify how to designate the product output word and fraction lengths.
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

\section*{Accumulator}

As shown in the previous figure, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as each element of the input is added to it. Use this parameter to specify how to designate the accumulator word and fraction lengths.
- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

\section*{Output}

Choose how to specify the word length and fraction length of the output of the block:
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

\section*{Lock data type settings against change by the fixed-point tools}

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink documentation.

\section*{See Also}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\author{
Introduced before R2006a
}

\section*{Histogram Equalization}

Enhance contrast of images using histogram equalization

Histogram
Equalization
Hist
Histogram
Equalization

\section*{Library}

Analysis \& Enhancement
visionanalysis

\section*{Description}

The Histogram Equalization block enhances the contrast of images by transforming the values in an intensity image so that the histogram of the output image approximately matches a specified histogram.
\begin{tabular}{|c|c|c|c|}
\hline Port & Input/Output & Supported Data Types & \begin{tabular}{l}
Complex \\
Values \\
Supported
\end{tabular} \\
\hline I & Matrix of intensity values & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- 8-, 16-, 32-bit signed integer \\
- 8 -, 16-, 32 -bit unsigned integer
\end{tabular} & No \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Port & Input/Output & Supported Data Types & \begin{tabular}{l}
Complex \\
Values \\
Supported
\end{tabular} \\
\hline Hist & \begin{tabular}{l}
Vector of integer values that \\
represents the desired \\
intensity values in each bin
\end{tabular} & \begin{tabular}{l}
- \begin{tabular}{l}
Double-precision floating point \\
- Single-precision floating point \\
8-, 16-, 32-bit signed integer \\
8-, 16-, 32-bit unsigned integer
\end{tabular} \\
\hline Output \\
Matrix of intensity values \\
Same as I port
\end{tabular} & No \\
\hline
\end{tabular}

If the data type of input to the I port is floating point, the input to Hist port must be the same data type. The output signal has the same data type as the input signal.

Use the Target histogram parameter to designate the histogram you want the output image to have.

If you select Uniform, the block transforms the input image so that the histogram of the output image is approximately flat. Use the Number of bins parameter to enter the number of equally spaced bins you want the uniform histogram to have.

If you select User-defined, the Histogram source and Histogram parameters appear on the dialog box. Use the Histogram source parameter to select how to specify your histogram. If, for the Histogram source parameter, you select Specify via dialog, you can use the Histogram parameter to enter the desired histogram of the output image. The histogram should be a vector of integer values that represents the desired intensity values in each bin. The block transforms the input image so that the histogram of the output image is approximately the specified histogram.

If, for the Histogram source parameter, you select Input port, the Hist port appears on the block. Use this port to specify your desired histogram.

Note The vector input to the Hist port must be normalized such that the sum of the values in all the bins is equal to the number of pixels in the input image. The block does not error if the histogram is not normalized.

\section*{Examples}

See "Adjust the Contrast of Intensity Images" and"Adjust the Contrast of Color Images" in the Computer Vision Toolbox User's Guide.

\section*{Parameters}

\section*{Target histogram}

Designate the histogram you want the output image to have. If you select Uniform, the block transforms the input image so that the histogram of the output image is approximately flat. If you select User-defined, you can specify the histogram of your output image.

\section*{Number of bins}

Enter the number of equally spaced bins you want the uniform histogram to have. This parameter is visible if, for the Target histogram parameter, you select Uniform.

\section*{Histogram source}

Select how to specify your histogram. Your choices are Specify via dialog and Input port. This parameter is visible if, for the Target histogram parameter, you select User-defined.

\section*{Histogram}

Enter the desired histogram of the output image. This parameter is visible if, for the Target histogram parameter, you select User-defined.

\section*{See Also}
\begin{tabular}{|l|l|}
\hline imadjust & Image Processing Toolbox \\
\hline histeq & Image Processing Toolbox \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\author{
C/C++ Code Generation \\ Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\). \\ Introduced before R2006a
}

\section*{Hough Lines}

Find Cartesian coordinates of lines described by rho and theta pairs

Hough Lines

\section*{Library}

Transforms
s

\section*{Description}

The Hough Lines block finds the points of intersection between the reference image boundary lines and the line specified by a (rho, theta) pair. The block outputs one-based [x \(y]\) coordinates for the points of intersection. The boundary lines indicate the left and right vertical boundaries and the top and bottom horizontal boundaries of the reference image.

If the line specified by the (rho, theta) pair does not intersect two border lines in the reference image, the block outputs the values, \([(0,0),(0,0)]\). This output intersection value allows the next block in your model to ignore the points. Generally, the Hough Lines block precedes a block that draws a point or shape at the intersection.

The following figure shows the input and output coordinates for the Hough Lines block.

\section*{Port Description}
\begin{tabular}{|c|c|c|c|}
\hline 'ort & Input/Output & Supported Data Types & Complex Values Supported \\
\hline 'heta & Vector of theta values that represent input lines & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point (signed, word length less than or equal to 32) \\
- 8-, 16-, and 32-bit signed integer
\end{tabular} & No \\
\hline 'ho & Vector of rho values that represent input lines & Same as Theta port & No \\
\hline ef I & Matrix that represents a binary or intensity image or matrix that represents one plane of an RGB image & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed-point (signed and unsigned) \\
- Custom data types \\
- Boolean \\
- 8-, 16-, and 32 -bit signed integer \\
- 8-, 16-, and 32 -bit unsigned integer
\end{tabular} & No \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline ort & Input/Output & Supported Data Types & \begin{tabular}{l}
Complex \\
Values \\
Supported
\end{tabular} \\
\hline ts & \begin{tabular}{l}
\(M\)-by-4 matrix of intersection values, \\
where \(M\) is the number of input \\
lines
\end{tabular} & 32-bit signed integer & No \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Sine value computation method}

If you select Trigonometric function, the block computes sine and cosine values to calculate the intersections of the lines during the simulation. If you select Table lookup, the block computes and stores the trigonometric values to calculate the intersections of the lines before the simulation starts. In this case, the block requires extra memory.

For floating-point inputs, set the Sine value computation method parameter to Trigonometric function. For fixed-point inputs, set the parameter to Table lookup.

\section*{Theta resolution (radians)}

Use this parameter to specify the spacing of the theta-axis. This parameter appears in the dialog box only if, for the Sine value computation method parameter, you select Table lookup. parameter appears in the dialog box.

\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

\section*{Sine table}

Choose how to specify the word length of the values of the sine table. The fraction length of the sine table values always equals the word length minus one:

When you select Specify word length, you can enter the word length of the sine table.

The sine table values do not obey the Rounding mode and Overflow mode parameters; they saturate and round to Nearest.

\section*{Product output}

Use this parameter to specify how to designate this product output word and fraction lengths:

When you select Same as first input, the characteristics match the characteristics of the first input to the block.

When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.

When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. All signals in the Computer Vision Toolbox blocks have a bias of 0 .

See "Multiplication Data Types" for illustrations depicting the use of the product output.

\section*{Accumulator}

Use this parameter to specify how you would like to designate the accumulator word and fraction lengths.

When you select Same as product output the characteristics match the characteristics of the product output.

When you select Binary point scaling, you can enter the Word length and the Fraction length of the accumulator, in bits.

When you select Slope and bias scaling, you can enter the Word length, in bits, and the Slope of the Accumulator. All signals in the Computer Vision Toolbox software have a bias of 0 .

See "Multiplication Data Types" for illustrations depicting the use of the accumulator data type in this block.

\section*{Lock data type settings against change by the fixed-point tools}

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink documentation.

\section*{Examples}

The following figure shows Line 1 intersecting the boundaries of the reference image at \(\left[\left(\mathrm{x}_{11}, \mathrm{y}_{11}\right)\left(\mathrm{x}_{12}, \mathrm{y}_{12}\right)\right]\) and Line 2 intersecting the boundaries at \(\left[\left(\mathrm{x}_{21}, \mathrm{y}_{21}\right) \quad\left(\mathrm{x}_{22}\right.\right.\), \(\left.\left.y_{22}\right)\right]\)

\section*{See Also}
\begin{tabular}{|l|l|}
\hline Find Local Maxima & Computer Vision Toolbox \\
\hline Hough Transform & Computer Vision Toolbox \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{Introduced before R2006a}

\section*{Hough Transform}

Find lines in images

Hough Transform

\section*{Library}

Transforms
visiontransforms

\section*{Description}

Use the Hough Transform block to find straight lines in an image. The block outputs the Hough space matrix and, optionally, the rho-axis and theta-axis vectors. Peak values in the matrix represent potential straight lines in the input image. Generally, the Hough Transform block precedes the Hough Lines block which uses the output of this block to find straight lines in an image. You can instead use a custom algorithm to locate peaks in the Hough space matrix in order to identify potential straight lines.
\begin{tabular}{|l|l|l|l|}
\hline ort & Input/Output & Supported Data Types & \begin{tabular}{l}
Supported \\
Complex Values
\end{tabular} \\
\hline HW & \begin{tabular}{l}
Matrix that represents a binary \\
image
\end{tabular} & Boolean & No \\
\hline Parameter space matrix & \begin{tabular}{l}
- \begin{tabular}{l}
Double-precision floating point \\
Single-precision floating point
\end{tabular} \\
- Fixed point (unsigned, fraction length \\
equal to 0) \\
8-, 16-, 32-bit unsigned integer
\end{tabular} & No \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline ort & Input/Output & Supported Data Types & \begin{tabular}{l}
Supported \\
Complex Values
\end{tabular} \\
\hline heta & Vector of theta values & - \begin{tabular}{l}
Double-precision floating point
\end{tabular} & No \\
& & - Single-precision floating point & \\
& & - Fixed point (signed) \\
Rho & 8-, 16-, 32-bit signed integer & \\
\hline & Vector of rho values & Same as Theta port & No \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Theta resolution (radians)}

Specify the spacing of the Hough transform bins along the theta-axis.

\section*{Rho resolution (pixels)}

Specify the spacing of the Hough transform bins along the rho-axis.

\section*{Output theta and rho values}

If you select this check box, the Theta and Rho ports appear on the block. The block outputs theta and rho-axis vector values at these ports.

\section*{Output data type}

Specify the data type of your output signal.

\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

\section*{Sine table}

Choose how to specify the word length of the values of the sine table:
- When you select Binary point scaling, you can enter the word length of the sine table values, in bits.
- When you select Slope and bias scaling, you can enter the word length of the sine table values, in bits.

The sine table values do not obey the Rounding mode and Overflow mode parameters; they always saturate and round to Nearest.

\section*{Rho}

Choose how to specify the word length and the fraction length of the rho values:
- When you select Binary point scaling, you can enter the word length and the fraction length of the rho values, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the rho values. All signals in Computer Vision Toolbox blocks have a bias of 0 .

\section*{Product output}
. Use this parameter to specify how to designate the product output word and fraction lengths:
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. All signals in Computer Vision Toolbox blocks have a bias of 0 .

See "Multiplication Data Types" for illustrations depicting the use of the product output.

\section*{Accumulator}

Use this parameter to specify how to designate this accumulator word and fraction lengths:
- When you select Same as product output, these characteristics match the characteristics of the product output.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. All signals in Computer Vision Toolbox blocks have a bias of 0 .

See "Multiplication Data Types" for illustrations depicting the use of the accumulator data type in this block.

\section*{Lock data type settings against change by the fixed-point tools}

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink documentation.

\section*{Hough output}

Choose how to specify the word length and fraction length of the Hough output of the block:
- When you select Binary point scaling, you can enter the word length of the Hough output, in bits. The fraction length always has a value of 0 .
- When you select Slope and bias scaling, you can enter the word length, in bits, of the Hough output. The slope always has a value of 0 . All signals in Computer Vision Toolbox blocks have a bias of 0 .

\section*{Theta output}

Choose how to specify the word length and fraction length of the theta output of the block:
- When you select Binary point scaling, you can enter the word length and the fraction length of the theta output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the theta output. All signals in Computer Vision Toolbox blocks have a bias of 0 .

\section*{Algorithm}

The Hough Transform block implements the Standard Hough Transform (SHT). The SHT uses the parametric representation of a line:
\[
r h o=x * \cos (\text { thet } a)+y * \sin (\text { theta })
\]

The upper-left corner pixel is assumed to be at \(\mathrm{x}=0, \mathrm{y}=0\).
The variable rho indicates the perpendicular distance from the origin to the line.
The variable theta indicates the angle of inclination of the normal line from the x -axis. The range of theta is \(-\frac{\pi}{2} \leq \theta<+\frac{\pi}{2}\) with a step-size determined by the Theta resolution (radians) parameter. The SHT measures the angle of the line clockwise with respect to the positive x -axis.

The Hough Transform block creates an accumulator matrix. The (rho, theta) pair represent the location of a cell in the accumulator matrix. Every valid (logical true) pixel of the input binary image represented by \((R, C)\) produces a rho value for all theta values. The block quantizes the rho values to the nearest number in the rho vector. The rho vector depends on the size of the input image and the user-specified rho resolution. The block increments a counter (initially set to zero) in those accumulator array cells represented by (rho, theta) pairs found for each pixel. This process validates the point \((R, C)\) to be on the line defined by (rho, theta). The block repeats this process for each logical true pixel in the image. The Hough block outputs the resulting accumulator matrix.

\section*{See Also}
\begin{tabular}{|l|l|}
\hline Find Local Maxima & Computer Vision Toolbox \\
\hline Hough Lines & Computer Vision Toolbox \\
\hline hough & Image Processing Toolbox \\
\hline houghlines & Image Processing Toolbox \\
\hline
\end{tabular}

\section*{houghpeaks \\ Extended Capabilities}

\author{
C/C++ Code Generation \\ Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
}

\section*{See Also}

\section*{Topics}
"Detect and Track Face"
"Rotation Correction"

\section*{Introduced before R2006a}

\section*{Image Complement}

Compute complement of pixel values in binary or intensity images

Image Complement

\section*{Library}

Conversions
visionconversions

\section*{Description}

The Image Complement block computes the complement of a binary or intensity image. For binary images, the block replaces pixel values equal to 0 with 1 and pixel values equal to 1 with 0 . For an intensity image, the block subtracts each pixel value from the maximum value that can be represented by the input data type and outputs the difference.

For example, suppose the input pixel values are given by \(\chi(\mathrm{i})\) and the output pixel values are given by \(y(\mathrm{i})\). If the data type of the input is double or single precision floating-point, the block outputs \(y(i)=1.0-x(i)\). If the input is an 8 -bit unsigned integer, the block outputs \(y(i)=255-x(i)\).
\begin{tabular}{|c|c|c|c|}
\hline 'ort & Input/Output & Supported Data Types & Complex Values Supported \\
\hline nput & Vector or matrix of intensity values & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Boolean \\
- 8-, 16-, 32-bit signed integer \\
- 8-, 16-, 32-bit unsigned integer
\end{tabular} & No \\
\hline Jutput & Complement of a binary or intensity & Same as Input port & No \\
\hline
\end{tabular}

The dimensions, data type, complexity, and frame status of the input and output signals are the same.

\section*{See Also}
\begin{tabular}{|l|l|}
\hline Autothreshold & Computer Vision Toolbox software \\
\hline Chroma Resampling & Computer Vision Toolbox software \\
\hline Color Space Conversion & Computer Vision Toolbox software \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{Introduced before R2006a}

\section*{Image Data Type Conversion}

Convert and scale input image to specified output data type

Convert Image
to single

Image Data Type
Gonversion

\section*{Library}

Conversions
visionconversions

\section*{Description}

The Image Data Type Conversion block changes the data type of the input to the userspecified data type and scales the values to the new data type's dynamic range. To convert between data types without scaling, use the Simulink Data Type Conversion block.

When converting between floating-point data types, the block casts the input into the output data type and clips values outside the range to 0 or 1 . When converting to the Boolean data type, the block maps 0 values to 0 and all other values to one. When converting to or between all other data types, the block casts the input into the output data type and scales the data type values into the dynamic range of the output data type. For double- and single-precision floating-point data types, the dynamic range is between 0 and 1 . For fixed-point data types, the dynamic range is between the minimum and maximum values that can be represented by the data type.

Note This block supports intensity and color images on its ports.
\begin{tabular}{|l|l|l|l|}
\hline ort & Input/Output & Supported Data Types & \begin{tabular}{l}
Complex \\
Values \\
Supported
\end{tabular} \\
\hline nput & \begin{tabular}{l}
M-by-N matrix of intensity values or \\
an M-by-N-by-P color video signal \\
where P is the number of color \\
planes
\end{tabular} & \begin{tabular}{l}
Double-precision floating point \\
Single-precision floating point \\
Fixed point (word length less than or \\
equal to 16)
\end{tabular} & No \\
\hline Sutput & \begin{tabular}{ll}
Boolean \\
M-, 16-bit signed integer \\
M-by-N matrix of intensity values or \\
an M-by-N-by-P color video signal \\
where P is the number of color \\
planes
\end{tabular} & Same as Input port & No \\
\hline
\end{tabular}

The dimensions, complexity, and frame status of the input and output signals are the same.

Use the Output data type parameter to specify the data type of your output signal values.

\section*{Parameters}

\section*{Output data type}

Use this parameter to specify the data type of your output signal.

\section*{Signed}

Select this check box if you want the output fixed-point data to be signed. This parameter is visible if, for the Output data type parameter, you choose Fixed point.

\section*{Word length}

Use this parameter to specify the word length of your fixed-point output. This parameter is visible if, for the Output data type parameter, you choose Fixed point.

\section*{Fraction length}

Use this parameter to specify the fraction length of your fixed-point output. This parameter is visible if, for the Output data type parameter, you choose Fixed point.

\section*{See Also}

Autothreshold
Computer Vision Toolbox software

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{Introduced before R2006a}

\section*{Image From File}

Import image from image file

\section*{Library}

Sources
visionsources

\section*{Description}

Use the Image From File block to import an image from a supported image file. For a list of supported file formats, see the imread function reference page in the MATLAB documentation. If the image is a M -by- N array, the block outputs a binary or intensity image, where M and N are the number of rows and columns in the image. If the image is a M-by-N-by-P array, the block outputs a color image, where M and N are the number of rows and columns in each color plane, P.
\begin{tabular}{|c|c|c|c|}
\hline Port & Output & Supported Data Types & Complex Values Supported \\
\hline Image & M-by-N matrix of intensity values or an M-by-N-by-P color video signal where \(P\) is the number of color planes & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- Boolean \\
- 8-, 16-, 32-bit signed integer \\
- 8-, 16-, 32-bit unsigned integer
\end{tabular} & Yes \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Port & Output & Supported Data Types & \begin{tabular}{l}
Complex \\
Values \\
Supported
\end{tabular} \\
\hline R, G, B & \begin{tabular}{l}
Scalar, vector, or matrix that \\
represents one plane of the input \\
RGB video stream. Outputs from \\
the R, G, or B ports have the \\
same dimensions.
\end{tabular} & Same as I port & Yes \\
\hline
\end{tabular}

For the Computer Vision Toolbox blocks to display video data properly, double- and singleprecision floating-point pixel values must be between 0 and 1. If the input pixel values have a different data type than the one you select using the Output data type parameter, the block scales the pixel values, adds an offset to the pixel values so that they are within the dynamic range of their new data type, or both.

Use the File name parameter to specify the name of the graphics file that contains the image to import into the Simulink modeling and simulation software. If the file is not on the MATLAB path, use the Browse button to locate the file. This parameter supports URL paths.

Use the Sample time parameter to set the sample period of the output signal.
Use the Image signal parameter to specify how the block outputs a color video signal. If you select One multidimensional signal, the block outputs an M-by-N-by-P color video signal, where \(P\) is the number of color planes, at one port. If you select Separate color signals, additional ports appear on the block. Each port outputs one M-by-N plane of an RGB video stream.

Use the Output port labels parameter to label your output ports. Use the spacer character, |, as the delimiter. This parameter is visible if you set the Image signal parameter to Separate color signals.

On the Data Types pane, use the Output data type parameter to specify the data type of your output signal.

\section*{Parameters}

\section*{File name}

Specify the name of the graphics file that contains the image to import into the Simulink environment.

\section*{Sample time}

Enter the sample period of the output signal.

\section*{Image signal}

Specify how the block outputs a color video signal. If you select One multidimensional signal, the block outputs an M-by-N-by-P color video signal, where \(P\) is the number of color planes, at one port. If you select Separate color signals, additional ports appear on the block. Each port outputs one M-by-N plane of an RGB video stream.

\section*{Output port labels}

Enter the labels for your output ports using the spacer character, |, as the delimiter. This parameter is visible if you set the Image signal parameter to Separate color signals.

\section*{Output data type}

Specify the data type of your output signal.

\section*{Signed}

Select to output a signed fixed-point signal. Otherwise, the signal will be unsigned. This parameter is only visible if, from the Output data type list, you select Fixedpoint.

\section*{Word length}

Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible if, from the Output data type list, you select Fixed - point.

\section*{Set fraction length in output to}

Specify the scaling of the fixed-point output by either of the following two methods:
- Choose Best precision to have the output scaling automatically set such that the output signal has the best possible precision.
- Choose User-defined to specify the output scaling in the Fraction length parameter.

This parameter is only visible if, from the Output data type list, you select Fixedpoint or when you select User-defined.

\section*{Fraction length}

For fixed-point output data types, specify the number of fractional bits, or bits to the right of the binary point. This parameter is only visible when you select Fixed-point or User-defined for the Output data type parameter and User-defined for the Set fraction length in output to parameter.

\section*{User-defined data type}

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the sfix, ufix, sint, uint, sfrac, and ufrac functions from the Fixed-Point Designer \({ }^{\mathrm{TM}}\) library. This parameter is only visible when you select User-defined for the Output data type parameter.

\section*{See Also}
\begin{tabular}{|l|l|}
\hline From Multimedia File & Computer Vision Toolbox software \\
\hline Image From Workspace & Computer Vision Toolbox software \\
\hline To Video Display & Video and Image Processing Blockset software \\
\hline Video From Workspace & Computer Vision Toolbox software \\
\hline Video Viewer & Computer Vision Toolbox software \\
\hline im2double & MATLAB software \\
\hline im2uint8 & Image Processing Toolbox software \\
\hline imread & MATLAB \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

Introduced before R2006a

\section*{Image From Workspace}

Import image from MATLAB workspace

Image From Workspace

\section*{Library}

\section*{Sources}
visionsources

\section*{Description}

Use the Image From Workspace block to import an image from the MATLAB workspace. If the image is a M-by-N workspace array, the block outputs a binary or intensity image, where M and N are the number of rows and columns in the image. If the image is a M -byN -by-P workspace array, the block outputs a color image, where M and N are the number of rows and columns in each color plane, P.
\begin{tabular}{|c|c|c|c|}
\hline Port & Output & Supported Data Types & Complex Values Supported \\
\hline Image & M-by-N matrix of intensity values or an M-by-N-by-P color video signal where P is the number of color planes & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- Boolean \\
- 8-, 16-, 32-bit signed integer \\
- 8-, 16-, 32-bit unsigned integer
\end{tabular} & No \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Port & Output & Supported Data Types & \begin{tabular}{l}
Complex \\
Values \\
Supported
\end{tabular} \\
\hline R, G, B & \begin{tabular}{l}
Scalar, vector, or matrix that \\
represents one plane of the \\
RGB video stream. Outputs \\
from the R, G, or B ports have \\
the same dimensions.
\end{tabular} & Same as I port & No \\
\hline
\end{tabular}

For the Computer Vision Toolbox blocks to display video data properly, double- and singleprecision floating-point pixel values must be between 0 and 1. If the input pixel values have a different data type than the one you select using the Output data type parameter, the block scales the pixel values, adds an offset to the pixel values so that they are within the dynamic range of their new data type, or both.

Use the Value parameter to specify the MATLAB workspace variable that contains the image you want to import into Simulink environment.

Use the Sample time parameter to set the sample period of the output signal.
Use the Image signal parameter to specify how the block outputs a color video signal. If you select One multidimensional signal, the block outputs an M-by-N-by-P color video signal, where \(P\) is the number of color planes, at one port. If you select Separate color signals, additional ports appear on the block. Each port outputs one M-by-N plane of an RGB video stream.

Use the Output port labels parameter to label your output ports. Use the spacer character, |, as the delimiter. This parameter is visible if you set the Image signal parameter to Separate color signals.

On the Data Types pane, use the Output data type parameter to specify the data type of your output signal.

\section*{Parameters}

\section*{Value}

Specify the MATLAB workspace variable that you want to import into Simulink environment.

\section*{Sample time}

Enter the sample period of the output signal.

\section*{Image signal}

Specify how the block outputs a color video signal. If you select One multidimensional signal, the block outputs an M-by-N-by-P color video signal, where \(P\) is the number of color planes, at one port. If you select Separate color signals, additional ports appear on the block. Each port outputs one M-by-N plane of an RGB video stream.

\section*{Output port labels}

Enter the labels for your output ports using the spacer character, |, as the delimiter. This parameter is visible if you set the Image signal parameter to Separate color signals.

\section*{Output data type}

Specify the data type of your output signal.

\section*{Signed}

Select to output a signed fixed-point signal. Otherwise, the signal is unsigned. This parameter is only visible if, from the Output data type list, you select Fixed-point.

\section*{Word length}

Specify the word length, in bits, of the fixed-point output data type. This parameter is only visible if, from the Output data type list, you select Fixed -point.

\section*{Set fraction length in output to}

Specify the scaling of the fixed-point output by either of the following two methods:
- Choose Best precision to have the output scaling automatically set such that the output signal has the best possible precision.
- Choose User-defined to specify the output scaling in the Fraction length parameter.

This parameter is only visible if, from the Output data type list, you select Fixedpoint or when you select User-defined.

\section*{Fraction length}

For fixed-point output data types, specify the number of fractional bits, or bits to the right of the binary point. This parameter is only visible when you select Fixed-point or User-defined for the Output data type parameter and User-defined for the Set fraction length in output to parameter.

\section*{User-defined data type}

Specify any built-in or fixed-point data type. You can specify fixed-point data types using the sfix, ufix, sint, uint, sfrac, and ufrac functions from the Fixed-Point Designer library. This parameter is only visible when you select User-defined for the Output data type parameter.

\section*{See Also}
\begin{tabular}{|l|l|}
\hline From Multimedia File & Computer Vision Toolbox software \\
\hline To Video Display & Computer Vision Toolbox software \\
\hline Video From Workspace & Computer Vision Toolbox software \\
\hline Video Viewer & Computer Vision Toolbox software \\
\hline im2double & Image Processing Toolbox software \\
\hline im2uint8 & Image Processing Toolbox software \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

Introduced before R2006a

\section*{Image Pad}

Pad signal along its rows, columns, or both

\section*{Library}

Utilities

\section*{visionutilities}

\section*{Description}

The Image Pad block expands the dimensions of a signal by padding its rows, columns, or both. To crop an image, you can use the Simulink Selector block, DSP System Toolbox \({ }^{\mathrm{TM}}\) Submatrix block, or the Image Processing Toolbox imcrop function.
\begin{tabular}{|c|c|c|c|}
\hline Port & Input/Output & Supported Data Types & Complex Values Supported \\
\hline Image / I & \(M\)-by- \(N\) matrix of intensity values or an \(M\)-by- \(N\)-by- \(P\) color video signal, where \(P\) is the number of color planes. & \begin{tabular}{l}
- Double-precision floating point. \\
- Single-precision floating point. \\
- Fixed point. \\
- Boolean. \\
- 8-, 16-, 32-bit signed integer. \\
- 8-, 16-, 32-bit unsigned integer.
\end{tabular} & Yes \\
\hline PVal & Scalar value that represents the constant pad value. & Same as I port. & Yes \\
\hline Output & Padded scalar, vector, or matrix. & Same as I port. & Yes \\
\hline
\end{tabular}

\section*{Examples}

\section*{Pad with a Constant Value}

Suppose you want to pad the rows of your input signal with three initial values equal to 0 and your input signal is defined as follows:
\[
\left[\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right]
\]

Set the Image Pad block parameters as follows:
- Method = Constant
- Pad value source \(=\) Specify via dialog
- Pad value = 0
- Specify = Output size
- Add columns to = Left
- Output row mode = User-specified
- Number of output columns = 6
- Add rows to = No padding

The Image Pad block outputs the following signal:
\[
\left[\begin{array}{cccccc}
0 & 0 & 0 & a_{00} & a_{01} & a_{02} \\
0 & 0 & 0 & a_{10} & a_{11} & a_{12} \\
0 & 0 & 0 & a_{20} & a_{21} & a_{22}
\end{array}\right]
\]

\section*{Pad by Repeating Border Values}

Suppose you want to pad your input signal with its border values, and your input signal is defined as follows:
\[
\left[\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right]
\]

Set the Image Pad block parameters as follows:
- Method = Replicate
- Specify = Pad size
- Add columns to = Both left and right
- Number of added columns = 2
- Add rows to = Both top and bottom
- Number of added rows = [lll \(\left.1 \begin{array}{ll}1 & 3\end{array}\right]\)

The Image Pad block outputs the following signal:
\[
\left[\begin{array}{ll:lll}
a_{00} & a_{00} a_{00} & a_{01} & a_{02} & a_{02} \\
a_{00} & a_{00} & a_{00} & a_{01} & a_{02} \\
a_{10} & a_{10} & a_{10} & a_{11} & a_{02} \\
a_{02} & a_{12} & a_{12} \\
a_{20} & a_{20} & a_{20} & a_{21} & a_{22} \\
\bar{a}_{22} & a_{22} \\
a_{20} & a_{20} & a_{20} & a_{21} & a_{2 \hat{2}} \\
a_{20} & a_{22} \\
a_{20} & a_{20} & a_{20} & a_{21} & a_{22} \\
a_{20} & a_{20} & a_{22} \\
a_{20} & a_{21} & a_{221} & a_{22} & a_{22}
\end{array}\right] \text { Input mutrix }
\]

The border values of the input signal are replicated on the top, bottom, left, and right of the input signal so that the output is a 7-by-7 matrix. The values in the corners of this
output matrix are determined by replicating the border values of the matrices on the top, bottom, left and right side of the original input signal.

\section*{Pad with Mirror Image}

Suppose you want to pad your input signal using its mirror image, and your input signal is defined as follows:
\[
\left[\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right]
\]

Set the Image Pad block parameters as follows:
- Method = Symmetric
- Specify = Pad size
- Add columns to = Both left and right
- Number of added columns = [lll 5 6
- Add rows to \(=\) Both top and bottom
- Number of added rows \(=2\)

The Image Pad block outputs the following signal:

The block flips the original input matrix and each matrix it creates about their top, bottom, left, and right sides to populate the 7-by-13 output signal. For example, in the preceding figure, you can see how the block flips the input matrix about its right side to create the matrix directly to its right.

\section*{Pad Using a Circular Repetition of Elements}

Suppose you want to pad your input signal using a circular repetition of its values. Your input signal is defined as follows:
\[
\left[\begin{array}{lll}
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22}
\end{array}\right]
\]

Set the Image Pad block parameters as follows:
- Method = Circular
- Specify = Output size
- Add columns to = Both left and right
- Number of output columns = 9
- Add rows to = Both top and bottom
- Number of output rows \(=9\)

The Image Pad block outputs the following signal:
\[
\left[\begin{array}{lllll}
a_{00} & a_{01} & a_{02} & a_{00} & a_{01} \\
a_{02} & a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} & a_{10} & a_{11} \\
a_{12} & a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22} & a_{20} & a_{21} \\
a_{22} & a_{20} & a_{21} & a_{22} \\
a_{00} & a_{01} & \bar{a}_{02} & a_{00} & \bar{a}_{01} \\
a_{02} & a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} & a_{10} & a_{11} \\
a_{12} & a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22} & a_{20} & a_{21} \\
a_{22} & a_{20} & a_{21} & a_{22} \\
\bar{a}_{00}- & a_{01} & \overline{a_{02}}\left[a_{00}\right. & a_{01} & a_{02} \\
a_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12} & a_{10} & a_{11} \\
a_{12} & a_{10} & a_{11} & a_{12} \\
a_{20} & a_{21} & a_{22} & a_{20} & a_{21} \\
a_{22} & a_{20} & a_{21} & a_{22}
\end{array}\right] \text { Input mutrix }
\]

The block repeats the values of the input signal in a circular pattern to populate the 9-by-9 output matrix.

\section*{Parameters}

\section*{Method}

Specify how you want the block to pad your signal. The data type of the input signal is the data type of the output signal.

Use the Method parameter to specify how you pad the input signal.
- Constant - Pad with a constant value
- Replicate - Pad by repeating its border values
- Symmetric - Pad with its mirror image
- Circular - Pad using a circular repetition of its elements

If you set the Method parameter to Constant, the Pad value source parameter appears on the dialog box.
- Input port - The PVal port appears on the block. Use this port to specify the constant value with which to pad your signal
- Specify via dialog - The Pad value parameter appears in the dialog box. Enter the constant value with which to pad your signal.

\section*{Pad value source}

If you select Input port, the PVal port appears on the block. Use this port to specify the constant value with which to pad your signal. If you select Specify via dialog, the Pad value parameter becomes available. This parameter is visible if, for the Method parameter, you select Constant.

\section*{Pad value}

Enter the constant value with which to pad your signal. This parameter is visible if, for the Pad value source parameter, you select Specify via dialog. This parameter is tunable.

\section*{Specify}

If you select Pad size, you can enter the size of the padding in the horizontal and vertical directions.

If you select Output size, you can enter the total number of output columns and rows. This setting enables you to pad the input signal. See the previous section for descriptions of the Add columns to and Add rows to parameters.

\section*{Add columns to}

The Add columns to parameter controls the padding at the left, right or both sides of the input signal.
- Left - The block adds additional columns on the left side.
- Right - The block adds additional columns on the right side.
- Both left and right - The block adds additional columns to the left and right side.
- No padding - The block does not change the number of columns.

Use the Add columns to and Number of added columns parameters to specify the size of the padding in the horizontal direction. Enter a scalar value, and the block adds this number of columns to the left, right, or both sides of your input signal. If you set the Add columns to parameter to Both left and right, you can enter a two element vector. The left element controls the number of columns the block adds to the left side of the signal; the right element controls the number of columns the block adds to the right side of the signal.

\section*{Output row mode}

Use the Output row mode parameter to describe how to pad the input signal.
- User-specified - Use the Number of output rows parameter to specify the total number of rows.
- Next power of two - The block pads the input signal along the rows until the length of the rows is equal to a power of two. When the length of the input signal's rows is equal to a power of two, the block does not pad the input signal's rows.

\section*{Number of added columns}

This parameter controls how many columns are added to the right and/or left side of your input signal. Enter a scalar value, and the block adds this number of columns to the left, right, or both sides of your signal. If, for the Add columns to parameter you select Both left and right, enter a two-element vector. The left element controls the number of columns the block adds to the left side of the signal and the right element controls how many columns the block adds to the right side of the signal. This parameter is visible if, for the Specify parameter, you select Pad size.

\section*{Add rows to}

The Add rows to parameter controls the padding at the top and bottom of the input signal.
- Top - The block adds additional rows to the top.
- Bottom - The block adds additional rows to the bottom.
- Both top and bottom - The block adds additional rows to the top and bottom.
- No padding - The block does not change the number of rows.

Use the Add rows to and Number of added rows parameters to specify the size of the padding in the vertical direction. Enter a scalar value, and the block adds this number of rows to the top, bottom, or both of your input signal. If you set the Add rows to parameter to Both top and bottom, you can enter a two element vector. The left element controls the number of rows the block adds to the top of the signal; the right element controls the number of rows the block adds to the bottom of the signal.

\section*{Output column mode}

Describe how to pad the input signal. If you select User-specified, the Row size parameter appears on the block dialog box. If you select Next power of two, the block pads the input signal along the rows until the length of the rows is equal to a power of two. This parameter is visible if, for the Specify parameter, you select Output size.

Use the Output column mode parameter to describe how to pad the input signal.
- User-specified - Use the Number of column rows parameter to specify the total number of columns.
- Next power of two - The block pads the input signal along the columns until the length of the columns is equal to a power of two. When the length of the input signal's columns is equal to a power of two, the block does not pad the input signal's columns.

\section*{Number of added rows}

This parameter controls how many rows are added to the top, bottom, or both of your input signal. Enter a scalar value and the block adds this number of columns to the top, bottom, or both of your signal. If, for the Add rows to parameter you select Both top and bottom, enter a two-element vector. The left element controls the number of rows the block adds to the top of the signal and the right element controls how many rows the block adds to the bottom of the signal. This parameter is visible if you set the Specify parameter to Pad size.

\section*{Action when truncation occurs}

The following options are available for the Action when truncation occurs parameter:
- None - Select this option when you do not want to be notified that the input signal is truncated.
- Warning - Select this option when you want to receive a warning in the MATLAB Command Window when the input signal is truncated.
- Error - Select this option when you want an error dialog box displayed and the simulation terminated when the input signal is truncated.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Selector | Submatrix | imcrop

Introduced in R2007a

\section*{Insert Text}

Draw text on image or video stream.
\(\sqrt{\text { Image }}\)\begin{tabular}{l}
Select \\
Color 'text1...' \\
Location \\
Opacity
\end{tabular}

Insert Text

\section*{Library}

Text \& Graphics
visiontextngfix

\section*{Description}

The Insert Text block draws formatted text or numbers on an image or video stream. The block uses the FreeType 2.3.5 library, an open-source font engine, to produce stylized text bitmaps. To learn more about the FreeType Project, visit https : //
www.freetype.org/. The Insert Text block does not support character sets other than ASCII.

The Insert Text block lets you draw one or more instances of text including:
- A single instance of text
- Multiple instances of the same text
- Multiple instances of text, with different text at each location

\section*{Port Description}
\begin{tabular}{|c|c|c|}
\hline Port & Description & Supported Data Types \\
\hline Image & \(M\)-by- \(N\) matrix of intensity values or an \(M\)-by- \(N\)-by- \(P\) color video signal where \(P\) represents the number of color planes. & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point(signed, word length less than or equal to 32.) \\
- Boolean \\
- 8-, 16-, 32-bit signed integer \\
- 8-, 16-, 32-bit unsigned integer
\end{tabular} \\
\hline R, G, B & Matrix that represents one plane of the RGB video stream. Outputs from the R, G, or B ports have the same dimensions and data type. & Same as Input port \\
\hline Select & One-based index value that indicates which text to display. & \begin{tabular}{l}
- Double-precision floating point. (This data type is only supported if the input to the I or R, G, and B ports is a floating-point data type.) \\
- Single-precision floating point. (This data type is only supported if the input to the I or R, G, and B ports is a floating-point data type.) \\
- Boolean \\
- 8-, 16-, 32-bit signed integer \\
- 8-, 16-, 32-bit unsigned integer
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Port & Description & Supported Data Types \\
\hline Variabl es & Vector or matrix whose values are used to replace ANSI C printfstyle format specifications. & \begin{tabular}{l}
The data types supported by this port depend on the conversion specification you are using in the Text parameter. \\
\%d, \%i, and \%u: \\
- 8-, 16-, 32-bit signed integer \\
- 8-, 16-, 32-bit unsigned integer \\
\%c and \%s: \\
- 8-bit unsigned integer \\
\%f: \\
- Double-precision floating point \\
- Single-precision floating point \\
\(\% \mathrm{o}, \% \mathrm{x}, \% \mathrm{X}, \% \mathrm{e}, \% \mathrm{E}, \% \mathrm{~g}\), and \%G: \\
- Double-precision floating point \\
- Single-precision floating point \\
- 8-, 16-, 32-bit signed integer \\
- 8-, 16-, 32-bit unsigned integer
\end{tabular} \\
\hline Color & \begin{tabular}{l}
Intensity input - Scalar value used for all character vectors or a vector of intensity values whose length is equal to the number of character vectors. \\
Color input - Three-element vector that specifies one color for all of the character vectors or anM-by-3 matrix of color values, where \(M\) represents the number of character vectors.
\end{tabular} & Same as Input port (The input to this port must be the same data type as the input to the Input port.) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Port & Description & Supported Data Types \\
\hline \begin{tabular}{ll}
Locati \\
on
\end{tabular} & \begin{tabular}{l}
M-by-2 matrix of one-based [x y] \\
coordinates, where M represents \\
the number of text character \\
vectors to insert. Location \\
specifies the top-left corner of the \\
text character vector bounding \\
box.
\end{tabular} & \begin{tabular}{l}
-
\end{tabular} \\
& \begin{tabular}{l}
Double-precision floating point. (This data \\
type is only supported if the input to the I \\
or R, G, and B ports is a floating-point \\
data type.) \\
Single-precision floating point. (This data \\
type is only supported if the input to the I \\
or R, G, and B ports is a floating-point \\
data type.)
\end{tabular} \\
\hline
\end{tabular}

\section*{Row-Major Data Format}

MATLAB and the Computer Vision Toolbox blocks use column-major data organization. However, the Insert Text block gives you the option to process data that is stored in rowmajor format. When you select the Input image is transposed (data order is row major) check box, the block assumes that the input buffer contains contiguous data elements from the first row first, then data elements from the second row second, and so on through the last row. Use this functionality only when you meet all the following criteria:
- You are developing algorithms to run on an embedded target that uses the row-major format.
- You want to limit the additional processing required to take the transpose of signals at the interfaces of the row-major and column-major systems.

When you use the row-major functionality, you must consider the following issues:
- When you select this check box, the first two signal dimensions of the Insert Text block's input are swapped.
- All Computer Vision Toolbox software blocks can be used to process data that is in the row-major format, but you need to know the image dimensions when you develop your algorithms.

For example, if you use the 2-D FIR Filter block, you need to verify that your filter coefficients are transposed. If you are using the Rotate block, you need to use negative rotation angles, etc.
- Only three blocks have the Input image is transposed (data order is row major) check box. They are the Chroma Resampling, Deinterlacing, and Insert Text blocks. You need to select this check box to enable row-major functionality in these blocks. All other blocks must be properly configured to process data in row-major format.

Use the following two-step workflow to develop algorithms in row-major format to run on an embedded target.

Step 1:
Create block diagram Algorithm blocks

\section*{Parameters}

\section*{Text}

Specify the text character vector to be drawn on the image or video stream. This parameter can be a single text character vector, such as 'Figure1', a cell array of character vectors, such as \{'Figure1', 'Figure2' \}, or an ANSI C printf-style format specifications, such as \%s.. To create a Select port enter a cell array of character vectors. To create a Variables port, enter ANSI C printf-style format specifications, such as \%d, \%f, or \%s.

When you enter a cell array of character vectors, the Insert Text block does not display all of the character vectors simultaneously. Instead, the Select port appears on the block to let you indicate which text character vectors to display. The input to this port must be a scalar value, where 1 indicates the first character vector. If the input is less than 1 or greater than one less than the number of character vectors in the cell array, no text will be drawn on the image or video frame.

When you enter ANSI C printf-style format specifications, such as \%d, \%f, or \%s, the Variables port appears on the block. The block replaces the format specifications in the Text parameter with each element of the input vector . Use the \%s option to specify a set of text character vectors for the block to display simultaneously at different locations. For example, using a Constant block, enter [uint8('Text1') 0 uint8('Text2')] for the Constant value parameter. The following table summarizes the supported conversion specifications.

Text Parameter Supported Conversion Specifications
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Supported \\
specifications
\end{tabular} & \begin{tabular}{l}
Support for multiple \\
instances of the same \\
specification
\end{tabular} & \begin{tabular}{l}
Support for mixed \\
specifications
\end{tabular} \\
\hline \begin{tabular}{l}
\%d, \%i, \%u, \%c, \%f, \%o, \\
\%x, \%X, \%e, \%E, \%g, and \\
\%G
\end{tabular} & Yes & No \\
\hline \%s & No & No \\
\hline
\end{tabular}

\section*{Color value source}

Select where to specify the text color. Your choices are:
- Specify via dialog - the Color value parameter appears on the dialog box.
- Input port - the Color port appears on the block.

\section*{Color value}

Specify the intensity or color of the text. This parameter is visible if, for the Color source parameter, you select Specify via dialog. Tunable.

The following table describes how to format the color of the text character vectors, which depend on the block input and the number of character vectors you want to insert. Color values for a floating-point data type input image must be between 0 and 1. Color values for an 8 -bit unsigned integer data type input image must between 0 and 255 .

Text Character Vector Color Values
\begin{tabular}{lll}
Block Input & \begin{tabular}{l}
One Text Character \\
Vector
\end{tabular} & \begin{tabular}{l}
Multiple Text Character \\
Vectors
\end{tabular} \\
Intensity image & \begin{tabular}{l}
Color value parameter or \\
the input to the Color \\
port specified as a scalar \\
intensity value
\end{tabular} & \begin{tabular}{l}
the input to the Color or \\
port specified as a vector \\
of intensity values whose \\
length is equal to the \\
number of character
\end{tabular} \\
color image
\end{tabular}\(\quad\)\begin{tabular}{l}
vectors.
\end{tabular}

\section*{Location source}

Indicate where you want to specify the text location. Your choices are:
- Specify via dialog - the Location [x y] parameter appears on the dialog box.
- Input port - the Location port appears on the block.

\section*{Location [x y]}

Specify the text location. This parameter is visible if, for the Location source parameter, you select Specify via dialog. Tunable.

The following table describes how to format the location of the text character vectors depending on the number of character vectors you specify to insert. You can specify more than one location regardless of how many text character vectors you specify, but the only way to get a different text character vector at each location is to use the \%s option for the Text parameter to specify a set of text character vectors. You can enter negative values or values that exceed the dimensions of the input image or video frame, but the text might not be visible.

\section*{Location Parameter Text Character Vector Insertion}
\begin{tabular}{|l|l|l|l|}
\hline Parameter & \begin{tabular}{l}
One Instance of \\
One Text Character \\
Vector
\end{tabular} & \begin{tabular}{l}
Multiple Instances of \\
the Same Text \\
Character Vector
\end{tabular} & \begin{tabular}{l}
Multiple Instances of \\
Unique Text Character \\
Vector
\end{tabular} \\
\hline \begin{tabular}{l}
Location [x y] \\
parameter setting \\
or the input to the \\
Location port
\end{tabular} & \begin{tabular}{l}
Two-element vector of \\
the form [x y] that \\
indicates the top-left \\
corner of the text \\
bounding box.
\end{tabular} & \begin{tabular}{l}
\(M\)-by-2 matrix, where \(M\) \\
represents the number of \\
locations at which to \\
display the text. Each \\
row contains the \\
coordinates of the top-left \\
corner of the text \\
bounding box for the \\
character vector, e.g., \(\left[\begin{array}{lll}x_{1} \\
\mathrm{y}_{1} ; \mathrm{x}_{2} & \mathrm{y}_{2}\end{array}\right]\)
\end{tabular} \begin{tabular}{l}
\begin{tabular}{l}
\(M\)-by-2 matrix, where \(M\) \\
represents the number \\
of text character vectors. \\
Each row contains the \\
coordinates of the top- \\
left corner of the text \\
bounding box for the \\
character vector, e.g., \\
{\(\left[\begin{array}{llll}\mathrm{x}_{1} & \mathrm{y}_{1} ; & \mathrm{x}_{2} & \mathrm{y}_{2}\end{array}\right]\).}
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Opacity source}

Indicate where you want to specify the text's opaqueness. Your choices are:
- Specify via dialog - the Opacity parameter appears on the dialog box.
- Input port - the Opacity port appears on the block.

\section*{Opacity}

Specify the opacity of the text. This parameter is visible if, for the Opacity source parameter, you select Specify via dialog. Tunable.

The following table describes how to format the opacity of the text character vectors depending on the number of character vectors you want to insert.

\section*{Text String Opacity Values}
\begin{tabular}{lll}
Parameter & One Text String & Multiple Text Strings \\
\hline Opacity parameter & Scalar value between 0 & Vector whose length is \\
setting or the input to the & \begin{tabular}{l}
and 1, where 0 is \\
Opacity port
\end{tabular} & \begin{tabular}{l}
equal to the number of \\
opanslucent and 1 is
\end{tabular} \\
character vectors
\end{tabular}

Use the Image signal parameter to specify how to input and output a color video signal:
- One multidimensional signal - the block accepts an \(M\)-by- \(N\)-by- \(P\) color video signal, where \(P\) is the number of color planes, at one port.
- Separate color signals - additional ports appear on the block. Each port accepts one \(M\)-by- \(N\) plane of an RGB video stream.

\section*{Image signal}

Specify how to input and output a color video signal. If you select One multidimensional signal, the block accepts an \(M\)-by- \(N\)-by- \(P\) color video signal, where \(P\) is the number of color planes, at one port. If you select Separate color signals, additional ports appear on the block. Each port accepts one \(M\)-by- \(N\) plane of an RGB video stream.

\section*{Input image is transposed (data order is row major)}

When you select this check box, the block assumes that the input buffer contains data elements from the first row first, then data elements from the second row second, and so on through the last row.

\section*{Font face}

Specify the font of your text. The block populates this list with the fonts installed on your system. On Windows, the block searches the system registry for font files. On UNIX, the block searches the X Server's font path for font files.

\section*{Font size (points)}

Specify the font size.

\section*{Anti-aliased}

Select this check box if you want the block to smooth the edges of the text. This can be computationally expensive. If you want your model to run faster, clear this check box.

\section*{See Also}
\begin{tabular}{|l|l|}
\hline Draw Shapes & Computer Vision Toolbox \\
\hline Draw Markers & Computer Vision Toolbox \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }_{\circledR}\) Coder \(^{\mathrm{TM}}\).

Introduced in R2013a

\section*{Label}

Label connected components in binary images

\section*{Library}

Morphological Operations
visionmorphops

\section*{Description}

The Label block labels the objects in a binary image, BW. The background is represented by pixels equal to 0 (black) and objects are represented by pixels equal to 1 (white). At the Label port, the block outputs a label matrix that is the same size as the input matrix. In the label matrix, pixels equal to 0 represent the background, pixels equal to 1 represent the first object, pixels equal to 2 represent the second object, and so on. At the Count port, the block outputs a scalar value that represents the number of labeled objects.
\begin{tabular}{|l|l|l|l|}
\hline Port & Input/Output & Supported Data Types & \begin{tabular}{l}
Complex \\
Values \\
Supported
\end{tabular} \\
\hline BW & \begin{tabular}{l}
Vector or matrix that represents a \\
binary image
\end{tabular} & Boolean & No \\
\hline Label & Label matrix & \begin{tabular}{l}
• 8-, 16-, and 32-bit unsigned \\
integer
\end{tabular} & No \\
\hline Count & \begin{tabular}{l}
Scalar that represents the number \\
of labeled objects
\end{tabular} & Same as Label port & No \\
\hline
\end{tabular}

Use the Connectivity parameter to define which pixels are connected to each other. If you want a pixel to be connected to the other pixels located on the top, bottom, left, and
right, select 4. If you want a pixel to be connected to the other pixels on the top, bottom, left, right, and diagonally, select 8.

Consider the following 3-by-3 image. If, for the Connectivity parameter, you select 4, the block considers the white pixels marked by black circles to be connected.

If, for the Connectivity parameter, you select 8, the block considers the white pixels marked by black circles to be connected.

Use the Output parameter to determine the block's output. If you select Label matrix and number of labels, ports Label and Count appear on the block. The block outputs the label matrix at the Label port and the number of labeled objects at the Count port. If you select Label matrix, the Label port appears on the block. If you select Number of labels, the Count port appears on the block.

Use the Output data type parameter to set the data type of the outputs at the Label and Count ports. If you select Automatic, the block calculates the maximum number of objects that can fit inside the image based on the image size and the connectivity you specified. Based on this calculation, it determines the minimum output data type size that guarantees unique region labels and sets the output data type appropriately. If you select uint32, uint16, or uint8, the data type of the output is \(32-\), 16 -, or 8 -bit unsigned integers, respectively. If you select uint16, or uint8, the If label exceeds data type size, mark remaining regions using parameter appears in the dialog box. If the number of found objects exceeds the maximum number that can be represented by the
output data type, use this parameter to specify the block's behavior. If you select maximum value of the output data type, the remaining regions are labeled with the maximum value of the output data type. If you select zero, the remaining regions are labeled with zeroes.

\section*{Parameters}

\section*{Connectivity}

Specify which pixels are connected to each other. If you want a pixel to be connected to the pixels on the top, bottom, left, and right, select 4. If you want a pixel to be connected to the pixels on the top, bottom, left, right, and diagonally, select 8.

\section*{Output}

Determine the block's output. If you select Label matrix and number of labels, the Label and Count ports appear on the block. The block outputs the label matrix at the Label port and the number of labeled objects at the Count port. If you select Label matrix, the Label port appears on the block. If you select Number of labels, the Count port appears on the block.

\section*{Output data type}

Set the data type of the outputs at the Label and Count ports. If you select Automatic, the block determines the appropriate data type for the output. If you select uint32, uint16, or uint8, the data type of the output is 32 -, 16 -, or 8 -bit unsigned integers, respectively.

\section*{If label exceeds data type size, mark remaining regions using}

Use this parameter to specify the block's behavior if the number of found objects exceeds the maximum number that can be represented by the output data type. If you select maximum value of the output data type, the remaining regions are labeled with the maximum value of the output data type. If you select zero, the remaining regions are labeled with zeroes. This parameter is visible if, for the Output data type parameter, you choose uint16 or uint8.

\section*{See Also}
\begin{tabular}{|l|l|}
\hline Bottom-hat & Computer Vision Toolbox software \\
\hline Closing & Computer Vision Toolbox software \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Dilation & Computer Vision Toolbox software \\
\hline Erosion & Computer Vision Toolbox software \\
\hline Opening & Computer Vision Toolbox software \\
\hline Top-hat & Computer Vision Toolbox software \\
\hline bwlabel & Image Processing Toolbox software \\
\hline bwlabeln & Image Processing Toolbox software \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

Introduced before R2006a

\section*{Median Filter}

Perform 2-D median filtering

Median Filter1

\section*{Library}

Filtering and Analysis \& Enhancement
visionanalysis
visionfilter

\section*{Description}

The Median Filter block replaces the central value of an \(M\)-by- \(N\) neighborhood with its median value. If the neighborhood has a center element, the block places the median value there, as illustrated in the following figure.

The block has a bias toward the upper-left corner when the neighborhood does not have an exact center. See the median value placement in the following figure.

The block pads the edge of the input image, which sometimes causes the pixels within [M/2 N/2] of the edges to appear distorted. The median value is less sensitive than the mean to extreme values. As a result, the Median Filter block can remove salt-and-pepper noise from an image without significantly reducing the sharpness of the image.
\begin{tabular}{|l|l|l|l|}
\hline Port & Input/Output & Supported Data Types & \begin{tabular}{l}
Complex \\
Values \\
Supported
\end{tabular} \\
\hline I & Matrix of intensity values & \begin{tabular}{l}
- \begin{tabular}{l}
Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- Boolean \\
- \\
8-, 16-, 32-bit signed integer \\
-, \(16-, 32-\)-bit unsigned integer
\end{tabular} \\
\hline Val
\end{tabular} \begin{tabular}{l}
Scalar value that represents the \\
constant pad value
\end{tabular} & Same as I port \\
\hline Output & Matrix of intensity values & Same as I port & No \\
\hline
\end{tabular}

If the data type of the input signal is floating point, the output has the same data type. The data types of the signals input to the I and Val ports must be the same.

\section*{Fixed-Point Data Types}

The information in this section is applicable only when the dimensions of the neighborhood are even.

For fixed-point inputs, you can specify accumulator and output data types as discussed in "Parameters" on page 1-361. Not all these fixed-point parameters apply to all types of fixed-point inputs. The following table shows the output and accumulator data type used for each fixed-point input.
\begin{tabular}{|l|l|l|}
\hline Fixed-Point Input & Output Data Type & Accumulator Data Type \\
\hline Even M & X & X \\
\hline Odd M & X & \\
\hline Odd M and complex & X & X \\
\hline Even M and complex & X & X \\
\hline
\end{tabular}

When \(M\) is even, fixed-point signals use the accumulator and output data types. The accumulator data type store the result of the sum performed while calculating the average of the two central rows of the input matrix. The output data type stores the total result of the average.

Complex fixed-point inputs use the accumulator parameters. The calculation for the sum of the squares of the real and imaginary parts of the input occur, before sorting input elements. The accumulator data type stores the result of the sum of the squares.

\section*{Parameters}

\section*{Neighborhood size}

Specify the size of the neighborhood over which the block computes the median.
- Enter a scalar value that represents the number of rows and columns in a square matrix.
- Enter a vector that represents the number of rows and columns in a rectangular matrix.

\section*{Output size}

This parameter controls the size of the output matrix.
- If you choose Same as input port I, the output has the same dimensions as the input to port I. The Padding options parameter appears in the dialog box. Use the Padding options parameter to specify how to pad the boundary of your input matrix.
- If you select Valid, the block only computes the median where the neighborhood fits entirely within the input image, with no need for padding. The dimensions of the output image are, output rows = input rows - neighborhood rows + 1 , and
output columns \(=\) input columns - neighborhood columns +1.

\section*{Padding options}

Specify how to pad the boundary of your input matrix.
- Select Constant to pad your matrix with a constant value. The Pad value source parameter appears in the dialog box
- Select Replicate to pad your input matrix by repeating its border values.
- Select Symmetric to pad your input matrix with its mirror image.
- Select Circular to pad your input matrix using a circular repetition of its elements. This parameter appears if, for the Output size parameter, you select Same as input port I.

For more information on padding, see the Image Pad block reference page.

\section*{Pad value source}

Use this parameter to specify how to define your constant boundary value.
- Select Specify via dialog to enter your value in the block parameters dialog box. The Pad value parameter appears in the dialog box.
- Select Input port to specify your constant value using the Val port. This parameter appears if, for the Padding options parameter, you select Constant.

\section*{Pad value}

Enter the constant value with which to pad your matrix. This parameter appears if, for the Pad value source parameter, you select Specify via dialog. Tunable.

\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

Note Only certain cases require the use of the accumulator and output parameters. Refer to "Fixed-Point Data Types" on page 1-360 for more information.

\section*{Accumulator}

Use this parameter to specify the accumulator word and fraction lengths resulting from a complex-complex multiplication in the block:
- When you select Same as input, these characteristics match the related input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. This block requires power-of-two slope and a bias of 0 .

\section*{Output}

Choose how to specify the output word length and fraction length:
- When you select Same as input, these characteristics match the related input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. This block requires power-of-two slope and a bias of 0 .

\section*{Lock data type settings against change by the fixed-point tools}

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink documentation.

\section*{References}
[1] Gonzales, Rafael C. and Richard E. Woods. Digital Image Processing. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 2002.

\section*{See Also}
\begin{tabular}{|l|l|}
\hline 2-D Convolution & Computer Vision Toolbox \\
\hline 2-D FIR Filter & Computer Vision Toolbox \\
\hline medfilt2 & Image Processing Toolbox \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\author{
C/C++ Code Generation \\ Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\). \\ Introduced before R2006a
}

\section*{Opening}

Perform morphological opening on binary or intensity images

Opening

\section*{Library}

Morphological Operations
visionmorphops

\section*{Description}

The Opening block performs an erosion operation followed by a dilation operation using a predefined neighborhood or structuring element. This block uses flat structuring elements only.
\begin{tabular}{|l|l|l|l|}
\hline ort & Input/Output & Supported Data Types & \begin{tabular}{l}
Complex \\
Values \\
Supported
\end{tabular} \\
\hline & Vector or matrix of intensity values & \begin{tabular}{l}
• Double-precision floating point \\
- Single-precision floating point \\
• Fixed point \\
• Boolean \\
• 8-, 16-, and 32-bit signed integer \\
• 8-, 16-, and 32-bit unsigned integer
\end{tabular} & No \\
\hline Shood & \begin{tabular}{l}
Matrix or vector of ones and zeros \\
that represents the neighborhood \\
values
\end{tabular} & Boolean & No \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline ort & Input/Output & Supported Data Types & \begin{tabular}{l}
Complex \\
Values \\
Supported
\end{tabular} \\
\hline Sutput & \begin{tabular}{l}
Scalar, vector, or matrix of intensity \\
values that represents the opened \\
image
\end{tabular} & Same as I port & No \\
\hline
\end{tabular}

The output signal has the same data type as the input to the I port.
Use the Neighborhood or structuring element source parameter to specify how to enter your neighborhood or structuring element values. If you select Specify via dialog, the Neighborhood or structuring element parameter appears in the dialog box. If you select Input port, the Nhood port appears on the block. Use this port to enter your neighborhood values as a matrix or vector of 1 s and 0 s . You can only specify a structuring element using the dialog box.

Use the Neighborhood or structuring element parameter to define the region the block moves throughout the image. Specify a neighborhood by entering a matrix or vector of 1 s and 0 s . Specify a structuring element with the strel function from the Image Processing Toolbox. If the structuring element is decomposable into smaller elements, the block executes at higher speeds due to the use of a more efficient algorithm.

\section*{Parameters}

\section*{Neighborhood or structuring element source}

Specify how to enter your neighborhood or structuring element values. Select Specify via dialog to enter the values in the dialog box. Select Input port to use the Nhood port to specify the neighborhood values. You can only specify a structuring element using the dialog box.

\section*{Neighborhood or structuring element}

If you are specifying a neighborhood, this parameter must be a matrix or vector of 1 s and 0s. If you are specifying a structuring element, use the strel function from the Image Processing Toolbox. This parameter is visible if, for the Neighborhood or structuring element source parameter, you select Specify via dialog.

\section*{References}
[1] Soille, Pierre. Morphological Image Analysis. 2nd ed. New York: Springer, 2003.

\section*{See Also}
\begin{tabular}{|l|l|}
\hline Bottom-hat & Computer Vision Toolbox software \\
\hline Closing & Computer Vision Toolbox software \\
\hline Dilation & Computer Vision Toolbox software \\
\hline Erosion & Computer Vision Toolbox software \\
\hline Label & Computer Vision Toolbox software \\
\hline Top-hat & Computer Vision Toolbox software \\
\hline imopen & Image Processing Toolbox software \\
\hline strel & Image Processing Toolbox software \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{Introduced before R2006a}

\section*{Optical Flow}

\author{
Estimate object velocities \\ Library: Computer Vision Toolbox / Analysis \& Enhancement
}

\section*{Description}

The Optical Flow block estimates the direction and speed of object motion between two images or between one video frame to another frame using either the Horn-Schunck or the Lucas-Kanade method.

\section*{Ports}

\section*{Input}

\section*{I/I1 - Image or video frame}
scalar | vector | matrix
Image or video frame, specified as a scalar, vector, or matrix. If the Compute optical flow between parameter is set to Two images, the name of this port changes to I1.
```

Data Types: single|double| int8| int16| int32| uint8|uint16|uint32 |
fixed point

```

\section*{I2 - Image}
scalar | vector | matrix
Image or video frame, specified as a scalar, vector, or matrix.
Data Types: single | double | int8| int16|int32|uint8|uint16|uint32| fixed point

\section*{Output}
|V|^2 - Velocity magnitudes
scalar | vector | matrix
Velocity magnitudes, returned as a scalar, vector, or matrix.

\section*{Data Types: single | double | int8 | int16|int32|uint8|uint16|uint32|}
fixed point

\section*{V - Velocity components in complex form}
scalar | vector | matrix
Velocity components in complex form, specified as a scalar, vector, or matrix.

\section*{Dependencies}

To enable this port, set the Velocity output parameter to Horizontal and vertical components in complex form.
Data Types: single | double | int8|int16|int32|uint8|uint16|uint32| fixed point

\section*{Parameters}

\section*{Main Tab}

\section*{Method - Optical flow calculation method}

Horn-Schunck (default) | Lucas-Kanade
Select the method to use to calculate the optical flow. Options include Horn-Schunck or Lucas-Kanade.

\section*{Compute optical flow between - Compute optical flow}

Current frame and N -th frame back (default)| Two images
Select how to compute the optical flow. Select Two images to compute the optical flow between two images. Select Current frame and N -th frame back to compute the optical flow between two video frames that are N frames apart.

\section*{Dependencies}

To enable this parameter, set the:
- Method parameter to Horn-Schunck
- Method parameter to Lucas - Kanade and the Temporal gradient filter to Difference filter [-1 1]

\section*{N - Number of frames}

1 (default) | scalar
Enter a scalar value that represents the number of frames between the reference frame and the current frame.

\section*{Dependencies}

To enable this parameter, set the Compute optical flow between parameter to Current frame and N -th frame back.

\section*{Smoothness factor - Smoothness factor}

\section*{1 (default) | positive scalar}

Specify the smoothness factor. Enter a large positive scalar value for high relative motion between the two images or video frames. Enter a small positive scalar value for low relative motion.

\section*{Dependencies}

To enable this parameter, set the Method parameter to Horn-Schunck.
```

Stop iterative solution - Stop iterative solution
When maximum number of iterations is reached (default)| When velocity
difference falls below threshold|Whichever comes first

```

Specify the method to control when the block's iterative solution process stops. If you want the process to stop when the velocity difference is below a certain threshold value, select When velocity difference falls below threshold. If you want the process to stop after a certain number of iterations, choose When maximum number of iterations is reached. You can also select Whichever comes first.

\section*{Dependencies}

To enable this parameter, set the Method parameter to Horn-Schunck.

\section*{Maximum number of iterations - Maximum number of iterations 10 (default) | scalar}

Specify the maximum number of iterations for the block to perform.

\section*{Dependencies}

To enable this parameter, set the Method parameter to Horn-Schunck and the Stop iterative solution parameter to When maximum number of iterations is reached or Whichever comes first.

\section*{Velocity output - Optical flow output}

Magnitude-squared (default)|Horizontal and vertical components in complex form

Specify how to output an optical flow. If you select Magnitude-squared, the block outputs an optical flow matrix where each element is in the form \(u^{2}+v^{2}\). If you select Horizontal and vertical components in complex form, the block outputs the optical flow matrix where each element is in the form \(u+j v\).

\section*{Temporal gradient filter - Filter used for temporal gradient \\ Difference filter [-1 1] (default)|Derivative of Gaussian}

Specify whether the block solves for \(u\) and \(v\) using a difference filter or a derivative of a Gaussian filter.

\section*{Dependencies}

To enable this parameter, set the Method parameter to Lucas-Kanade.

\section*{Number of input frames to buffer - Number of input frames to buffer for smoothing}

3 (default) | scalar
Specify the number of input frames to buffer for smoothing. Use this parameter for temporal filter characteristics such as the standard deviation and number of filter coefficients.

\section*{Dependencies}

To enable this parameter, set the Temporal gradient filter parameter to Derivative of Gaussian.

Standard deviation for image smoothing filter - Standard deviation for
image smoothing filter 1.5 (default) | scalar

Specify the standard deviation for the image smoothing filter.

\section*{Dependencies}

To enable this parameter, set the Temporal gradient filter parameter to Derivative of Gaussian.

Standard deviation for gradient smoothing filter - Standard deviation for gradient smoothing filter 1 (default) | scalar

Specify the standard deviation for the gradient smoothing filter.

\section*{Dependencies}

To enable this parameter, set the Temporal gradient filter parameter to Derivative of Gaussian.

Discard normal flow estimates when constraint equation is illconditioned - Discard normal flow estimates
off (default) | on
Select this parameter to set the motion vector to zero when the optical flow constraint equation is ill-conditioned.

\section*{Dependencies}

To enable this parameter, set the Temporal gradient filter parameter to Derivative of Gaussian.

Output image corresponding to motion vectors (accounts for block delay) - Output image corresponding to motion vectors
off (default) | on
Select this parameter to output the image that corresponds to the motion vector outputted by the block.

\section*{Dependencies}

To enable this parameter, set the Temporal gradient filter parameter to Derivative of Gaussian.

Threshold for noise reduction - Threshold for noise reduction
0.0039 (default) | scalar

Specify a scalar value that determines the motion threshold between each image or video frame. The higher the number, the less small movements impact the optical flow calculation.

\section*{Dependencies}

To enable this parameter, set the Method parameter to Lucas-Kanade.

\section*{Data Types Tab}

For details on the fixed-point block parameters, see "Specify Fixed-Point Attributes for Blocks".

\section*{Block Characteristics}
\begin{tabular}{|l|l|}
\hline Data Types & double | single \\
\hline \begin{tabular}{l}
Multidimensional \\
Signals
\end{tabular} & no \\
\hline \begin{tabular}{l}
Variable-Size \\
Signals
\end{tabular} & no \\
\hline
\end{tabular}

\section*{Algorithms}

\section*{Optical Flow Equation}

To compute the optical flow between two images, you must solve this optical flow constraint equation:
\[
I_{x} u+I_{y} v+I_{t}=0
\]
- \(I_{x}, I_{y}\), and \(I_{t}\) are the spatiotemporal image brightness derivatives.
- \(u\) is the horizontal optical flow.
- \(v\) is the vertical optical flow.

\section*{Horn-Schunck Method}

By assuming that the optical flow is smooth across the entire image, the Horn-Schunck method estimates a velocity field, \([u v]^{T}\), that minimizes this equation:
\[
E=\iint\left(I_{x} u+I_{y} v+I_{t}\right)^{2} d x d y+\alpha \iint\left\{\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}\right\} d x d y
\]

In this equation, \(\frac{\partial u}{\partial x}\) and \(\frac{\partial u}{\partial y}\) are the spatial derivatives of the optical velocity component, \(u\), and \(\alpha\) scales the global smoothness term. The Horn-Schunck method minimizes the previous equation to obtain the velocity field, \([u v\)], for each pixel in the image. This method is given by the following equations:
\[
\begin{aligned}
& u_{x, y}^{k+1}=\bar{u}_{x, y}^{k}-\frac{I_{x}\left[I_{x} \bar{u}_{x, y}^{k}+I_{y} \bar{v}_{x, y}^{k}+I_{t}\right]}{\alpha^{2}+I_{x}^{2}+I_{y}^{2}} \\
& v_{x, y}^{k+1}=\bar{v}_{x, y}^{k}-\frac{I_{y}\left[I_{x} \bar{u}_{x, y}^{k}+I_{y} \bar{v}_{x, y}^{k}+I_{t}\right]}{\alpha^{2}+I_{x}^{2}+I_{y}^{2}}
\end{aligned}
\]

In these equations, \(\left[u_{x, y}^{k} v_{x, y}^{k}\right]\) is the velocity estimate for the pixel at \((x, y)\), and \(\left[\bar{u}_{x, y}^{k} \bar{v}_{x, y}^{k}\right]\) is the neighborhood average of \(\left[u_{x, y}^{k} v_{x, y}^{k}\right]\). For \(k=0\), the initial velocity is 0 .

To solve \(u\) and \(v\) using the Horn-Schunck method:
1 Compute \(I_{x}\) and \(I_{y}\) by using the Sobel convolution kernel, \(\left[\begin{array}{cc}-1-2-1 ; 000 ; 121], ~\end{array}\right.\) and its transposed form for each pixel in the first image.
2 Compute \(I_{t}\) between images 1 and 2 using the [\(\left.\begin{array}{lll}-1 & 1\end{array}\right]\) kernel.
3 Assume the previous velocity to be 0, and compute the average velocity for each pixel using [0 1 0; 1 0 1; 01100 as a convolution kernel.
4 Iteratively solve for \(u\) and \(v\).

\section*{Lucas-Kanade Method}

To solve the optical flow constraint equation for \(u\) and \(v\), the Lucas-Kanade method divides the original image into smaller sections and assumes a constant velocity in each section. Then it performs a weighted, least-square fit of the optical flow constraint equation to a constant model for \([u v]^{T}\) in each section \(\Omega\). The method achieves this fit by minimizing this equation:
\[
\sum_{\chi \in \Omega} W^{2}\left[I_{\chi} u+I_{y} v+I_{t}\right]^{2}
\]
\(W\) is a window function that emphasizes the constraints at the center of each section. The solution to the minimization problem is
\[
\left[\begin{array}{cc}
\sum W^{2} I_{x}^{2} & \sum W^{2} I_{x} I_{y} \\
\sum W^{2} I_{y} I_{x} & \sum W^{2} I_{y}^{2}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=-\left[\begin{array}{l}
\sum W^{2} I_{x} I_{t} \\
\sum W^{2} I_{y} I_{t}
\end{array}\right]
\]

\section*{Lucas-Kanade Difference Filter}

When you set the Temporal gradient filter to Difference filter [-1 1], \(u\) and \(v\) are solved as follows:

1 Compute \(I_{x}\) and \(I_{y}\) using the kernel \(\left[\begin{array}{ccccc}-1 & 8 & 0 & -8 & 1\end{array}\right] / 12\) and its transposed form.
If you are working with fixed-point data types, the kernel values are signed fixedpoint values with a word length equal to 16 and a fraction length equal to 15.
2 Compute \(I_{t}\) between images 1 and 2 by using the [\(\left.\begin{array}{ll}-1 & 1\end{array}\right]\) kernel.
3 Smooth the gradient components, \(I_{x}, I_{y}\), and \(I_{t}\), by using a separable and isotropic 5-by-5 element kernel whose effective 1-D coefficients are [14641]/16. If you are working with fixed-point data types, the kernel values are unsigned fixed-point values with a word length equal to 8 and a fraction length equal to 7 .
4 Solve the 2-by-2 linear equations for each pixel using the following method:
- If \(A=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]=\left[\begin{array}{cc}\sum W^{2} I_{x}^{2} & \sum W^{2} I_{x} I_{y} \\ \sum W^{2} I_{y} I_{x} & \sum W^{2} I_{y}^{2}\end{array}\right]\)
then the eigenvalues of A are \(\lambda_{i}=\frac{a+c}{2} \pm \frac{\sqrt{4 b^{2}+(a-c)^{2}}}{2} ; i=1,2\)
In the fixed-point diagrams, \(P=\frac{a+c}{2}, Q=\frac{\sqrt{4 b^{2}+(a-c)^{2}}}{2}\)
- The eigenvalues are compared to the threshold, \(\tau\), that corresponds to the value you enter for the threshold for noise reduction. The results fall into one of the following cases.

Case 1: \(\lambda_{1} \geq \tau\) and \(\lambda_{2} \geq \tau\)
A is nonsingular, and the system of equations is solved using Cramer's rule.
Case 2: \(\lambda_{1} \geq \tau\) and \(\lambda_{2}<\tau\)
A is singular (noninvertible), and the gradient flow is normalized to calculate \(u\) and \(v\).

Case 3: \(\lambda_{1}<\tau\) and \(\lambda_{2}<\tau\)
The optical flow, \(u\) and \(v\), is 0 .

\section*{Derivative of Gaussian}

If you set the temporal gradient filter to Derivative of Gaussian, \(u\) and \(v\) are solved using these steps.

1 Compute \(I_{x}\) and \(I_{y}\).
a Use a Gaussian filter to perform temporal filtering. Specify the temporal filter characteristics, such as the standard deviation and number of filter coefficients, by using the Number of frames to buffer for temporal smoothing parameter.
b Use a Gaussian filter and the derivative of a Gaussian filter to smooth the image by using spatial filtering. Specify the standard deviation and length of the image smoothing filter by using the Standard deviation for image smoothing filter parameter.
2 Compute \(I_{t}\) between images 1 and 2 .
a Use the derivative of a Gaussian filter to perform temporal filtering. Specify the temporal filter characteristics, such as the standard deviation and number of
filter coefficients, by using the Number of frames to buffer for temporal smoothing parameter.
b Use the filter described in step 1b to perform spatial filtering on the output of the temporal filter.
3 Smooth the gradient components, \(I_{x}, I_{y}\), and \(I_{t}\), by using a gradient smoothing filter. Use the Standard deviation for gradient smoothing filter parameter to specify the standard deviation and the number of filter coefficients for the gradient smoothing filter.
4 Solve the 2-by-2 linear equations for each pixel using this method:
- If \(A=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]=\left[\begin{array}{cc}\sum W^{2} I_{\chi}^{2} & \sum W^{2} I_{x} I_{y} \\ \sum W^{2} I_{y} I_{\chi} & \sum W^{2} I_{y}^{2}\end{array}\right]\)
then the eigenvalues of A are \(\lambda_{i}=\frac{a+c}{2} \pm \frac{\sqrt{4 b^{2}+(a-c)^{2}}}{2} ; i=1,2\)
- When the block finds the eigenvalues, it compares them to the threshold, \(\tau\), that corresponds to the value you enter for the Threshold for noise reduction parameter. The results fall into one of the following cases.

Case 1: \(\lambda_{1} \geq \tau\) and \(\lambda_{2} \geq \tau\)
A is nonsingular, so the block solves the system of equations by using Cramer's rule.

Case 2: \(\lambda_{1} \geq \tau\) and \(\lambda_{2}<\tau\)
A is singular (noninvertible), so the block normalizes the gradient flow to calculate \(u\) and \(v\).

Case 3: \(\lambda_{1}<\tau\) and \(\lambda_{2}<\tau\)
the optical flow, \(u\) and \(v\), is 0 .

tFilt = Coefficients of Gaussian Filter
tGradFilt = Coefficients of the Derivative of a Gaussian Filter
sFilt = Coefficients of Gaussian Filter
sGradFilt = Coefficients of the Derivative of a Gaussian Filter

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{Fixed-Point Conversion}

Design and simulate fixed-point systems using Fixed-Point Designer \({ }^{\mathrm{TM}}\).

\section*{See Also}

Block Matching | Gaussian Pyramid | opticalFlow | opticalFlowHS |opticalFlowLK | opticalFlowLKDoG

Introduced before R2006a

\section*{PSNR}

Compute peak signal-to-noise ratio (PSNR) between images
Library: Computer Vision Toolbox / Statistics

\section*{Description}

The PSNR block computes the peak signal-to-noise ratio, in decibels, between two images. This ratio is used as a quality measurement between the original and a compressed image. The higher the PSNR, the better the quality of the compressed, or reconstructed image.

The mean-square error (MSE) and the peak signal-to-noise ratio (PSNR) are used to compare image compression quality. The MSE represents the cumulative squared error between the compressed and the original image, whereas PSNR represents a measure of the peak error. The lower the value of MSE, the lower the error.

To compute the PSNR, the block first calculates the mean-squared error using the following equation:
\[
M S E=\frac{\sum_{M, N}\left[I_{1}(m, n)-I_{2}(m, n)\right]^{2}}{M^{*} N}
\]

In the previous equation, \(M\) and \(N\) are the number of rows and columns in the input images. Then the block computes the PSNR using the following equation:
\[
P S N R=10 \log _{10}\left(\frac{R^{2}}{M S E}\right)
\]

In the previous equation, \(R\) is the maximum fluctuation in the input image data type. For example, if the input image has a double-precision floating-point data type, then \(R\) is 1 . If it has an 8 -bit unsigned integer data type, \(R\) is 255 , etc.

\section*{Computing PSNR for Color Images}

Different approaches exist for computing the PSNR of a color image. Because the human eye is most sensitive to luma information, you can compute the PSNR for color images by converting the image to a color space that separates the intensity (luma) channel, such as YCbCr. The Y (luma), in YCbCr represents a weighted average of R, G, and B. G is given the most weight, again because the human eye perceives it most easily. Compute the PSNR only on the luma channel.

\section*{Ports}

\section*{Input}

\section*{I1 - Input image}
scalar | vector | matrix
Input image, specified as scalar, vector, or matrix.
Data Types: single | double | int8 | int16|int32|uint8|uint16|uint32| Boolean|fixed point

\section*{I2 - Input image}
scalar | vector | matrix
Input image, specified as scalar, vector, or matrix.
Data Types: single|double | int8| int16|int32|uint8|uint16|uint32| Boolean|fixed point

\section*{Output}

\section*{Output - Output}
scalar
Peak signal-to-noise ratio between images, returned as a scalar.

\section*{Dependencies}

If the input is a fixed-point or integer data type, the block output is double-precision floating point. Otherwise, the block input and output are the same data type.

\section*{Block Characteristics}
\begin{tabular}{|l|l|}
\hline Data Types & double | fixed point | integer | single \\
\hline \begin{tabular}{l}
Multidimensional \\
Signals
\end{tabular} & no \\
\hline \begin{tabular}{l}
Variable-Size \\
Signals
\end{tabular} & yes \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
Generates code only for double or single data types.

\section*{Fixed-Point Conversion}

Design and simulate fixed-point systems using Fixed-Point Designer \({ }^{\mathrm{TM}}\).

\author{
See Also \\ psnr
}

\author{
Introduced before R2006a
}

\section*{Read Binary File}

Read binary video data from files

Read Binary File

\section*{Library}

Sources
visionsources

\section*{Description}

The Read Binary File block reads video data from a binary file and imports it into a Simulink model.

This block takes user specified parameters that describe the format of the video data. These parameters together with the raw binary file, which stores only raw pixel values, creates the video data signal for a Simulink model. The video data read by this block must be stored in row major format.

Note This block supports code generation only for platforms that have file I/O available. You cannot use this block to do code generation with Simulink Desktop Real-Time or Simulink Real-Time \({ }^{\mathrm{TM}}\).
\begin{tabular}{|l|l|l|l|}
\hline Port & Output & Supported Data Types & \begin{tabular}{l}
Complex \\
Values \\
Supported
\end{tabular} \\
\hline Output & \begin{tabular}{l}
Scalar, vector, or matrix of \\
integer values
\end{tabular} & \begin{tabular}{l}
- 8-, 16- 32-bit signed integer \\
8-, 16- 32 -bit unsigned integer
\end{tabular} & No \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Port & Output & Supported Data Types & \begin{tabular}{l}
Complex \\
Values \\
Supported
\end{tabular} \\
\hline EOF & Scalar value & Boolean & No \\
\hline
\end{tabular}

\section*{Four Character Code Video Formats}

Four Character Codes (FOURCC) identify video formats. For more information about these codes, see https://www.fourcc.org.

Use the Four character code parameter to identify the binary file format. Then, use the Rows and Cols parameters to define the size of the output matrix. These dimensions should match the matrix dimensions of the data inside the file.

\section*{Custom Video Formats}

If your binary file contains data that is not in FOURCC format, you can configure the Read Binary File block to understand a custom format:
- Use the Bit stream format parameter to specify whether your data is planar or packed. If your data is packed, use the Rows and Cols parameters to define the size of the output matrix.
- Use the Number of output components parameter to specify the number of components in the binary file. This number corresponds to the number of block output ports.
- Use the Component, Bits, Rows, and Cols parameters to specify the component name, bit size, and size of the output matrices, respectively. The block uses the Component parameter to label the output ports.
- Use the Component order in binary file parameter to specify how the components are arranged within the file.
- Select the Interlaced video check box if the binary file contains interlaced video data.
- Select the Input file has signed data check box if the binary file contains signed integers.
- Use the Byte order in binary file to indicate whether your binary file has little endian or big endian byte ordering.

\section*{Parameters}

\section*{File name}

Specify the name of the binary file to read. If the location of this file is on your MATLAB path, enter the filename. If the location of this file is not on your MATLAB path, use the Browse button to specify the full path to the file as well as the filename.

\section*{Video format}

Specify the format of the binary video data. Your choices are Four character codes or Custom. See "Four Character Code Video Formats" on page 1-384 or "Custom Video Formats" on page 1-384 for more details.

\section*{Four character code}

From the drop-down list, select the binary file format.

\section*{Frame size: Rows, Cols}

Define the size of the output matrix. These dimensions should match the matrix dimensions of the data inside the file.

\section*{Line ordering}

Specify how the block fills the output matrix.If you select Top line first, the block first fills the first row of the output matrix with the contents of the binary file. It then fills the other rows in increasing order. If you select Bottom line first, the block first fills the last row of the output matrix. It then fills the other rows in decreasing order.

\section*{Number of times to play file}

Specify the number of times to play the file. The number you enter must be a positive integer or inf, to play the file until you stop the simulation.

\section*{Output end-of-file indicator}

Specifies the output is the last video frame in the binary file. When you select this check box, a Boolean output port labeled EOF appears on the block. The output from the EOF port is 1 when the last video frame in the binary file is output from the block. Otherwise, the output from the EOF port is 0 .

\section*{Sample time}

Specify the sample period of the output signal.

\section*{Bit stream format}

Specify whether your data is planar or packed.

\section*{Frame size: Rows, Cols}

Define the size of the output matrix. This parameter appears when you select a Bit stream format parameter of Packed.

\section*{Number of output components}

Specify the number of components in the binary file.

\section*{Component, Bits, Rows, Cols}

Specify the component name, bit size, and size of the output matrices, respectively.

\section*{Component order in binary file}

Specify the order in which the components appear in the binary file.

\section*{Interlaced video}

Select this check box if the binary file contains interlaced video data.

\section*{Input file has signed data}

Select this check box if the binary file contains signed integers.

\section*{Byte order in binary file}

Use this parameter to indicate whether your binary file has little endian or big endian byte ordering.

\section*{See Also}
\begin{tabular}{|l|l|}
\hline From Multimedia File & Computer Vision Toolbox \\
\hline Write Binary File & Computer Vision Toolbox \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{Introduced before R2006a}

\section*{Resize}

Enlarge or shrink image sizes

\section*{Library}

Geometric Transformations
visiongeotforms

\section*{Description}

The Resize block enlarges or shrinks an image by resizing the image along one dimension (row or column). Then, it resizes the image along the other dimension (column or row).

This block supports intensity and color images on its ports. When you input a floating point data type signal, the block outputs the same data type.

Shrinking an image can introduce high frequency components into the image and aliasing might occur. If you select the Perform antialiasing when resize factor is between 0 and 100 check box, the block performs low pass filtering on the input image before shrinking it.

\section*{Port Description}
\begin{tabular}{|c|c|c|c|}
\hline Port & Input/Output & Supported Data Types & \begin{tabular}{l}
Complex \\
Values \\
Supported
\end{tabular} \\
\hline Image / Input & \(M\)-by- \(N\) matrix of intensity values or an \(M\)-by- \(N\)-by- \(P\) color video signal where \(P\) is the number of color planes & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- 8-, 16-, 32-bit signed integer \\
- 8 -, 16-, 32 -bit unsigned integer
\end{tabular} & No \\
\hline ROI & Four-element vector [x y width height] that defines the ROI & \begin{tabular}{l}
- Double-precision floating point (only supported if the input to the Input port is floating point) \\
- Single-precision floating point (only supported if the input to the Input port is floating point) \\
- 8-, 16-, 32-bit signed integer \\
- 8-, 16-, 32-bit unsigned integer
\end{tabular} & No \\
\hline Output & Resized image & Same as Input port & No \\
\hline Flag & Boolean value that indicates whether the ROI is within the image bounds & Boolean & No \\
\hline
\end{tabular}

\section*{ROI Processing}

To resize a particular region of each image, select the Enable ROI processing check box. To enable this option, select the following parameter values.
- Specify = Number of output rows and columns
- Interpolation method = Nearest neighbor, Bilinear, or Bicubic
- Clear the Perform antialiasing when resize factor is between 0 and 100 check box.

If you select the Enable ROI processing check box, the ROI port appears on the block.
Use this port to define a region of interest (ROI) in the input matrix, that you want to
resize. The input to this port must be a four-element vector, [x y width height]. The first two elements define the upper-left corner of the ROI, and the second two elements define the width and height of the ROI.

If you select the Enable ROI processing check box, the Output flag indicating if any part of ROI is outside image bounds check box appears in the dialog box. If you select this check box, the Flag port appears on the block. The following tables describe the Flag port output.
\begin{tabular}{|l|l|}
\hline Flag Port Output & Description \\
\hline 0 & ROI is completely inside the input image. \\
\hline 1 & \begin{tabular}{l}
ROI is completely or partially outside the \\
input image.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fixed-Point Data Types}

The following diagram shows the data types used in the Resize block for fixed-point signals.

You can set the interpolation weights table, product output, accumulator, and output data types in the block mask.

\section*{Parameters}

\section*{Specify}

Specify which aspects of the image to resize. Your choices are Output size as a percentage of input size, Number of output columns and preserve
aspect ratio, Number of output rows and preserve aspect ratio, or Number of output rows and columns.

When you select Output size as a percentage of input size, the Resize factor in percentage parameter appears in the dialog box. Enter a scalar percentage value that is applied to both rows and columns.

When you select Number of output columns and preserve aspect ratio, the Number of output columns parameter appears in the dialog box. Enter a scalar value that represents the number of columns you want the output image to have. The block calculates the number of output rows so that the output image has the same aspect ratio as the input image.

When you select Number of output rows and preserve aspect ratio, the Number of output rows parameter appears in the dialog box. Enter a scalar value that represents the number of rows you want the output image to have. The block calculates the number of output columns so that the output image has the same aspect ratio as the input image.

When you select Number of output rows and columns, the Number of output rows and columns parameter appears in the dialog box. Enter a two-element vector, where the first element is the number of rows in the output image and the second element is the number of columns. In this case, the aspect ratio of the image can change.

\section*{Resize factor in percentage}

Enter a scalar percentage value that is applied to both rows and columns or a twoelement vector, where the first element is the percentage by which to resize the rows and the second element is the percentage by which to resize the columns. This parameter is visible if, for the Specify parameter, you select Output size as a percentage of input size.

You must enter a scalar value that is greater than zero. The table below describes the affect of the resize factor value:
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Resize factor in \\
percentage
\end{tabular} & Resizing of image \\
\hline \begin{tabular}{l}
\(0<\) resize factor \(<\) \\
100
\end{tabular} & The block shrinks the image. \\
\hline resize factor \(=100\) & Image unchanged. \\
\hline
\end{tabular}
```

Resize factor in Resizing of image
percentage
resize factor > 100 The block enlarges the image.

```

The dimensions of the output matrix depend on the Resize factor in percentage parameter and are given by the following equations:
number_output_rows = round(number_input_rows*resize_factor/100);
number_output_cols = round(number_input_cols*resize_factor/100);

\section*{Number of output columns}

Enter a scalar value that represents the number of columns you want the output image to have. This parameter is visible if, for the Specify parameter, you select Number of output columns and preserve aspect ratio.

\section*{Number of output rows}

Enter a scalar value that represents the number of rows you want the output image to have. This parameter is visible if, for the Specify parameter, you select Number of output rows and preserve aspect ratio.

\section*{Number of output rows and columns}

Enter a two-element vector, where the first element is the number of rows in the output image and the second element is the number of columns. This parameter is visible if, for the Specify parameter, you select Number of output rows and columns.

\section*{Interpolation method}

Specify which interpolation method to resize the image.
When you select Nearest neighbor, the block uses one nearby pixel to interpolate the pixel value. This option though the most efficient, is the least accurate. When you select Bilinear, the block uses four nearby pixels to interpolate the pixel value. When you select Bicubic or Lanczos2, the block uses 16 nearby pixels to interpolate the pixel value. When you select Lanczos3, the block uses 36 surrounding pixels to interpolate the pixel value.

The Resize block performs optimally when you set this parameter to Nearest neighbor with one of the following conditions:
- You set the Resize factor in percentage parameter to a multiple of 100.
- Dividing 100 by the Resize factor in percentage parameter value results in an integer value.

\section*{Perform antialiasing when resize factor is between 0 and 100}

If you select this check box, the block performs low-pass filtering on the input image before shrinking it to prevent aliasing.

\section*{Enable ROI processing}

Select this check box to resize a particular region of each image. This parameter is available when the Specify parameter is set to Number of output rows and columns, the Interpolation method parameter is set to Nearest neighbor, Bilinear, or Bicubic, and the Perform antialiasing when resize factor is between 0 and 100 check box is not selected.

\section*{Output flag indicating if any part of ROI is outside image bounds}

If you select this check box, the Flag port appears on the block. The block outputs 1 at this port if the ROI is completely or partially outside the input image. Otherwise, it outputs 0 .

\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

\section*{Interpolation weights table}

Choose how to specify the word length of the values of the interpolation weights table. The fraction length of the interpolation weights table values is always equal to the word length minus one:
- When you select Same as input, the word length of the interpolation weights table values match that of the input to the block.
- When you select Binary point scaling, you can enter the word length of the interpolation weights table values, in bits.
- When you select Slope and bias scaling, you can enter the word length of the interpolation weights table values, in bits.

\section*{Product output}

As depicted in the preceding diagram, the output of the multiplier is placed into the product output data type and scaling. Use this parameter to specify how to designate this product output word and fraction lengths.
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

\section*{Accumulator}

As depicted in the preceding diagram, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as each element of the input is added to it. Use this parameter to specify how to designate this accumulator word and fraction lengths.
- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

\section*{Output}

Choose how to specify the word length and fraction length of the output of the block:
- When you select Same as input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

\section*{Lock data type settings against change by the fixed-point tools}

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink documentation.

\section*{References}
[1] Ward, Joseph and David R. Cok. "Resampling Algorithms for Image Resizing and Rotation", Proc. SPIE Digital Image Processing Applications, vol. 1075, pp. 260-269, 1989.
[2] Wolberg, George. Digital Image Warping. Washington: IEEE Computer Society Press, 1990.

\section*{See Also}
\begin{tabular}{|l|l|}
\hline Rotate & Computer Vision Toolbox software \\
\hline Shear & Computer Vision Toolbox software \\
\hline Translate & Computer Vision Toolbox software \\
\hline imresize & Image Processing Toolbox software \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

Introduced before R2006a

\section*{Rotate}

Rotate image by specified angle

\section*{Library}

Geometric Transformations
visiongeotforms

\section*{Description}

Use the Rotate block to rotate an image by an angle specified in radians.

Note This block supports intensity and color images on its ports.
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline Image & \begin{tabular}{l}
M-by-N matrix of intensity values or an M-by-N-by-P color video signal where \\
P is the number of color planes
\end{tabular} \\
\hline Angle & Rotation angle \\
\hline Output & Rotated matrix \\
\hline
\end{tabular}

The Rotate block uses the 3-pass shear rotation algorithm to compute its values, which is different than the algorithm used by the imrotate function in the Image Processing Toolbox.

\section*{Fixed-Point Data Types}

The following diagram shows the data types used in the Rotate block for bilinear interpolation of fixed-point signals.

You can set the angle values, product output, accumulator, and output data types in the block mask.

The Rotate block requires additional data types. The Sine table value has the same word length as the angle data type and a fraction length that is equal to its word length minus one. The following diagram shows how these data types are used inside the block.

Note If overflow occurs, the rotated image might appear distorted.

\section*{Parameters}

\section*{Output size}

Specify the size of the rotated matrix. If you select Expanded to fit rotated input image, the block outputs a matrix that contains all the rotated image values. If you select Same as input image, the block outputs a matrix that contains the middle part of the rotated image. As a result, the edges of the rotated image might be cropped. Use the Background fill value parameter to specify the pixel values outside the image.

\section*{Rotation angle source}

Specify how to enter your rotation angle. If you select Specify via dialog, the Angle (radians) parameter appears in the dialog box.

If you select Input port, the Angle port appears on the block. The block uses the input to this port at each time step as your rotation angle. The input to the Angle port must be the same data type as the input to the I port.

\section*{Angle (radians)}

Enter a real, scalar value for your rotation angle. This parameter is visible if, for the Rotation angle source parameter, you select Specify via dialog.

When the rotation angle is a multiple of pi/2, the block uses a more efficient algorithm. If the angle value you enter for the Angle (radians) parameter is within 0.00001 radians of a multiple of \(\mathrm{pi} / 2\), the block rounds the angle value to the multiple of \(\mathrm{pi} / 2\) before performing the rotation.

\section*{Maximum angle (enter pi radians to accommodate all positive and negative angles)}

Enter the maximum angle by which to rotate the input image. Enter a scalar value, between 0 and \(\Pi\) radians. The block determines which angle, \(0 \leq\) angle \(\leq\) maxangle, requires the largest output matrix and sets the dimensions of the output port accordingly.

This parameter is visible if you set the Output size parameter, to Expanded to fit rotated input image, and the Rotation angle source parameter toInput port.

\section*{Display rotated image in}

Specify how the image is rotated. If you select Center, the image is rotated about its center point. If you select Top-left corner, the block rotates the image so that two corners of the rotated input image are always in contact with the top and left sides of the output image.

This parameter is visible if, for the Output size parameter, you select Expanded to fit rotated input image, and, for the Rotation angle source parameter, you select Input port.

\section*{Sine value computation method}

Specify the value computation method. If you select Trigonometric function, the block computes sine and cosine values it needs to calculate the rotation of your image during the simulation. If you select Table lookup, the block computes and stores
the trigonometric values it needs to calculate the rotation of your image before the simulation starts. In this case, the block requires extra memory.

\section*{Background fill value}

Specify a value for the pixels that are outside the image.

\section*{Interpolation method}

Specify which interpolation method the block uses to rotate the image. If you select Nearest neighbor, the block uses the value of one nearby pixel for the new pixel value. If you select Bilinear, the new pixel value is the weighted average of the four nearest pixel values. If you select Bicubic, the new pixel value is the weighted average of the sixteen nearest pixel values.

The number of pixels the block considers affects the complexity of the computation. Therefore, the Nearest-neighbor interpolation is the most computationally efficient. However, because the accuracy of the method is proportional to the number of pixels considered, the Bicubic method is the most accurate. For more information, see "Nearest Neighbor, Bilinear, and Bicubic Interpolation Methods" in the Computer Vision Toolbox User's Guide.

\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

\section*{Angle values}

Choose how to specify the word length and the fraction length of the angle values.
- When you select Same word length as input, the word length of the angle values match that of the input to the block. In this mode, the fraction length of the angle values is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the angle values.
- When you select Specify word length, you can enter the word length of the angle values, in bits. The block automatically sets the fraction length to give you the best precision.
- When you select Binary point scaling, you can enter the word length and the fraction length of the angle values, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the angle values. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

This parameter is only visible if, for the Rotation angle source parameter, you select Specify via dialog.

\section*{Product output}

As depicted in the previous figure, the output of the multiplier is placed into the product output data type and scaling. Use this parameter to specify how to designate this product output word and fraction lengths.
- When you select Same as first input, these characteristics match those of the input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

\section*{Accumulator}

As depicted in the previous figure, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as each element of the input is added to it. Use this parameter to specify how to designate this accumulator word and fraction lengths.
- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as first input, these characteristics match those of the first input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

\section*{Output}

Choose how to specify the word length and fraction length of the output of the block:
- When you select Same as first input, these characteristics match those of the first input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

\section*{Lock data type settings against change by the fixed-point tools}

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink documentation.

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Image & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- 8-, 16-, 32-bit signed integer \\
- 8-, 16-, 32-bit unsigned integer
\end{tabular} \\
\hline Angle & Same as Image port \\
\hline Output & Same as Image port \\
\hline
\end{tabular}

If the data type of the input signal is floating point, the output signal is the same data type as the input signal.

\section*{References}
[1] Wolberg, George. Digital Image Warping. Washington: IEEE Computer Society Press, 1990.

\section*{See Also}
\begin{tabular}{|l|l|}
\hline Resize & Computer Vision Toolbox software \\
\hline Translate & Computer Vision Toolbox software \\
\hline Shear & Computer Vision Toolbox software \\
\hline imrotate & Image Processing Toolbox software \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\author{
C/C++ Code Generation \\ Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\). \\ Introduced before R2006a
}

\section*{Shear}

Shift rows or columns of image by linearly varying offset

\section*{Library}

Geometric Transformations
visiongeotforms

\section*{Description}

The Shear block shifts the rows or columns of an image by a gradually increasing distance left or right or up or down.

Note This block supports intensity and color images on its ports.
\begin{tabular}{|l|l|l|l|}
\hline Port & Input/Output & Supported Data Types & \begin{tabular}{l}
Complex \\
Values \\
Supported
\end{tabular} \\
\hline Image & \begin{tabular}{l}
M-by-N matrix of intensity values \\
or an M-by-N-by-P color video \\
signal where P is the number of \\
color planes
\end{tabular} & \begin{tabular}{l}
-
\end{tabular} \begin{tabular}{l}
Double-precision floating point \\
Single-precision floating point \\
Fixed point
\end{tabular} & No \\
& & \begin{tabular}{l}
- \\
8-, 16-, 32-bit signed integer \\
\(8-, 16-, 32-b i t ~ u n s i g n e d ~ i n t e g e r ~\)
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Port & Input/Output & Supported Data Types & \begin{tabular}{l}
Complex \\
Values \\
Supported
\end{tabular} \\
\hline S & \begin{tabular}{l}
Two-element vector that \\
represents the number of pixels by \\
which you want to shift your first \\
and last rows or columns
\end{tabular} & Same as I port & No \\
\hline Output & Shifted image & Same as I port & No \\
\hline
\end{tabular}

If the data type of the input to the I port is floating point, the input to the S port of this block must be the same data type. Also, the block output is the same data type.

Use the Shear direction parameter to specify whether you want to shift the rows or columns. If you select Horizontal, the first row has an offset equal to the first element of the Row/column shear values [first last] vector. The following rows have an offset that linearly increases up to the value you enter for the last element of the Row/column shear values [first last] vector. If you select Vertical, the first column has an offset equal to the first element of the Row/column shear values [first last] vector. The following columns have an offset that linearly increases up to the value you enter for the last element of the Row/column shear values [first last] vector.

Use the Output size after shear parameter to specify the size of the sheared image. If you select Full, the block outputs a matrix that contains the entire sheared image. If you select Same as input image, the block outputs a matrix that is the same size as the input image and contains the top-left portion of the sheared image. Use the Background fill value parameter to specify the pixel values outside the image.

Use the Shear values source parameter to specify how to enter your shear parameters. If you select Specify via dialog, the Row/column shear values [first last] parameter appears in the dialog box. Use this parameter to enter a two-element vector that represents the number of pixels by which you want to shift your first and last rows or columns. For example, if for the Shear direction parameter you select Horizontal and, for the Row/column shear values [first last] parameter, you enter [50 150], the block moves the top-left corner 50 pixels to the right and the bottom left corner of the input image 150 pixels to the right. If you want to move either corner to the left, enter negative values. If for the Shear direction parameter you select Vertical and, for the Row/ column shear values [first last] parameter, you enter [-10 50], the block moves the top-left corner 10 pixels up and the top right corner 50 pixels down. If you want to move either corner down, enter positive values.

Use the Interpolation method parameter to specify which interpolation method the block uses to shear the image. If you select Nearest neighbor, the block uses the value of the nearest pixel for the new pixel value. If you select Bilinear, the new pixel value is the weighted average of the two nearest pixel values. If you select Bicubic, the new pixel value is the weighted average of the four nearest pixel values.

The number of pixels the block considers affects the complexity of the computation. Therefore, the nearest-neighbor interpolation is the most computationally efficient. However, because the accuracy of the method is proportional to the number of pixels considered, the bicubic method is the most accurate. For more information, see "Nearest Neighbor, Bilinear, and Bicubic Interpolation Methods" in the Computer Vision Toolbox User's Guide .

If, for the Shear values source parameter, you select Input port, the S port appears on the block. At each time step, the input to the S port must be a two-element vector that represents the number of pixels by which to shift your first and last rows or columns.

If, for the Output size after shear parameter, you select Full, and for the Shear values source parameter, you select Input port, the Maximum shear value parameter appears in the dialog box. Use this parameter to enter a real, scalar value that represents the maximum number of pixels by which to shear your image. The block uses this parameter to determine the size of the output matrix. If any input to the \(S\) port is greater than the absolute value of the Maximum shear value parameter, the block saturates to the maximum value.

\section*{Fixed-Point Data Types}

The following diagram shows the data types used in the Shear block for bilinear interpolation of fixed-point signals.

You can set the product output, accumulator, and output data types in the block mask.

\section*{Parameters}

\section*{Shear direction}

Specify whether you want to shift the rows or columns of the input image. Select Horizontal to linearly increase the offset of the rows. Select Vertical to steadily increase the offset of the columns.

\section*{Output size after shear}

Specify the size of the sheared image. If you select Full, the block outputs a matrix that contains the sheared image values. If you select Same as input image, the block outputs a matrix that is the same size as the input image and contains a portion of the sheared image.

\section*{Shear values source}

Specify how to enter your shear parameters. If you select Specify via dialog, the Row/column shear values [first last] parameter appears in the dialog box. If you
select Input port, port S appears on the block. The block uses the input to this port at each time step as your shear value.

\section*{Row/column shear values [first last]}

Enter a two-element vector that represents the number of pixels by which to shift your first and last rows or columns. This parameter is visible if, for the Shear values source parameter, you select Specify via dialog.

\section*{Maximum shear value}

Enter a real, scalar value that represents the maximum number of pixels by which to shear your image. This parameter is visible if, for the Shear values source parameter, you select Input port.

\section*{Background fill value}

Specify a value for the pixels that are outside the image. This parameter is tunable.

\section*{Interpolation method}

Specify which interpolation method the block uses to shear the image. If you select Nearest neighbor, the block uses the value of one nearby pixel for the new pixel value. If you select Bilinear, the new pixel value is the weighted average of the two nearest pixel values. If you select Bicubic, the new pixel value is the weighted average of the four nearest pixel values.

\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

\section*{Shear values}

Choose how to specify the word length and the fraction length of the shear values.
- When you select Same word length as input, the word length of the shear values match that of the input to the block. In this mode, the fraction length of the shear values is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the shear values.
- When you select Specify word length, you can enter the word length of the shear values, in bits. The block automatically sets the fraction length to give you the best precision.
- When you select Binary point scaling, you can enter the word length and the fraction length of the shear values, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the shear values. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

This parameter is visible if, for the Shear values source parameter, you select Specify via dialog.

\section*{Product output}

As depicted in the previous figure, the output of the multiplier is placed into the product output data type and scaling. Use this parameter to specify how to designate this product output word and fraction lengths.
- When you select Same as first input, these characteristics match those of the first input to the block at the I port.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

\section*{Accumulator}

As depicted in the previous figure, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as each element of the input is added to it. Use this parameter to specify how to designate this accumulator word and fraction lengths.
- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as first input, these characteristics match those of the first input to the block at the I port.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

\section*{Output}

Choose how to specify the word length and fraction length of the output of the block:
- When you select Same as first input, these characteristics match those of the first input to the block at the I port.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

\section*{Lock data type settings against change by the fixed-point tools}

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink documentation.

\section*{References}
[1] Wolberg, George. Digital Image Warping. Washington: IEEE Computer Society Press, 1990.

\section*{See Also}
\begin{tabular}{|l|l|}
\hline Resize & Computer Vision Toolbox software \\
\hline Rotate & Computer Vision Toolbox software \\
\hline Translate & Computer Vision Toolbox software \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{Introduced before R2006a}

\section*{Template Matching}

Locate a template in an image
Library: Computer Vision Toolbox / Analysis \& Enhancement

\section*{Description}

The Template Matching block finds the best match of a template within an input image. The block computes match metric values by shifting a template over a region of interest or the entire image, and then finds the best match location.

The block outputs either the match metric values or the one-based \((x, y)\) coordinates of the best template match. Optionally the lbock can output an \(N\)-by- \(N\) matrix of the match metric values centered around the best match location.

\section*{Ports}

\section*{Input}

\section*{I - Image}
image
Input image to use with the template. The block does not pad the input data. Therefore, it can only compute values for the match metrics between the input image and the template, where the template is positioned such that it falls entirely on the input image. A set of all such positions of the template is termed as the valid region of the input image. The size of the valid region is the difference between the sizes of the input and template images plus one.
\(\operatorname{size}_{\text {valid }}=\) size \(_{\text {input }}-\) size \(_{\text {template }}+1\)
Data Types: single | double | int8 | int16|int32|uint8|uint16|uint32|
Boolean|fixed point

1-413

\section*{T - Template \\ \(M\)-by- \(N\) matrix}

Template, specified as an \(M\)-by- \(N\) matrix
The Template Matching block does not pad the input data. Therefore, it can only compute values for the match metrics between the input image and the template, where the template is positioned such that it falls entirely on the input image. A set of all such positions of the template is termed as the valid region of the input image. The size of the valid region is the difference between the sizes of the input and template images plus one.
\(\operatorname{size}_{\text {valid }}=\) size \(_{\text {input }}-\) size \(_{\text {template }}+1\)
Data Types: single | double | uint8 | Boolean|fixed point

\section*{ROI - Region of interest}
four-element vector
Region of interest vector in the format (\(x, y\),width,height), where (\(x, y\)) are one-based coordinates for the upper-left corner of the region. The block outputs the best match location index relative to the top left corner of the input image.
Data Types: single|double|uint8|Boolean|fixed point

\section*{Output}

\section*{Metric - Match metric values}
matrix
Matrix of match metric values. The matrix of the match metrics always implements singlestep exhaustive window iteration. Therefore, the block computes the metric values at every pixel.

\section*{Dependencies}

When you set the Output parameter to Metric matrix, the block outputs the valid image size.
Data Types: single|double|uint8|Boolean|fixed point

\section*{Loc - Best match locations}
two-element vector

Best template match located at the one-based (\(x, y\)) coordinates. When in the ROI processing mode, the block treats the image around the ROI as an extension of the ROI subregion. Therefore, it computes the best match locations true to the actual boundaries of the ROI. The block outputs the best match coordinates, relative to the top-left corner of the image. The one-based [x y] coordinates of the location correspond to the center of the template. The following table shows how the block outputs the center coordinates for odd and even templates:

\section*{Data Types: uint32}

\section*{NMetric - Metric values in neighborhood of best match}
\(N\)-by- \(N\) matrix
Metric values in the neighborhood of the best match, returned as an \(N\)-by- \(N\) matrix. \(N\), specified in the mask, must be an odd number. When you select Best match location to return the matrix of metrics in a neighborhood around the best match, an exhaustive loop computes all the metric values for the \(N\)-by- \(N\) neighborhood. This output is particularly useful for performing template matching with subpixel accuracy.
Data Types: single|double|uint8|Boolean|fixed point

\section*{NValid - Valid neighborhood}
off | on

Enable to track the valid neighborhood region. The neighborhood matrix of metric values is valid inside of the ROI. The block sets the NValid output as follows:
- 1 - The neighborhood containing the best match is completely inside the region of interest.
- 0 - The neighborhood containing the best match is completely or partially outside of the region of interest.

\section*{Dependencies}

This port appears when you enable the Output NxN matrix of metric values around best match parameter.

Data Types: Boolean

\section*{ROIValid - Valid region of interest \\ off | on}

Enable to track the valid region of interest. If the ROI lies partially outside the valid image, the block only processes the intersection of the ROI and the valid image. The block sets the ROIValid output as follows:
- 1 - The ROI lies completely inside the valid part of the input image.
- 0 - The ROI lies completely or partially outside of the valid part of the input image.

\section*{Dependencies}

This port appears when you enable the Output flag indicating if ROI is valid parameter.

\section*{Data Types: Boolean}

\section*{Parameters}

\section*{Main Tab}

Match metric - Match metric
Sum of absolute differences (default)|Sum of squared differences | Maximum absolute difference

Select match metric as one of:
- Sum of absolute differences (SAD)
- Sum of squared differences (SSD)
- Maximum absolute difference (MaxAD)

The block computes the match metric at each step of the iteration. Choose the match metric that best suits your application. The block calculates the global optimum for the best metric value. It uses the valid subregion of the input image intersected by the ROI, if provided.

\section*{Output - Match metric}

Match metric (default)|Best match location
Select the type of output as one of:
- Match metric - Output the match metric matrix. This option adds the Metric output port to the block.
- Best match location - Output the \([x, y]\) coordinates for the location of the best match. This option adds the Loc output port to the block. It also makes the Search method, Output NxN matrix of metric values around best match, and Enable ROI processing parameters available.

The Output parameter on the Data Types pane appears when you set the Output parameter on the Main tab to Metric matrix or if you set it to Best match location and you enable the Output NxN matrix of metric values around best match parameter.

\section*{Search method - Search method \\ Exhaustive (default) |Three-step}

Specify the search method as either Exhaustive or Three-step. The Exhaustive search method is computationally intensive because it searches at every pixel location of the image. However, this method provides a more precise result.

The Three-step search method is a fast search that uses a neighborhood approach versus a search at every pixel. The search starts with a step size equal to or slightly greater than half of the maximum search range and then employs the following steps:

1 The block compares nine search points in each step. There is a central point and eight search points located on the search area boundary.
2 The block decrements the step size by one, after each step, ending the search with a step size of one pixel.

3 At each new step, the block moves the search center to the best matching point resulting from the previous step. The number one blue circles in the figure below represent a search with a starting step size of three. The number two green circles represent the next search, with step size of two, centered around the best match found from the previous search. Finally, the number three orange circles represent the final search, with step size of one, centered around the previous best match.

\section*{Dependencies}

This parameter appears when you set the Output parameter to Best match location.

\section*{Output NxN matrix of metric values around best match - Output \(\boldsymbol{N}\)-by-N matrix}
on (default) | off
Enable to add the NMetric and NValid ports.

\section*{Dependencies}

This parameter appears when you set the Output parameter to Best match location.

\section*{N - Size of output matrix}

3 (default) | integer
Size of output matrix. This value determines the size of the \(N\)-by- \(N\) output matrix centered around the best match location index. \(N\) must be an odd number.

\section*{Dependencies}

This parameter appears when you enable the Output NxN matrix of metric values around best match parameter.

\section*{Enable ROI processing - Enable ROI processing}
on (default) | off
Enable ROI processing.

\section*{Dependencies}
- This parameter appears when you set the Output parameter to Best match location.
- When you enable this parameter, the block adds the ROI input port, and the Output flag indicating if ROI is valid parameter appears.

\section*{Output flag indicating if ROI is valid - Valid ROI off (default) | on}

Enable to add the ROIValid port.

\section*{Dependencies}

This parameter appears when you enable the Enable ROI processing parameter.

\section*{Data Types Tab}

For details on the fixed-point block parameters, see "Specify Fixed-Point Attributes for Blocks" .

\section*{Block Characteristics}
Data Types \(\quad\) Boolean | double | fixed point | integer | single
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Multidimensional \\
Signals
\end{tabular} & no \\
\hline \begin{tabular}{l}
Variable-Size \\
Signals
\end{tabular} & yes \\
\hline
\end{tabular}

\section*{Algorithms}

\section*{Match Metrics}

The match metrics use a difference equation with general form:
\[
d_{p}(x, y)=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}
\]
\(l_{n}^{p}\) denotes the metric space \(\left(R^{n}, d_{p}\right)\) for \(R^{n} n>1\).

\section*{Sum of Absolute Differences (SAD)}

The SAD metric is also known as the Taxicab or Manhattan Distance metric. It sums the absolute values of the differences between pixels in the original image and the corresponding pixels in the template image. This metric is the \(l^{1}\) norm of the difference image. The lowest SAD score estimates the best position of template within the search image. The general SAD distance metric becomes:
\[
d_{1}\left(I_{j}, T\right)=\sum_{i=1}^{n}\left|I_{i, j}-T_{i}\right|
\]

\section*{Sum of Squared Differences (SSD)}

The SSD metric is also known as the Euclidean Distance metric. It sums the square of the absolute differences between pixels in the original image and the corresponding pixels in the template image. This metric is the square of the \(l^{2}\) norm of the difference image. The general SSD distance metric becomes:
\[
d_{2}\left(I_{j}, T\right)=\sum_{i=1}^{n}\left|I_{i, j}-T_{i}\right|^{2}
\]

\section*{Maximum Absolute Difference (MaxAD)}

The MaxAD metric is also known as the Uniform Distance metric. It sums the maximum of absolute values of the differences between pixels in the original image and the corresponding pixels in the template image. This distance metric provides the \(l^{\infty}\) norm of the difference image. The general MaxAD distance metric becomes:
\[
d_{\infty}\left(I_{j}, T\right)=\lim _{x \rightarrow \infty} \sum_{i=1}^{n}\left|I_{i, j}-T_{i}\right|^{p}
\]
which simplifies to:
\[
d_{\infty}\left(I_{j}, T\right)=\max _{i}^{n}\left|I_{i, j}-T_{i}\right|^{p}
\]

\section*{References}
[1] Koga T., et. Al. Motion-compensated interframe coding for video conferencing. In National Telecommunications Conference. Nov. 1981, G5.3.1-5, New Orleans, LA.
[2] Zakai M., "General distance criteria" IEEE Transaction on Information Theory, pp. 9495, January 1964.
[3] Yu, J., J. Amores, N. Sebe, Q. Tian, "A New Study on Distance Metrics as Similarity Measurement" IEEE International Conference on Multimedia and Expo, 2006 .

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }_{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{Fixed-Point Conversion}

Design and simulate fixed-point systems using Fixed-Point Designer \({ }^{\mathrm{TM}}\).

\author{
See Also \\ Block Matching \\ Topics \\ "Video Stabilization" \\ Introduced in R2009b
}

\section*{To Multimedia File}

Write video frames and audio samples to multimedia file

To Multimedia File

\section*{Library}

Sinks
```

visionsinks

```

\section*{Description}

The To Multimedia File block writes video frames, audio samples, or both to a multimedia (.avi, .wav, .mj2, .mp4, or .m4v) file.

You can compress the video frames or audio samples by selecting a compression algorithm. You can connect as many of the input ports as you want. Therefore, you can control the type of video and/or audio the multimedia file receives.

Note This block supports code generation for platforms that have file I/O available. You cannot use this block with Simulink Desktop Real-Time software, because that product does not support file I/O.

This block performs best on platforms with Version 11 or later of Windows Media \({ }^{\circledR}\) Player software. This block supports only uncompressed RGB24 AVI files on Linux and Mac platforms.

The generated code for this block relies on prebuilt library files. You can run this code outside the MATLAB environment, or redeploy it, but be sure to account for these extra
library files when doing so. The packNGo function creates a single zip file containing all of the pieces required to run or rebuild this code. See packNGo for more information.

To run an executable file that was generated from a model containing this block, you may need to add precompiled shared library files to your system path. See "Simulink Coder", "Simulink Shared Library Dependencies", and "Accelerating Simulink Models" for details.

\section*{Ports}
\begin{tabular}{|l|l|}
\hline Port & Description \\
\hline Image & \(M\)-by- \(N\)-by-3 matrix RGB, Intensity, or YCbCr 4:2:2 signal. \\
\hline R, G, B & \begin{tabular}{l}
Matrix that represents one plane of the RGB video stream. Inputs to \\
the R, G, or B port must have the same dimensions and data type.
\end{tabular} \\
\hline Audio & Vector of audio data \\
\hline Y, Cb, Cr & \begin{tabular}{l}
Matrix that represents one frame of the YCbCr video stream. The Y, Cb, \\
and Cr ports use the following dimensions: \\
Y: \(M \times N\) \\
Cb: \(M \times \frac{N}{2}\) \\
\(C r: M \times \frac{N}{2}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Parameters}

\section*{File name}

Specify the name of the multimedia file. The block saves the file in your current folder. To specify a different file or location, click the Save As... button.

\section*{File type}

Specify the file type of the multimedia file. You can select avi or wav.

\section*{Write}

Specify whether the block writes video frames, audio samples, or both to the multimedia file. You can select Video and audio, Video only, or Audio only.

\section*{Video Quality}

Quality of the video, specified as an integer scalar in the range [0 100]. This parameter applies only when you set File name to MPEG4 and Write to Video only. By default, this parameter is set to 75 .

\section*{Compression Factor (>1)}

Specify the compression factor as an integer scalar greater than 1. This parameter is applicable only when the File type is set to MJ2000 and Video compressor is set to Lossy. By default, this parameter is set to 10.

\section*{Audio compressor}

Select the type of compression algorithm to use to compress the audio data. This compression reduces the size of the multimedia file. Choose None (uncompressed) to save uncompressed audio data to the multimedia file.

Note The other items available in this parameter list are the audio compression algorithms installed on your system. For information about a specific audio compressor, see the documentation for that compressor.

\section*{Audio data type}

Select the audio data type. You can use the Audio data type parameter only for uncompressed wave files.

\section*{Video compressor}

Select the type of compression algorithm to use to compress the video data. This compression reduces the size of the multimedia file. Choose None (uncompressed) to save uncompressed video data to the multimedia file.

Note The other items available in this parameter list are the video compression algorithms installed on your system. For information about a specific video compressor, see the documentation for that compressor.

\section*{File color format}

Select the color format of the data stored in the file. You can select either RGB or YCbCr 4:2:2.

\section*{Image signal}

Specify how the block accepts a color video signal. If you select One multidimensional signal, the block accepts an \(M\)-by- \(N\)-by- \(P\) color video signal, where \(P\) is the number of color planes, at one port. If you select Separate color signals, additional ports appear on the block. Each port accepts one \(M\)-by- \(N\) plane of an RGB video stream.

\section*{Supported Data Types}

For the block to display video data properly, double- and single-precision floating-point pixel values must be between 0 and 1 . Any other data type requires the pixel values between the minimum and maximum values supported by their data type.

Check the specific codecs you are using for supported audio rates.
\begin{tabular}{|c|c|c|}
\hline Port & Supported Data Types & Supports Complex Values? \\
\hline Image & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Boolean \\
- 8-, 16-32-bit signed integers \\
- 8-, 16-32-bit unsigned integers
\end{tabular} & No \\
\hline R, G, B & Same as Image port & No \\
\hline Audio & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- 16-bit signed integers \\
- 32-bit signed integers \\
- 8-bit unsigned integers
\end{tabular} & No \\
\hline Y, Cb, Cr & Same as Image port & No \\
\hline
\end{tabular}

\section*{See Also}

From Multimedia File Computer Vision Toolbox

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
Usage notes and limitations:
- Host computer only. Excludes Simulink Desktop Real-Time code generation.
- The executable generated from this block relies on prebuilt dynamic library files (. dll files) included with MATLAB. Use the packNGo function to package the code generated from this block and all the relevant files in a compressed zip file. Using this zip file, you can relocate, unpack, and rebuild your project in another development environment where MATLAB is not installed. For more details, see .

\section*{Introduced before R2006a}

\section*{To Video Display}

Display video data

To Video Display

\section*{Library}

Sinks
visionsinks

\section*{Description}

The To Video Display block displays video frames. This block is capable of displaying high definition video at high frame rates. It provides a lightweight, high performance, simple display, which accepts RGB and YCbCr formatted images. This block also generates code.

The generated code for this block relies on prebuilt .dll files. You can run this code outside the MATLAB environment, or redeploy it, but be sure to account for these extra .dll files when doing so. The packNGo function creates a single zip file containing all of the pieces required to run or rebuild this code. See packNGo for more information.

To run an executable file that was generated from a model containing this block, you may need to add precompiled shared library files to your system path. See "Simulink Coder", "Simulink Shared Library Dependencies", and "Accelerating Simulink Models" for details.

For the block to display video data properly, double- and single-precision floating-point pixel values must be from 0 to 1 . For any other data type, the pixel values must be between the minimum and maximum values supported by their data type.

You can set the display for full screen, normal or, to maintain one-to-one size. When you save the model, the size and position of the display window is saved. Any changes while
working with the model should be saved again in order that these preferences are maintained when you run the model. The minimum display width of the window varies depending on your system's font size settings.

\section*{Rapid Accelerator}

When you set your model to run in "Accelerator Mode" (Simulink), and do not select the Open at Start of Simulation option, the block will not be included during the run, and therefore the video display will not be visible.

\section*{Parameters}

\section*{View Options}

\section*{Window Size}

Select Full-screen mode to display your video stream in a full screen window. To exit or return to other applications from full-screen, select the display and use the Esc key.
Select Normal mode to modify display size at simulation start time.
Select True Size (1:1) mode to display a one-to-one pixel ratio of input image at simulation start time. The block displays the same information per pixel and does not change size from the input size. You can change the display size after the model starts.

\section*{Open at Start of Simulation}

Select Open at Start of Simulation from the View menu for the display window to appear while running the model. If not selected, you can double click the block to display the window.

\section*{Settings Options}

\section*{Input Color Format}

Select the color format of the data stored in the input image.
Select RGB for the block to accept a matrix that represents one plane of the RGB video stream. Inputs to the \(\mathbf{R}, \mathbf{G}\), or \(\mathbf{B}\) ports must have the same dimension and data type.

Select YCbCr 4:2:2 for the block to accept a matrix that represents one frame of the YCbCr video stream. The \(\mathbf{Y}\) port accepts an \(M\)-by- \(N\) matrix. The \(\mathbf{C b}\) and \(\mathbf{C r}\) ports accepts an \(M\)-by- \(N / 2\) matrix.

\section*{Image Signal}

Specify how the block accepts a color video signal.
Select One multidimensional signal, for the block to accept an \(M\)-by- \(N\)-by-3 color video signal at one port.
Select Separate color signals, for additional ports to appear on the block. Each port accepts one \(M\)-by- \(N\) plane of an RGB video stream.

\section*{Supported Data Types}
\begin{tabular}{|c|c|}
\hline Port & Supported Data Types \\
\hline Image & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Boolean \\
- 8 -, 16, and 32 -bit signed integer \\
- 8 -, 16, and 32 -bit unsigned integer
\end{tabular} \\
\hline R, G, B & Same as Image port \\
\hline YCbCr 4:2:2 & Same as Image ports \\
\hline
\end{tabular}

\section*{See Also}
\begin{tabular}{|l|l|}
\hline Frame Rate Display & Computer Vision Toolbox software \\
\hline From Multimedia File & Computer Vision Toolbox software \\
\hline To Multimedia File & Computer Vision Toolbox software \\
\hline Video To Workspace & Computer Vision Toolbox software \\
\hline Video Viewer & Computer Vision Toolbox software \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
Usage notes and limitations:
- Generates code only on host platforms.
- Generated code for this function uses a precompiled platform-specific shared library.

Introduced before R2006a

\section*{Top-hat}

Perform top-hat filtering on intensity or binary images

Top-hat

\section*{Library}

Morphological Operations
visionmorphops

\section*{Description}

The Top-hat block performs top-hat filtering on an intensity or binary image using a predefined neighborhood or structuring element. Top-hat filtering is the equivalent of subtracting the result of performing a morphological opening operation on the input image from the input image itself. This block uses flat structuring elements only.
\begin{tabular}{|c|c|c|c|}
\hline ort & Input/Output & Supported Data Types & Complex Values Supported \\
\hline & Vector or matrix of intensity values & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- Boolean \\
- 8-, 16-, and 32-bit signed integer \\
- 8 -, 16-, and 32-bit unsigned integer
\end{tabular} & No \\
\hline Jhood & Matrix or vector of 1 s and 0 s that represents the neighborhood values & Boolean & No \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline ort & Input/Output & Supported Data Types & \begin{tabular}{l}
Complex Values \\
Supported
\end{tabular} \\
\hline Jutput & \begin{tabular}{l}
Scalar, vector, or matrix that represents \\
the filtered image
\end{tabular} & Same as I port & No \\
\hline
\end{tabular}

If your input image is a binary image, for the Input image type parameter, select Binary. If your input image is an intensity image, select Intensity.

Use the Neighborhood or structuring element source parameter to specify how to enter your neighborhood or structuring element values. If you select Specify via dialog, the Neighborhood or structuring element parameter appears in the dialog box. If you select Input port, the Nhood port appears on the block. Use this port to enter your neighborhood values as a matrix or vector of 1 s and 0 s. Choose your structuring element so that it matches the shapes you want to remove from your image. You can only specify a it using the dialog box.

Use the Neighborhood or structuring element parameter to define the region the block moves throughout the image. Specify a neighborhood by entering a matrix or vector of 1 s and 0 s . Specify a structuring element with the strel function from the Image Processing Toolbox. If the structuring element is decomposable into smaller elements, the block executes at higher speeds due to the use of a more efficient algorithm.

\section*{Parameters}

\section*{Input image type}

If your input image is a binary image, select Binary. If your input image is an intensity image, select Intensity.

\section*{Neighborhood or structuring element source}

Specify how to enter your neighborhood or structuring element values. Select Specify via dialog to enter the values in the dialog box. Select Input port to use the Nhood port to specify the neighborhood values. You can only specify a structuring element using the dialog box.

\section*{Neighborhood or structuring element}

If you are specifying a neighborhood, this parameter must be a matrix or vector of 1 s and 0s. If you are specifying a structuring element, use the strel function from the Image Processing Toolbox. This parameter is visible if, for the Neighborhood or structuring element source parameter, you select Specify via dialog.

\section*{See Also}
\begin{tabular}{|l|l|}
\hline Bottom-hat & Computer Vision Toolbox software \\
\hline Closing & Computer Vision Toolbox software \\
\hline Dilation & Computer Vision Toolbox software \\
\hline Erosion & Computer Vision Toolbox software \\
\hline Label & Computer Vision Toolbox software \\
\hline Opening & Computer Vision Toolbox software \\
\hline imtophat & Image Processing Toolbox software \\
\hline strel & Image Processing Toolbox software \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{Introduced before R2006a}

\section*{Trace Boundary}

Trace object boundaries in binary images

Trace Boundary

\section*{Library}

Analysis \& Enhancement

\section*{visionanalysis}

\section*{Description}

The Trace Boundary block traces object boundaries in binary images, where nonzero pixels represent objects and 0 pixels represent the background.

\section*{Port Descriptions}
\begin{tabular}{|l|l|l|}
\hline Port & Input/Output & Supported Data Types \\
\hline BW & \begin{tabular}{l}
Vector or matrix that \\
represents a binary image
\end{tabular} & Boolean \\
\hline Start Pt & \begin{tabular}{l}
One-based \([\mathrm{x}\) y] coordinates of \\
the boundary starting point.
\end{tabular} & \begin{tabular}{l}
• \begin{tabular}{l}
Double-precision floating point \\
\\
\end{tabular} \\
\end{tabular} \begin{tabular}{l}
• 8-, 16-, and 32-bit signed integer \\
- \(8-, 16-\), and 32-bit unsigned integer
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Port & Input/Output & Supported Data Types \\
\hline Pts & \begin{tabular}{l}
M-by-2 matrix of [x y] \\
coordinates of the boundary \\
points, where \(M\) represents \\
the number of traced \\
boundary pixels. \(M\) must be \\
less than or equal to the value \\
specified by the Maximum \\
number of boundary pixels \\
parameter.
\end{tabular} & Same as Start Pts port \\
{\(\left[\begin{array}{cc}x_{1} & y_{1} \\
x_{2} & y_{2} \\
x_{3} & y_{3} \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
x_{m} & y_{m}\end{array}\right]\)} & \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Connectivity}

Specify which pixels are connected to each other. If you want a pixel to be connected to the pixels on the top, bottom, left, and right, select 4. If you want a pixel to be connected to the pixels on the top, bottom, left, right, and diagonally, select 8 . For more information about this parameter, see the Label block reference page.

\section*{Initial search direction}

Specify the first direction in which to look to find the next boundary pixel that is connected to the starting pixel.

If, for the Connectivity parameter, you select 4, the following figure illustrates the four possible initial search directions:

If, for the Connectivity parameter, you select 8, the following figure illustrates the eight possible initial search directions:

\section*{Trace direction}

Specify the direction in which to trace the boundary. Your choices are Clockwise or Counterclockwise.

\section*{Maximum number of boundary pixels}

Specify the maximum number of boundary pixels for each starting point. The block uses this value to preallocate the number of rows of the Pts port output matrix so that it can hold all the boundary pixel location values.

Use the Maximum number of boundary pixels parameter to specify the maximum number of boundary pixels for the starting point.

\section*{See Also}

Edge Detection Computer Vision Toolbox software
\begin{tabular}{|l|l|}
\hline Label & Computer Vision Toolbox software \\
\hline bwboundaries & Image Processing Toolbox software \\
\hline bwtraceboundary & Image Processing Toolbox software \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \(®\) Coder \(^{\mathrm{TM}}\).

Introduced in R2011b

\section*{Translate}

Translate image in 2-D plane using displacement vector

Translate

\section*{Library}

Geometric Transformations
visiongeotforms

\section*{Description}

Use the Translate block to move an image in a two-dimensional plane using a displacement vector, a two-element vector that represents the number of pixels by which you want to translate your image. The block outputs the image produced as the result of the translation.

Note This block supports intensity and color images on its ports.
\begin{tabular}{|c|c|c|c|}
\hline Port & Input/Output & Supported Data Types & Complex Values Supported \\
\hline Image / Input & M-by-N matrix of intensity values or an M-by-N-by-P color video signal where P is the number of color planes & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- 8-, 16-, 32-bit signed integer \\
- 8 -, 16-, 32-bit unsigned integer
\end{tabular} & No \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Port & Input/Output & Supported Data Types & \begin{tabular}{l}
Complex \\
Values \\
Supported
\end{tabular} \\
\hline Offset & \begin{tabular}{l}
Vector of values that represent the \\
number of pixels by which to \\
translate the image
\end{tabular} & Same as I port & No \\
\hline Output & Translated image & Same as I port & No \\
\hline
\end{tabular}

The input to the Offset port must be the same data type as the input to the Image port. The output is the same data type as the input to the Image port.

Use the Output size after translation parameter to specify the size of the translated image. If you select Full, the block outputs a matrix that contains the entire translated image. If you select Same as input image, the block outputs a matrix that is the same size as the input image and contains a portion of the translated image. Use the Background fill value parameter to specify the pixel values outside the image.

Use the Offset source parameter to specify how to enter your displacement vector. If you select Specify via dialog, the Offset parameter appears in the dialog box. Use it to enter your displacement vector, a two-element vector, [\(r\) c], of real, integer values that represent the number of pixels by which you want to translate your image. The \(r\) value represents how many pixels up or down to shift your image. The c value represents how many pixels left or right to shift your image. The axis origin is the top-left corner of your image. For example, if you enter [2.5 3.2], the block moves the image 2.5 pixels downward and 3.2 pixels to the right of its original location. When the displacement vector contains fractional values, the block uses interpolation to compute the output.

Use the Interpolation method parameter to specify which interpolation method the block uses to translate the image. If you translate your image in either the horizontal or vertical direction and you select Nearest neighbor, the block uses the value of the nearest pixel for the new pixel value. If you translate your image in either the horizontal or vertical direction and you select Bilinear, the new pixel value is the weighted average of the four nearest pixel values. If you translate your image in either the horizontal or vertical direction and you select Bicubic, the new pixel value is the weighted average of the sixteen nearest pixel values.

The number of pixels the block considers affects the complexity of the computation. Therefore, the nearest-neighbor interpolation is the most computationally efficient. However, because the accuracy of the method is roughly proportional to the number of pixels considered, the bicubic method is the most accurate. For more information, see
"Nearest Neighbor, Bilinear, and Bicubic Interpolation Methods" in the Computer Vision Toolbox User's Guide.

If, for the Output size after translation parameter, you select Full, and for the Offset source parameter, you select Input port, the Maximum offset parameter appears in the dialog box. Use the Maximum offset parameter to enter a two-element vector of real, scalar values that represent the maximum number of pixels by which you want to translate your image. The block uses this parameter to determine the size of the output matrix. If the input to the Offset port is greater than the Maximum offset parameter values, the block saturates to the maximum values.

If, for the Offset source parameter, you select Input port, the Offset port appears on the block. At each time step, the input to the Offset port must be a vector of real, scalar values that represent the number of pixels by which to translate your image.

\section*{Fixed-Point Data Types}

The following diagram shows the data types used in the Translate block for bilinear interpolation of fixed-point signals.

You can set the product output, accumulator, and output data types in the block mask as discussed in the next section.

\section*{Parameters}

\section*{Output size after translation}

If you select Full, the block outputs a matrix that contains the translated image values. If you select Same as input image, the block outputs a matrix that is the same size as the input image and contains a portion of the translated image.

\section*{Offset source}

Specify how to enter your translation parameters. If you select Specify via dialog, the Offset parameter appears in the dialog box. If you select Input port, port O appears on the block. The block uses the input to this port at each time step as your translation values.

\section*{Offset source}

Enter a vector of real, scalar values that represent the number of pixels by which to translate your image.

\section*{Background fill value}

Specify a value for the pixels that are outside the image.

\section*{Interpolation method}

Specify which interpolation method the block uses to translate the image. If you select Nearest neighbor, the block uses the value of one nearby pixel for the new pixel value. If you select Bilinear, the new pixel value is the weighted average of the four nearest pixel values. If you select Bicubic, the new pixel value is the weighted average of the sixteen nearest pixel values.

\section*{Maximum offset}

Enter a vector of real, scalar values that represent the maximum number of pixels by which you want to translate your image. This parameter must have the same data type as the input to the Offset port. This parameter is visible if, for the Output size after translation parameter, you select Full and, for the Offset source parameter, you select Input port.

\section*{Rounding mode}

Select the rounding mode for fixed-point operations.

\section*{Overflow mode}

Select the overflow mode for fixed-point operations.

\section*{Offset values}

Choose how to specify the word length and the fraction length of the offset values.
- When you select Same word length as input, the word length of the offset values match that of the input to the block. In this mode, the fraction length of the offset values is automatically set to the binary-point only scaling that provides you with the best precision possible given the value and word length of the offset values.
- When you select Specify word length, you can enter the word length of the offset values, in bits. The block automatically sets the fraction length to give you the best precision.
- When you select Binary point scaling, you can enter the word length and the fraction length of the offset values, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the offset values. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

This parameter is visible if, for the Offset source parameter, you select Specify via dialog.

\section*{Product output}

As depicted in the previous figure, the output of the multiplier is placed into the product output data type and scaling. Use this parameter to specify how to designate this product output word and fraction lengths.
- When you select Same as first input, these characteristics match those of the first input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the product output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the product output. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

\section*{Accumulator}

As depicted in the previous figure, inputs to the accumulator are cast to the accumulator data type. The output of the adder remains in the accumulator data type as each element of the input is added to it. Use this parameter to specify how to designate this accumulator word and fraction lengths.
- When you select Same as product output, these characteristics match those of the product output.
- When you select Same as first input, these characteristics match those of the first input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the accumulator, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the accumulator. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

\section*{Output}

Choose how to specify the word length and fraction length of the output of the block:
- When you select Same as first input, these characteristics match those of the first input to the block.
- When you select Binary point scaling, you can enter the word length and the fraction length of the output, in bits.
- When you select Slope and bias scaling, you can enter the word length, in bits, and the slope of the output. The bias of all signals in the Computer Vision Toolbox blocks is 0 .

\section*{Lock data type settings against change by the fixed-point tools}

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on the block mask. For more information, see fxptdlg, a reference page on the Fixed-Point Tool in the Simulink documentation.

\section*{References}
[1] Wolberg, George. Digital Image Warping. Washington: IEEE Computer Society Press, 1990.

\section*{See Also}
\begin{tabular}{|l|l|}
\hline Resize & Computer Vision Toolbox software \\
\hline Rotate & Computer Vision Toolbox software \\
\hline Shear & Computer Vision Toolbox software \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \({ }^{\mathrm{TM}}\).

Introduced before R2006a

\section*{Video From Workspace}

\section*{Import video signal from MATLAB workspace}

Video From Workspace

\section*{Library}

Sources
visionsources

\section*{Description}

The Video From Workspace block imports a video signal from the MATLAB workspace. If the video signal is a M-by-N-by-T workspace array, the block outputs an intensity video signal, where M and N are the number of rows and columns in a single video frame, and T is the number of frames in the video signal. If the video signal is a M -by-N-by-C-by-T workspace array, the block outputs a color video signal, where M and N are the number of rows and columns in a single video frame, C is the number of color channels, and T is the number of frames in the video stream. In addition to the video signals previously described, this block supports fi objects.

Note If you generate code from a model that contains this block, Simulink Coder takes a long time to compile the code because it puts all of the video data into the . c file. Before you generate code, you should convert your video data to a format supported by the From Multimedia File block or the Read Binary File block.
\begin{tabular}{|l|l|l|l|}
\hline Port & Output & Supported Data Types & \begin{tabular}{l}
Complex \\
Values \\
Supported
\end{tabular} \\
\hline Image & \begin{tabular}{l}
M-by-N matrix of intensity values or \\
an M-by-N-by-P color video signal \\
where P is the number of color \\
planes
\end{tabular} & \begin{tabular}{l}
- \begin{tabular}{l}
Double-precision floating point \\
Single-precision floating point \\
Fixed point
\end{tabular} \\
Boolean \\
Bo \\
8-, 16-, 32-bit signed integer \\
\(8-, 16-, 32\)-bit unsigned integer
\end{tabular} & No \\
\hline R, G, B & \begin{tabular}{l}
Scalar, vector, or matrix that \\
represents one plane of the RGB \\
video stream. Outputs from the R, \\
G, or B ports have the same \\
dimensions.
\end{tabular} & Same as I port & No \\
\hline
\end{tabular}

For the Computer Vision Toolbox blocks to display video data properly, double- and singleprecision floating-point pixel values must be from 0 to 1 . This block does not scale pixel values.

Use the Signal parameter to specify the MATLAB workspace variable from which to read. For example, to read an AVI file, use the following syntax:
mov = VideoReader('filename.avi')
If filename. avi has a colormap associated with it, the AVI file must satisfy the following conditions or the block produces an error:
- The colormap must be empty or have 256 values.
- The data must represent an intensity image.
- The data type of the image values must be uint8.

Use the Sample time parameter to set the sample period of the output signal.
When the block has output all of the available signal samples, it can start again at the beginning of the signal, repeat the final value, or generate 0s until the end of the simulation. The Form output after final value by parameter controls this behavior:
- When you specify Setting To Zero, the block generates zero-valued outputs for the duration of the simulation after generating the last frame of the signal.
- When you specify Holding Final Value, the block repeats the final frame for the duration of the simulation after generating the last frame of the signal.
- When you specify Cyclic Repetition, the block repeats the signal from the beginning after it reaches the last frame in the signal.

Use the Image signal parameter to specify how the block outputs a color video signal. If you select One multidimensional signal, the block outputs an M-by-N-by-P color video signal, where \(P\) is the number of color planes, at one port. If you select Separate color signals, additional ports appear on the block. Each port outputs one M-by-N plane of an RGB video stream.

Use the Output port labels parameter to label your output ports. Use the spacer character, |, as the delimiter. This parameter is available when the Image signal parameter is set to Separate color signals.

\section*{Parameters}

\section*{Signal}

Specify the MATLAB workspace variable that contains the video signal, or use the VideoReader function to specify an AVI filename.

\section*{Sample time}

Enter the sample period of the output.

\section*{Form output after final value by}

Specify the output of the block after all of the specified signal samples have been generated. The block can output zeros for the duration of the simulation (Setting to zero), repeat the final value (Holding Final Value) or repeat the entire signal from the beginning (Cyclic Repetition).

\section*{Image signal}

Specify how the block outputs a color video signal. If you select One multidimensional signal, the block outputs an M-by-N-by-P color video signal, where \(P\) is the number of color planes, at one port. If you select Separate color signals, additional ports appear on the block. Each port outputs one M-by-N plane of an RGB video stream.

\section*{Output port labels}

Enter the labels for your output ports using the spacer character, |, as the delimiter. This parameter is available when the Image signal parameter is set to Separate color signals.

\section*{See Also}
\begin{tabular}{|l|l|}
\hline From Multimedia File & Computer Vision Toolbox software \\
\hline Image From Workspace & Computer Vision Toolbox software \\
\hline Read Binary File & Computer Vision Toolbox software \\
\hline To Video Display & Computer Vision Toolbox software \\
\hline Video Viewer & Computer Vision Toolbox software \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

Introduced before R2006a

\section*{Video To Workspace}

Export video signal to MATLAB workspace

Video To Workspace

\section*{Library}

Sinks
visionsinks

\section*{Description}

The Video To Workspace block exports a video signal to the MATLAB workspace. If the video signal is represented by intensity values, it appears in the workspace as a threedimensional \(M\)-by- \(N\)-by- \(T\) array, where \(M\) and \(N\) are the number of rows and columns in a single video frame, and \(T\) is the number of frames in the video signal. If it is a color video signal, it appears in the workspace as a four-dimensional \(M\)-by- \(N\)-by- \(C\)-by- \(T\) array, where M and N are the number of rows and columns in a single video frame, \(C\) is the number of inputs to the block, and \(T\) is the number of frames in the video stream. During code generation, Simulink Coder does not generate code for this block.

Note This block supports intensity and color images on its ports.
\begin{tabular}{|c|c|c|c|}
\hline Port & Input & Supported Data Types & Complex Values Supported \\
\hline Image & M-by-N matrix of intensity values or an M-by-N-by-P color video signal where P is the number of color planes & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- Fixed point \\
- Boolean \\
- 8-, 16-, 32-bit signed integer \\
- 8-, 16-, 32-bit unsigned integer
\end{tabular} & No \\
\hline R, G, B & Scalar, vector, or matrix that represents one plane of the RGB video stream. Outputs from the R, G, or B ports have the same dimensions. & Same as I port & No \\
\hline
\end{tabular}

Use the Variable name parameter to specify the MATLAB workspace variable to which to write the video signal.

Use the Number of inputs parameter to determine the number of inputs to the block. If the video signal is represented by intensity values, enter 1 . If it is a color (\(R, G, B\)) video signal, enter 3.

Use the Limit data points to last parameter to determine the number of video frames, T, you want to export to the MATLAB workspace.

If you want to downsample your video signal, use the Decimation parameter to enter your decimation factor.

If your video signal is fixed point and you select the Log fixed-point data as a fi object check box, the block creates a fi object in the MATLAB workspace.

Use the Input port labels parameter to label your input ports. Use the spacer character, \(\mid\), as the delimiter. This parameter is available if the Number of inputs parameter is greater than 1.

\section*{Parameters}

\section*{Variable name}

Specify the MATLAB workspace variable to which to write the video signal.

\section*{Number of inputs}

Enter the number of inputs to the block. If the video signal is black and white, enter 1 . If it is a color (\(R, G, B\)) video signal, enter 3.

\section*{Limit data points to last}

Enter the number of video frames to export to the MATLAB workspace.

\section*{Decimation}

Enter your decimation factor.

\section*{Log fixed-point data as a fi object}

If your video signal is fixed point and you select this check box, the block creates a fi object in the MATLAB workspace. For more information of fi objects, see the FixedPoint Designer documentation.

\section*{Input port labels}

Enter the labels for your input ports using the spacer character, |, as the delimiter. This parameter is available if the Number of inputs parameter is greater than 1.

\section*{See Also}
\begin{tabular}{|l|l|}
\hline To Multimedia File & Computer Vision Toolbox software \\
\hline To Video Display & Computer Vision Toolbox software \\
\hline Video Viewer & Computer Vision Toolbox software \\
\hline
\end{tabular}

\section*{Introduced before R2006a}

\section*{Video Viewer}

Display binary, intensity, or RGB images or video streams

\section*{Library}

Sinks
visionsinks

\section*{Description}

The Video Viewer block enables you to view a binary, intensity, or RGB image or a video stream. The block provides simulation controls for play, pause, and step while running the model. The block also provides pixel region analysis tools. During code generation, Simulink Coder software does not generate code for this block.

Note The To Video Display block supports code generation.

See the following table for descriptions of both input types.
\begin{tabular}{|l|l|}
\hline Input & Description \\
\hline Image & \begin{tabular}{l}
M-by-N matrix of intensity values or an M-by-N-by-P color video \\
signal where P is the number of color planes.
\end{tabular} \\
\hline R/G/B & \begin{tabular}{l}
Scalar, vector, or matrix that represents one plane of the RGB \\
video stream. Inputs to the R, G, or B ports must have the same \\
dimensions and data type.
\end{tabular} \\
\hline
\end{tabular}

Select File > Image Signalto set the input to either Image or RGB.

\section*{Dialogs}

\section*{Toolbar}

\section*{Toolbar}
\begin{tabular}{|l|l|l|l|}
\hline GUI & \begin{tabular}{l}
Menu \\
Equivalent
\end{tabular} & \begin{tabular}{l}
Shortcut Keys \\
and \\
Accelerators
\end{tabular} & Description \\
\hline File > Print & Ctrl+P & \begin{tabular}{l}
Print the current display window. Printing \\
is only available when the display is not \\
changing. You can enable printing by \\
placing the display in snapshot mode, or \\
by pausing or stopping model simulation, \\
or simulating the model in step-forward \\
mode. \\
To print the current window to a figure \\
rather than sending it to your printer, \\
select File > Print to figure.
\end{tabular} \\
\hline 国 & \begin{tabular}{l}
File > Export to \\
Image Tool
\end{tabular} & Ctrl+E & \begin{tabular}{l}
Send the current video frame to the Image \\
Tool. For more information, see "Interact \\
with Images Using Image Viewer App" \\
(Image Processing Toolbox).
\end{tabular} \\
\hline
\end{tabular}

Note The Image Tool can know that the frame is an intensity image only if the colormap of the frame is grayscale (gray (256)). Otherwise, the Image Tool assumes the frame is an indexed image and disables the Adjust Contrast button.
\begin{tabular}{|l|l|l|l|}
\hline (i & \begin{tabular}{l}
Tools > Video \\
Information
\end{tabular} & V & \begin{tabular}{l}
View information about the video data \\
source.
\end{tabular} \\
\hline 算 & \begin{tabular}{l}
Tools > Pixel \\
Region
\end{tabular} & N/A & \begin{tabular}{l}
Open the Pixel Region tool. For more \\
information about this tool, see the Image \\
Processing Toolbox documentation.
\end{tabular} \\
\hline + & Tools > Zoom In & N/A & Zoom in on the video display. \\
\hline Q & \begin{tabular}{l}
Tools > Zoom \\
Out
\end{tabular} & N/A & Zoom out of the video display. \\
\hline Thy & Tools > Pan & N/A & Move the image displayed in the GUI. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline GUI & \begin{tabular}{l}
Menu \\
Equivalent
\end{tabular} & \begin{tabular}{l}
Shortcut Keys \\
and \\
Accelerators
\end{tabular} & Description \\
\hline 图 & \begin{tabular}{l}
Tools > \\
Maintain Fit to \\
Window
\end{tabular} & N/A & \begin{tabular}{l}
Scale video to fit GUI size automatically. \\
Toggle the button on or off.
\end{tabular} \\
\hline \(100 \%\) & N/A & N/A & \begin{tabular}{l}
Enlarge or shrink the video frame. This \\
option becomes available if you do not \\
select the Maintain Fit to Window.
\end{tabular} \\
\hline & & & \\
\hline
\end{tabular}

Playback Toolbar
Playback Toolbar
\begin{tabular}{|c|c|c|c|}
\hline GUI & Menu Equivalent & Shortcut Keys and Accelerators & Description \\
\hline \(\square\) & Simulation > Stop & S & Stop the video. \\
\hline p & Simulation > Play & P, Space bar & Play the video. \\
\hline II & Simulation > Pause & P, Space bar & Pause the video. This button appears only when the video is playing. \\
\hline I* & Simulation > Step Forward & Right arrow, Page Down & Step forward one frame. \\
\hline -0) & Simulation > Simulink Snapshot & N/A & Click this button to freeze the display in the viewer window. \\
\hline Filemenu only & \begin{tabular}{l}
Simulation > \\
Drop Frames to \\
Improve \\
Performance
\end{tabular} & Ctrl+R & Enable the viewer to drop video frames to improve performance. \\
\hline 迨 & \begin{tabular}{l}
View > \\
Highlight \\
Simulink Signal
\end{tabular} & Ctrl+L & In the model window, highlight the Simulink signal the viewer is displaying. \\
\hline
\end{tabular}

\section*{Setting Viewer Configuration}

The Video Viewer Configuration preferences enables you to change the behavior and appearance of the graphic user interface (GUI) as well as the behavior of the playback shortcut keys.
- To open the Configuration dialog box, select File \(>\) Configuration Set \(>\) Edit.
- To save the configuration settings for future use, select File > Configuration Set > Save as.

\section*{Core Pane}

The Core pane in the Viewer Configuration dialog box controls the GUI's general settings.

\section*{General UI}

Click General UI, and click the Options button to open the General UI Options dialog box.

If you select the Display the full source path in the title bar check box, the GUI displays the model name and full Simulink path to the video data source in the title bar. Otherwise, it displays a shortened name.

Use the Open message log: parameter to control when the Message log window opens. You can use this window to debug issues with video playback. Your choices are for any new messages, for warn/fail messages, only for fail messages, or manually.

\section*{Tools Pane}

The Tools pane in the Viewer Configuration dialog box contains the tools that appear on the Video Viewer GUI. Select the Enabled check box next to the tool name to specify which tools to include on the GUI.

\section*{Image Tool}

Click Image Tool, and then click the Options button to open the Image Tool Options dialog box.

Tools - Image Tool Properties: Video Viewer
Export to Image Tool Options
Open new Image Tool window for each export

Apply

Select the Open new Image Tool window for export check box if you want to open a new Image Tool for each exported frame.Pixel RegionSelect the Pixel Region check box to display and enable the pixel region GUI button. For more information on working with pixel regions see Getting Information about the Pixels in an Image (Image Processing Toolbox). Image Navigation ToolsSelect the Image Navigation Tools check box to enable the pan-and-zoom GUI button.Instrumentation SetSelect the Instrumentation

Set check box to enable the option to load and save viewer settings. The option appears in the File menu.

\section*{Video Information}

The Video Information dialog box lets you view basic information about the video. To open this dialog box, you can select Tools > Video Information, click the information button
(i) or press the \(\mathbf{V}\) key.

\section*{Colormap for Intensity Video}

The Colormap dialog box lets you change the colormap of an intensity video. You cannot access the parameters on this dialog box when the GUI displays an RGB video signal. To open this dialog box for an intensity signal, select Tools > Colormap or press C.

Use the Colormap parameter to specify the colormap to apply to the intensity video.
If you know that the pixel values do not use the entire data type range, you can select the Specify range of displayed pixel values check box and enter the range for your data. The dialog box automatically displays the range based on the data type of the pixel values.

\section*{Status Bar}

A status bar appear along the bottom of the Video Viewer. It displays information pertaining to the video status (running, paused or ready), type of video (Intensity or RGB) and video time.

\section*{Message Log}

The Message Log dialog provides a system level record of configurations and extensions used. You can filter what messages to display by Type and Category, view the records, and display record details.

The Type parameter allows you to select either All, Info, Warn, or Fail message logs. The Category parameter allows you to select either Configuration or Extension message summaries. The Configuration messages indicate when a new configuration file is loaded. The Extension messages indicate a component is registered. For example, you might see a Simulink message, which indicates the component is registered and available for configuration.

\section*{Saving the Settings of Multiple Video Viewer GUIs}

The Video Viewer GUI enables you to save and load the settings of multiple GUI instances. Thus, you only need to configure the Video Viewer GUIs that are associated
with your model once. To save the GUI settings, select File > Instrumentation Sets > Save Set. To open the preconfigured GUIs, select File > Instrumentation Sets > Load Set.

\section*{Supported Data Types}
\begin{tabular}{|l|l|}
\hline Port & Supported Data Types \\
\hline Image & \(\bullet\) Double-precision floating point \\
& • Single-precision floating point \\
& \(\bullet\) Boolean \\
& \(\bullet\) 8-, 16-, and 32-bit signed integer \\
& \(\bullet\) 8-, 16-, and 32-bit unsigned integer \\
\hline R/G/B & Same as Image port \\
\hline
\end{tabular}

\section*{See Also}
\begin{tabular}{|l|l|}
\hline From Multimedia File & Computer Vision Toolbox software \\
\hline To Multimedia File & Computer Vision Toolbox software \\
\hline To Video Display & Computer Vision Toolbox software \\
\hline Video To Workspace & Computer Vision Toolbox software \\
\hline implay & Image Processing Toolbox \\
\hline
\end{tabular}

\section*{See Also}

\section*{Topics}
"Video Focus Assessment"

\section*{Introduced before R2006a}

\section*{Warp}

Apply projective or affine transformation to an image

\section*{Library}

Geometric Transformations
visiongeotforms

\section*{Description}

The Warp block applies a projective on page 1-466 or affine on page 1-467 transformation to an image. You can transform the entire image or portions of the image using either a polygonal or rectangular region of interest (ROI).

\section*{Input Port Descriptions}
\begin{tabular}{|c|c|c|c|}
\hline Port & Input/ Output & Description & Supported Data Types \\
\hline Image & Input & \begin{tabular}{l}
\(M\)-by- \(N\) grayscale image or \(M\)-by- \(N\) -by-3 truecolor image. \\
- \(M\) - Number of rows in the image. \\
- \(N\) - Number of columns in the image.
\end{tabular} & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- 8 - or 16 -bit unsigned integers \\
- 16-bit signed integers \\
- logical
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Port & Input/ Output & Description & Supported Data Types \\
\hline TForm & Input & \begin{tabular}{l}
When you set Transformation matrix source to Input port, the TForm port accepts these inputs: \\
- 3-by-2 matrix (affine transform). \\
- 3-by-3 matrix (projective transform). \\
When you set Transformation matrix source to Custom, specify the source in the Transformation matrix field.
\end{tabular} & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point
\end{tabular} \\
\hline ROI & Input & When you enable the ROI input port, you can also enable an Err_roi output port to indicate if any part of an ROI is outside the input image. The ROI input port accepts an ROI rectangle, specified as a 4-element vector: [x y width height]. & \begin{tabular}{l}
- Double-precision floating point \\
- Single-precision floating point \\
- 8-, 16-, or 32 -bit signed integers \\
- 8 -, 16 -, or 32 -bit unsigned integers
\end{tabular} \\
\hline Image & Output & Transformed image. & Same as input \\
\hline Err_roi & Output & Indicates if any part of an ROI is outside the input image. & Boolean \\
\hline
\end{tabular}

\section*{Parameters}

\section*{Transformation matrix source}

Input matrix source, specified as either Input port or Custom. If you select Custom, you can enter the transformation matrix parameter in the field that appears with this selection.

\section*{Transformation matrix}

Custom transformation matrix, specified as a 3-by-2 or 3-by-3 matrix. This parameters appears when you set Transformation matrix source to Custom.

\section*{Interpolation method}

Interpolation method used to calculate output pixel values, specified as Nearest neighbor, Bilinear, or Bicubic. See "Nearest Neighbor, Bilinear, and Bicubic Interpolation Methods"for an overview of these methods.

\section*{Background fill value}

Value of the pixels that are outside of the input image, specified as either a scalar value or a 3-element vector.

\section*{Output image position source}

Source of the output image size, specified as either either Same as input image or Custom. If you select Custom, you can specify the bounding box in the field that appears with this selection.

\section*{Output image position vector [x y width height]}

Position, width, and height of the output image, specified as a 4 -element vector: [\(x y\) width height]. This parameter appears when you set Output image position source to Custom.

\section*{Enable ROI input port}

Select this check box to enable the ROI input port. Use this port to specify the rectangular region you want to transform.

\section*{Enable output port indicating if any part of ROI is outside input image}

Select this check box to enable the Err_roi output port.

\section*{References}
[1] Wolberg, George . Digital Image Warping, 3rd edition. IEEE Computer Society Press, 1994.
[2] Hartley, Richard, and Andrew Zisserman. Multiple View Geometry in Computer Vision. 2nd edition. IEEE Computer Society Press, 2003.

\section*{See Also}
imwarp, Estimate Geometric Transformation, Resize, RotateShearTranslate

\section*{Algorithms}

The size of the transformation matrix dictates the transformation type.

\section*{Projective Transformation}

In a projective transformation, the relationship between the input and the output points is defined by:
\[
\left\{\begin{array}{l}
\widehat{x}=\frac{x h_{1}+y h_{2}+h_{3}}{x h_{7}+y h_{8}+h_{9}} \\
\widehat{y}=\frac{x h_{4}+y h_{5}+h_{6}}{x h_{7}+y h_{8}+h_{9}}
\end{array}\right.
\]
where \(h_{1}, h_{2}, \ldots, h_{9}\) are transformation coefficients.
You must arrange the transformation coefficients as a 3-by-3 matrix as in:
\[
H=\left[\begin{array}{lll}
h_{1} & h_{4} & h_{7} \\
h_{2} & h_{5} & h_{8} \\
h_{3} & h_{6} & h_{9}
\end{array}\right]
\]

\section*{Affine Transformation}

In an affine transformation, The value of the pixel located at \([\widehat{x}, \widehat{y}]\) in the input image determines the value of the pixel located at \([\widehat{x}, \widehat{y}]\) in the output image. The relationship between the input and output point locations is defined by:
\[
\left\{\begin{array}{l}
\widehat{x}=x h_{1}+y h_{2}+h_{3} \\
\widehat{y}=x h_{4}+y h_{5}+h_{6}
\end{array}\right.
\]
where \(h_{1}, h_{2}, \ldots, h_{6}\) are transformation coefficients.
You must arrange the transformation coefficients as a 3-by-2 matrix:
\[
H=\left[\begin{array}{ll}
h_{1} & h_{4} \\
h_{2} & h_{5} \\
h_{3} & h_{6}
\end{array}\right]
\]

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and C++ code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}

Topics
"Video Mosaicking"
Introduced in R2015b

\section*{Write Binary File}

Write binary video data to files

Wirite Binary File

\section*{Library}

Sinks

\section*{visionsinks}

\section*{Description}

The Write Binary File block takes video data from a Simulink model and exports it to a binary file.

This block produces a raw binary file with no header information. It has no encoded information providing the data type, frame rate or dimensionality. The video data for this block appears in row major format.

Note This block supports code generation only for platforms that have file I/O available. You cannot use this block to do code generation with Simulink Desktop Real-Time.
\begin{tabular}{|l|l|l|l|}
\hline Port & Input & Supported Data Types & \begin{tabular}{l}
Complex \\
Values \\
Supported
\end{tabular} \\
\hline Input & \begin{tabular}{l}
Matrix that represents the luma \\
\(\left(\mathrm{Y}^{\prime}\right)\) and chroma (Cb and Cr) \\
components of a video stream
\end{tabular} & \begin{tabular}{l}
• 8-, 16-32-bit signed integer \\
\(8-16-32\)-bit unsigned integer
\end{tabular} & No \\
\hline
\end{tabular}

\section*{Four Character Code Video Formats}

Four Character Codes (FOURCC) identify video formats. For more information about these codes, see https://www.fourcc.org.

Use the Four character code parameter to identify the video format.

\section*{Custom Video Formats}

You can use the Write Binary File block to create a binary file that contains video data in a custom format.
- Use the Bit stream format parameter to specify whether you want your data in planar or packed format.
- Use the Number of input components parameter to specify the number of components in the video stream. This number corresponds to the number of block input ports.
- Select the Inherit size of components from input data type check box if you want each component to have the same number of bits as the input data type. If you clear this check box, you must specify the number of bits for each component.
- Use the Component parameters to specify the component names.
- Use the Component order in binary file parameter to specify how to arrange the components in the binary file.
- Select the Interlaced video check box if the video stream represents interlaced video data.
- Select the Write signed data to output file check box if your input data is signed.
- Use the Byte order in binary file parameter to specify whether the byte ordering in the output binary file is little endian or big endian.

\section*{Parameters}

\section*{File name}

Specify the name of the binary file. To specify a different file or location, click the Save As... button.

\section*{Video format}

Specify the format of the binary video data as either Four character codes or Custom. See "Four Character Code Video Formats" on page 1-469 or "Custom Video Formats" on page 1-469 for more details.

\section*{Four character code}

From the list, select the binary file format.

\section*{Line ordering}

Specify how the block fills the binary file. If you select Top line first, the block first fills the binary file with the first row of the video frame. It then fills the file with the other rows in increasing order. If you select Bottom line first, the block first fills the binary file with the last row of the video frame. It then fills the file with the other rows in decreasing order.

\section*{Bit stream format}

Specify whether you want your data in planar or packed format.

\section*{Number of input components}

Specify the number of components in the video stream. This number corresponds to the number of block input ports.

\section*{Inherit size of components from input data type}

Select this check box if you want each component to have the same number of bits as the input data type. If you clear this check box, you must specify the number of bits for each component.

\section*{Component}

Specify the component names.

\section*{Component order in binary file}

Specify how to arrange the components in the binary file.

\section*{Interlaced video}

Select this check box if the video stream represents interlaced video data.

\section*{Write signed data to output file}

Select this check box if your input data is signed.

\section*{Byte order in binary file}

Use this parameter to specify whether the byte ordering in the output binary file is little endian or big endian.

\section*{See Also}
\begin{tabular}{|l|l|}
\hline Read Binary File & Computer Vision Toolbox \\
\hline To Multimedia File & Computer Vision Toolbox \\
\hline
\end{tabular}

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using Simulink \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

Introduced before R2006a

\section*{Objects in Computer Vision Toolbox}

\section*{boxLabelDatastore}

Datastore for bounding box label data

\section*{Description}

Use a boxLabelDatastore object to read labeled bounding box data for object detection.

To read bounding box label data from a boxLabelDatastore, use the read function. This function returns a table that contains bounding boxes in the first column and labels in the second column. You can create a datastore that combines the boxLabelDatastore with an ImageDatastore using the combine function. Use the combined datastore to train object detectors using the training functions such as trainYOLOv20bjectDetector and trainFasterRCNNObjectDetector.

\section*{Creation}

Create a boxLabelDatastore object using the boxLabelDatastore function. After you create the object, you can use functions to access and manage the data. Use dot notation to modify the ReadSize property.

\section*{Syntax}
blds = boxLabelDatastore(tbl)
blds = boxLabelDatastore(tbl1,tbl2,...)

\section*{Description}
blds = boxLabelDatastore(tbl) creates a boxLabelDatastore object from a table tbl containing labeled bounding box data.
blds = boxLabelDatastore(tbl1,tbl2,...) creates a boxLabelDatastore object using multiple tables.

\section*{Input Arguments}

\section*{tbl - Labeled bounding box data table}

Labeled bounding box data, specified as a table with one or more columns. The training table can be in one of two formats:

A table with one or more columns:
- All columns contain bounding boxes. Each column must be a cell vector containing anM-by-4 matrices that represent a single object class, such as stopSign, carRear, or carFront. The columns contain 4-element double arrays of \(M\) bounding boxes in the format \([x, y\),width,height]. The format specifies the upper-left corner location and size of the bounding box in the corresponding image.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{|c}
tbl \(\times 2\) \\
\(7 \times 3\) table
\end{tabular}}} \\
\hline & & \\
\hline \begin{tabular}{|c|c|c|c|c|}
\hline 1 \\
stopSign
\end{tabular} & \[
\begin{gathered}
2 \\
\text { carRear }
\end{gathered}
\] & \[
\begin{gathered}
3 \\
\text { carFront }
\end{gathered}
\] \\
\hline \(16 \times 4\) double & \(4 \times 4\) double & 7x4 double \\
\hline \(210 \times 4\) double & [561, 304, 763, 194] & \(8 \times 4\) double \\
\hline \(37 \times 4\) double & [733, 913, 716,\(32 ; 926,343,203,762]\) & [513,492,927,625] \\
\hline 4 [428, 1007, 309,718] & \(7 \times 4\) double & \(6 \times 4\) double \\
\hline \(53 \times 4\) double & \(4 \times 4\) double & \(5 \times 4\) double \\
\hline - \(3 \times 4\) doublanm & ¢xイdmbl & 511.50~53 253.929 866 6at 883 \\
\hline
\end{tabular}
- A table with two columns:
- The first column contains bounding boxes and must be a cell vector. Each element in the cell vector contains \(M\)-by- 4 matrices in the format [\(x, y\), width,height].
- The second column must be a cell vector that contains the label names corresponding to each bounding box. Each element in the cell vector must be an \(M\) -by-1 categorical or string vector.
\begin{tabular}{|l|c|c|c|}
\hline 1 & \multicolumn{2}{c}{ tblTwoColumn_1 } & \(\times\) \\
\hline
\end{tabular}

To create a ground truth table, use the Image Labeler app or the Video Labeler app. To create a table of training data from the generated ground truth, use the objectDetectorTrainingData function.

Data Types: table

\section*{Properties}

\section*{LabelData - Labeled bounding box data}

\author{
N -by-2 cell array
}

This property is read-only.
Labeled bounding box data, specified as an N -by- 2 cell matrix.
- The first column must be a cell vector that contains bounding boxes. Each element in the cell vector contains \(M\)-by- 4 matrices in the format [\(x, y\), width, height].
- The second column must be a cell vector that contains the label names corresponding to each bounding box. An M-by-1 categorical vector represents each label name.

\section*{ReadSize - Maximum height of label data}

1 (default) | positive integer

Maximum number of rows of label data to read in each call to the read function, specified as a positive integer.

\section*{Object Functions}
combine Combine data from multiple datastores
countEachLabel Count occurrence of pixel or box labels
hasdata Determine if data is available to read from datastore
numpartitions Number of partitions for a datastore
partition Partition a label datastore
progress Percentage of data read from a datastore
read Read data from a datastore
readall Read all data in datastore
reset Reset datastore to initial state
transform Transform datastore

\section*{Examples}

\section*{Estimate anchor boxes for a YOLO v2 Object Detection Network}

This example shows how to estimate anchor boxes using a table containing the training data. The first column contains the training images and the remaining columns contain the labeled bounding boxes.
```

data = load('vehicleTrainingData.mat');
trainingData = data.vehicleTrainingData;

```

Create a boxLabelDatastore using the labeled bounding boxes from the training data.
blds = boxLabelDatastore(trainingData(:,2:end));
Estimate anchor boxes using the boxLabelDatastore.
```

numAnchors = 5;

```
anchorBoxes = estimateAnchorBoxes(blds,numAnchors);

Specify the image size.
```

inputImageSize = [128,228,3];

```

Specify the number of classes to detect.
```

numClasses = 1;

```

Use a pretrained ResNet-50 network as a base network for the YOLO v2 network.
```

network = resnet50();

```

Specify the network layer to use for feature extraction. You can use analyzeNetwork to see all the layer names in a network.
```

featureLayer = 'activation_49_relu';

```

Create the YOLO v2 object detection network.
```

lgraph = yolov2Layers(inputImageSize,numClasses,anchorBoxes,network, featureLayer)

```

\section*{lgraph =}

LayerGraph with properties:
Layers: [182×1 nnet.cnn.layer.Layer]
Connections: [197×2 table]

Visualize the network using the network analyzer.
analyzeNetwork(lgraph)

\section*{Estimate Anchor Boxes From Training Data}

Anchor boxes are important parameters of deep learning object detectors such as Faster R-CNN and YOLO v2. The shape, scale, and number of anchor boxes impact the efficiency and accuracy of the detectors.

For more information, see "Anchor Boxes for Object Detection".

\section*{Load Training Data}

Load the vehicle dataset, which contains 295 images and associated box labels.
```

data = load('vehicleTrainingData.mat');
vehicleDataset = data.vehicleTrainingData;

```

Add the full path to the local vehicle data folder.
```

dataDir = fullfile(toolboxdir('vision'),'visiondata');
vehicleDataset.imageFilename = fullfile(dataDir,vehicleDataset.imageFilename);

```

Display the data set summary.
summary (vehicleDataset)

\section*{Variables:}
imageFilename: \(295 \times 1\) cell array of character vectors
vehicle: \(295 \times 1\) cell

\section*{Visualize Ground Truth Box Distribution}

Visualize the labeled boxes to better understand the range of object sizes present in the data set.

Combine all the ground truth boxes into one array.
```

allBoxes = vertcat(vehicleDataset.vehicle{:});

```

Plot the box area versus the box aspect ratio.
```

aspectRatio = allBoxes(:,3) ./ allBoxes(:,4);
area = prod(allBoxes(:,3:4),2);
figure
scatter(area,aspectRatio)
xlabel("Box Area")
ylabel("Aspect Ratio (width/height)");
title("Box Area vs. Aspect Ratio")

```


The plot shows a few groups of objects that are of similar size and shape, However, because the groups are spread out, manually choosing anchor boxes is difficult. A better way to estimate anchor boxes is to use a clustering algorithm that can group similar boxes together using a meaningful metric.

\section*{Estimate Anchor Boxes}

Estimate anchor boxes from training data using the estimateAnchorBoxes function, which uses the intersection-over-union (IoU) distance metric.

A distance metric based on IoU is invariant to the size of boxes, unlike the Euclidean distance metric, which produces larger errors as the box sizes increase [1]. In addition,
using an IoU distance metric leads to boxes of similar aspect ratios and sizes being clustered together, which results in anchor box estimates that fit the data.

Create a boxLabelDatastore using the ground truth boxes in the vehicle data set. If the preprocessing step for training an object detector involves resizing of the images, use transform and bboxresize to resize the bounding boxes in the boxLabelDatastore before estimating the anchor boxes.
```

trainingData = boxLabelDatastore(vehicleDataset(:,2:end));

```

Select the number of anchors and estimate the anchor boxes using estimateAnchorBoxes function.
```

numAnchors = ;
[anchorBoxes,meanIoU] = estimateAnchorBoxes(trainingData,numAnchors);
anchorBoxes
anchorBoxes = 5\times2
21 27
87 116
67 92
43 61
86 105

```

Choosing the number of anchors is another training hyperparameter that requires careful selection using empirical analysis. One quality measure for judging the estimated anchor boxes is the mean IoU of the boxes in each cluster. The estimateAnchorBoxes function uses a \(k\)-means clustering algorithm with the IoU distance metric to calculate the overlap using the equation, 1 - bboxOverlapRatio(allBoxes,boxInCluster).
meanIoU
meanIoU \(=0.8411\)
The mean IoU value greater than 0.5 ensures that the anchor boxes overlap well with the boxes in the training data. Increasing the number of anchors can improve the mean IoU measure. However, using more anchor boxes in an object detector can also increase the computation cost and lead to overfitting, which results in poor detector performance.

Sweep over a range of values and plot the mean IoU versus number of anchor boxes to measure the trade-off between number of anchors and mean IoU.
```

maxNumAnchors = 15;
meanIoU = zeros([maxNumAnchors,1]);
anchorBoxes = cell(maxNumAnchors, 1);
for k = 1:maxNumAnchors
% Estimate anchors and mean IoU.
[anchorBoxes{k},meanIoU(k)] = estimateAnchorBoxes(trainingData,k);
end
figure
plot(1:maxNumAnchors,meanIoU,'-o')
ylabel("Mean IoU")
xlabel("Number of Anchors")
title("Number of Anchors vs. Mean IoU")

```


Using two anchor boxes results in a mean IoU value greater than 0.65 , and using more than 7 anchor boxes yields only marginal improvement in mean IoU value. Given these results, the next step is to train and evaluate multiple object detectors using values between 2 and 6 . This empirical analysis helps determine the number of anchor boxes required to satisfy application performance requirements, such as detection speed, or accuracy.

\section*{See Also}

\section*{Apps}

Image Labeler | Video Labeler

\section*{Functions}
analyzeNetwork|estimateAnchorBoxes | yolov2Layers

\section*{Objects}

ImageDatastore

\section*{Topics}
"Datastores for Deep Learning" (Deep Learning Toolbox)
"Deep Learning in MATLAB" (Deep Learning Toolbox)
"Training Data for Object Detection and Semantic Segmentation"

\section*{Introduced in R2019b}

\title{
pixelLabellmageDatastore
}

Datastore for semantic segmentation networks

\section*{Description}

Use pixelLabelImageDatastore to create a datastore for training a semantic segmentation network using deep learning.

\section*{Creation}

\section*{Syntax}
```

pximds = pixelLabelImageDatastore(gTruth)
pximds = pixelLabelImageDatastore(imds,pxds)
pximds = pixelLabelImageDatastore(

```
\(\qquad\)
``` , Name, Value)
```


Description

pximds = pixelLabelImageDatastore(gTruth) returns a datastore for training a semantic segmentation network based on the input groundTruth object or array of groundTruth objects. Use the output pixelLabelImageDatastore object with the Deep Learning Toolbox ${ }^{\mathrm{TM}}$ function trainNetwork to train convolutional neural networks for semantic segmentation.
pximds = pixelLabelImageDatastore(imds, pxds) returns a datastore based on the input image datastore and the pixel label datastore objects. imds is an ImageDatastore object that represents the training input to the network. pxds is a PixelLabelDatastore object that represents the required network output.
pximds = pixelLabelImageDatastore(\qquad , Name, Value) additionally uses namevalue pairs to set the DispatchInBackground and OutputSizeMode properties. For 2D data, you can also use name-value pairs to specify the ColorPreprocessing, DataAugmentation, and OutputSize augmentation properties. You can specify multiple name-value pairs. Enclose each property name in quotes.

For example, pixelLabelImageDatastore(gTruth, 'PatchesPerImage', 40) creates a pixel label image datastore that randomly generates 40 patches from each ground truth object in gTruth.

Input Arguments

gTruth - Ground truth data
 groundTruth object | array of groundTruth objects

Ground truth data, specified as a groundTruth object or as an array of groundTruth objects. Each groundTruth object contains information about the data source, the list of label definitions, and all marked labels for a set of ground truth labels.

imds - Collection of images

ImageDatastore object
Collection of images, specified as an ImageDatastore object.

pxds - Collection of pixel labeled images

PixelLabelDatastore object

Collection of pixel labeled images, specified as a PixelLabelDatastore object. The object contains the pixel labeled images for each image contained in the imds input object.

Properties

Images - Image file names

character vector | cell array of character vectors
This property is read-only.
Image file names used as the source for ground truth images, specified as a character vector or a cell array of character vectors.

PixelLabelData - Pixel label file names

character | cell array of characters
This property is read-only.

Pixel label data file names used as the source for ground truth label images, specified as a character or a cell array of characters.

ClassNames - Class names
 cell array of character vectors

This property is read-only.
Class names, specified as a cell array of character vectors.

ColorPreprocessing - Color channel preprocessing

'none' (default)|'gray2rgb'|'rgb2gray'
Color channel preprocessing for 2-D data, specified as 'none', 'gray2rgb', or ' rgb2gray '. Use this property when you need the image data created by the data source must be only color or grayscale, but the training set includes both. Suppose you need to train a network that expects color images but some of your training images are grayscale. Set ColorPreprocessing to 'gray2rgb' to replicate the color channels of the grayscale images in the input image set. Using the 'gray2rgb' option creates M -by- N -by-3 output images.

The ColorPreprocessing property is not supported for 3-D data. To perform color channel preprocessing of 3-D data, use the transform function.

DataAugmentation - Preprocessing applied to input images

'none' (default)| imageDataAugmenter object
Preprocessing applied to input images, specified as an imageDataAugmenter object or 'none'. When DataAugmentation is 'none', no preprocessing is applied to input images. Training data can be augmented in real-time during training.

The DataAugmentation property is not supported for 3-D data. To preprocess 3-D data, use the transform function.

DispatchInBackground - Dispatch observations in background false (default) | true

Dispatch observations in the background during training, prediction, and classification, specified as false or true. To use background dispatching, you must have Parallel Computing Toolbox ${ }^{\mathrm{TM}}$. If DispatchInBackground is true and you have Parallel Computing Toolbox, then pixelLabelImageDatastore asynchronously reads patches, adds noise, and queues patch pairs.

MiniBatchSize - Number of observations in each batch positive integer

Number of observations that are returned in each batch. The default value is equal to the ReadSize of image datastore imds. You can change the value of MiniBatchSize only after you create the datastore. For training, prediction, or classification, the MiniBatchSize property is set to the mini-batch size defined in training0ptions.

NumObservations - Total number of observations in the datastore positive integer

This property is read-only.
Total number of observations in the denoising image datastore. The number of observations is the length of one training epoch.

OutputSize - Size of output images

[] (default) | vector of two positive integers
This property is read-only.
Size of output images, specified as a vector of two positive integers. The first element specifies the number of rows in the output images, and the second element specifies the number of columns. When you specify OutputSize, image sizes are adjusted as necessary. By default, this property is empty, which means that the images are not adjusted.

The OutputSize property is not supported for 3-D data. To set the output size of 3-D data, use the transform function.

OutputSizeMode - Method used to resize output images
 'resize' (default)|'centercrop'|'randcrop'

Method used to resize output images, specified as one of the following. This property applies only when you set OutputSize to a value other than [].

- 'resize' - Scale the image to fit the output size. For more information, see imresize.
- ' centercrop ' - Take a crop from the center of the training image. The crop has the same size as the output size.
- 'randcrop ' - Take a random crop from the training image. The random crop has the same size as the output size.

Data Types: char | string

Object Functions

combine
Combine data from multiple datastores
countEachLabel Count occurrence of pixel or box labels
hasdata Determine if data is available to read
partitionByIndex Partition pixelLabelImageDatastore according to indices
preview Subset of data in datastore
read Read data from a datastore
readall Read all data in datastore
readByIndex Read data specified by index from pixelLabelImageDatastore
reset Reset datastore to initial state
shuffle Shuffle data in pixelLabelImageDatastore
transform Transform datastore

Examples

Train A Semantic Segmentation Network

Load the training data.

```
dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
labelDir = fullfile(dataSetDir,'trainingLabels');
```

Create an image datastore for the images.

```
imds = imageDatastore(imageDir);
```

Create a pixelLabelDatastore for the ground truth pixel labels.

```
classNames = ["triangle","background"];
labelIDs = [255 0];
pxds = pixelLabelDatastore(labelDir,classNames,labelIDs);
```

Visualize training images and ground truth pixel labels.

```
I = read(imds);
C = read(pxds);
```

```
I = imresize(I,5);
L = imresize(uint8(C),5);
imshowpair(I,L,'montage')
```


Create a semantic segmentation network. This network uses a simple semantic segmentation network based on a downsampling and upsampling design.

```
numFilters = 64;
filterSize = 3;
numClasses = 2;
layers = [
    imageInputLayer([32 32 1])
    convolution2dLayer(filterSize,numFilters,'Padding',1)
    reluLayer()
    maxPooling2dLayer(2,'Stride',2)
    convolution2dLayer(filterSize,numFilters,'Padding',1)
    reluLayer()
    transposedConv2dLayer(4,numFilters,'Stride',2,'Cropping',1);
    convolution2dLayer(1,numClasses);
    softmaxLayer()
    pixelClassificationLayer()
    ]
layers =
    10x1 Layer array with layers:
```

1	''	Image Input
2	''	Convolution
3	''	ReLU
4	''	Max Pooling
5	''	Convolution
6	''	ReLU
7	''	Transposed Convolution
8	''	Convolution
9	''	Softmax
10	''	Pixel Classification Layer

$32 \times 32 \times 1$ images with 'zerocenter' normalizat
643×3 convolutions with stride $\left[\begin{array}{ll}1 & 1\end{array}\right]$ and
ReLU
2×2 max pooling with stride $\left[\begin{array}{ll}2 & 2] \text { and padd } \\ 643 \times 3 \text { convolutions with stride }\left[\begin{array}{ll}1 & 1\end{array}\right] \text { and } \\ \text { ReLU } \\ 644 \times 4 \text { transposed convolutions with stride } \\ 21 \times 1 \text { convolutions with stride }\left[\begin{array}{ll}1 & 1\end{array}\right] \text { and pa } \\ \text { softmax } \\ \text { Cross-entropy loss }\end{array}\right.$

Setup training options.

```
opts = trainingOptions('sgdm', ...
    'InitialLearnRate',1e-3, ...
    'MaxEpochs',100, ...
    'MiniBatchSize',64);
```

Create a pixel label image datastore that contains training data.
trainingData = pixelLabelImageDatastore(imds,pxds);
Train the network.
net = trainNetwork(trainingData,layers,opts);
Training on single GPU.
Initializing image normalization.

Epoch	Iteration	Time Elapsed (hh:mm:ss)	Mini-batch Accuracy	$\begin{aligned} & \text { Mini-batch } \\ & \text { Loss } \end{aligned}$	Base Learnind Rate
1	1	00:00:00	31.86\%	0.6934	0.00
17	50	00:00:03	94.52\%	0.5564	0.00
34	100	00:00:07	95.25\%	0.4415	0.00
50	150	00:00:11	95.14\%	0.3722	0.00
67	200	00:00:14	94.52\%	0.3336	0.00
84	250	00:00:18	95.25\%	0.2931	0.00
100	300	00:00:21	95.14\%	0.2708	0.00

Read and display a test image.

```
testImage = imread('triangleTest.jpg');
imshow(testImage)
```


Segment the test image and display the results.
C = semanticseg(testImage, net);
B = labeloverlay(testImage,C);
imshow(B)

Improve the results

The network failed to segment the triangles and classified every pixel as "background". The training appeared to be going well with training accuracies greater than 90%. However, the network only learned to classify the background class. To understand why this happened, you can count the occurrence of each pixel label across the dataset.

```
tbl = countEachLabel(trainingData)
tbl=2\times3 table
    Name PixelCount
        ImagePixelCount
    'triangle' 10326 2.048e+05
    'background'
        1.9447e+05
    2.048e+05
```

The majority of pixel labels are for the background. The poor results are due to the class imbalance. Class imbalance biases the learning process in favor of the dominant class.

That's why every pixel is classified as "background". To fix this, use class weighting to balance the classes. There are several methods for computing class weights. One common method is inverse frequency weighting where the class weights are the inverse of the class frequencies. This increases weight given to under-represented classes.

```
totalNumberOfPixels = sum(tbl.PixelCount);
frequency = tbl.PixelCount / totalNumberOfPixels;
classWeights = 1./frequency
classWeights = 2×1
```

19.8334
1.0531

Class weights can be specified using the pixelClassificationLayer. Update the last layer to use a pixelClassificationLayer with inverse class weights.
layers(end) = pixelClassificationLayer('Classes',tbl.Name,'ClassWeights',classWeights)
Train network again.
net $=$ trainNetwork(trainingData,layers,opts);
Training on single GPU.
Initializing image normalization.

Epoch	Iteration	Time Elapsed (hh:mm:ss)	Mini-batch Accuracy	Mini-batch Loss	Base Learnin Rate
1	1	00:00:00	47.50\%	0.6925	0.00
17	50	00:00:04	19.67\%	0.6837	0.00
34	100	00:00:08	75.77\%	0.4433	0.00
50	150	00:00:12	85.00\%	0.4018	0.00
67	200	00:00:16	87.00\%	0.3568	0.00
84	250	00:00:20	88.03\%	0.3153	0.00
100	300	00:00:24	90.42\%	0.2890	0.00

Try to segment the test image again.

```
C = semanticseg(testImage,net);
B = labeloverlay(testImage,C);
imshow(B)
```


Using class weighting to balance the classes produced a better segmentation result. Additional steps to improve the results include increasing the number of epochs used for training, adding more training data, or modifying the network.

Augment Data While Training

Configure a pixel label image datastore to augment data while training.
Load training images and pixel labels.

```
dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
labelDir = fullfile(dataSetDir,'trainingLabels');
```

Create an imageDatastore object to hold the training images.
imds = imageDatastore(imageDir);

Define the class names and their associated label IDs.

```
classNames = ["triangle","background"];
labelIDs = [255 0];
```

Create a pixelLabelDatastore object to hold the ground truth pixel labels for the training images.

```
pxds = pixelLabelDatastore(labelDir, classNames, labelIDs);
```

Create an imageDataAugmenter object to randomly rotate and mirror image data.

```
augmenter = imageDataAugmenter('RandRotation',[-10 10],'RandXReflection',true)
augmenter =
    imageDataAugmenter with properties:
```

 FillValue: 0
 RandXReflection: 1
 RandYReflection: 0
 RandRotation: [-10 10]
 RandScale: [1 1]
 RandXScale: [1 1]
 RandYScale: [11]
 RandXShear: [0 0]
 RandYShear: [0 0]
 RandXTranslation: [0 0]
 RandYTranslation: [0 0]
 Create a pixelLabelImageDatastore object to train the network with augmented data.

```
plimds = pixelLabelImageDatastore(imds,pxds,'DataAugmentation',augmenter)
plimds =
    pixelLabelImageDatastore with properties:
                            Images: {200x1 cell}
            PixelLabelData: {200x1 cell}
                            ClassNames: {2x1 cell}
            DataAugmentation: [1x1 imageDataAugmenter]
            ColorPreprocessing: 'none'
            OutputSize: []
            OutputSizeMode: 'resize'
```

MiniBatchSize: 1
NumObservations: 200
DispatchInBackground: 0

Define Custom Pixel Classification Layer with Dice Loss

Define and create a custom pixel classification layer that uses Dice loss.
You can use this layer to train semantic segmentation networks. To learn more about creating custom deep learning layers, see "Define Custom Deep Learning Layers" (Deep Learning Toolbox).

Dice Loss

The Dice loss is based on the Sørensen-Dice similarity coefficient for measuring the overlap between two segmented images. The generalized Dice loss [1,2] L for between one image Y and the corresponding ground truth T is given by
$L=1-\frac{2 \sum_{k=1}^{K} w_{k} \sum_{m=1}^{M} Y_{k m} T_{k m}}{\sum_{k=1}^{K} w_{k} \sum_{m}^{M}=1 Y_{k m}^{2}+T_{k m}^{2}}$,
where K is the number of classes, M is the number of elements along the first two dimensions of Y, and w_{k} is a class-specific weighting factor that controls the contribution each class makes to the loss. w_{k} is typically the inverse area of the expected region:

$$
w_{k}=\frac{1}{\left(\sum_{m=1}^{M} T_{k m}\right)^{2}}
$$

This weighting helps counter the influence of larger regions on the Dice score and makes it easier for the network to learn how to segment smaller regions.

Classification Layer Template

Copy the classification layer template into a new file in MATLAB ${ }^{\circledR}$. This template outlines the structure of a classification layer and includes the functions that define the layer behavior. The rest of the example shows how to complete the dicePixelClassificationLayer.

```
classdef dicePixelClassificationLayer < nnet.layer.ClassificationLayer
    properties
        % Optional properties
    end
    methods
        function loss = forwardLoss(layer, Y, T)
            % Layer forward loss function goes here.
        end
        function dLdY = backwardLoss(layer, Y, T)
            % Layer backward loss function goes here.
        end
    end
end
```


Declare Layer Properties

By default, custom output layers have the following properties:

- Name - Layer name, specified as a character vector or a string scalar. To include this layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with this layer and Name is set to ' ' , then the software automatically assigns a name at training time.
- Description - One-line description of the layer, specified as a character vector or a string scalar. This description appears when the layer is displayed in a Layer array. If you do not specify a layer description, then the software displays the layer class name.
- Type - Type of the layer, specified as a character vector or a string scalar. The value of Type appears when the layer is displayed in a Layer array. If you do not specify a layer type, then the software displays 'Classification layer' or 'Regression layer'.

Custom classification layers also have the following property:

- Classes - Classes of the output layer, specified as a categorical vector, string array, cell array of character vectors, or 'auto'. If Classes is 'auto', then the software automatically sets the classes at training time. If you specify a string array or cell array of character vectors str, then the software sets the classes of the output layer to categorical(str,str). The default value is 'auto'.

If the layer has no other properties, then you can omit the properties section.

The Dice loss requires a small constant value to prevent division by zero. Specify the property, Epsilon, to hold this value.

```
classdef dicePixelClassificationLayer < nnet.layer.ClassificationLayer
    properties(Constant)
        % Small constant to prevent division by zero.
        Epsilon = 1e-8;
    end
end
```


Create Constructor Function

Create the function that constructs the layer and initializes the layer properties. Specify any variables required to create the layer as inputs to the constructor function.

Specify an optional input argument name to assign to the Name property at creation.

```
function layer = dicePixelClassificationLayer(name)
    % layer = dicePixelClassificationLayer(name) creates a Dice
    % pixel classification layer with the specified name.
    % Set layer name.
    layer.Name = name;
    % Set layer description.
    layer.Description = 'Dice loss';
end
```


Create Forward Loss Function

Create a function named forwardLoss that returns the weighted cross entropy loss between the predictions made by the network and the training targets. The syntax for forwardLoss is loss = forwardLoss(layer, Y, T), where Y is the output of the previous layer and T represents the training targets.

For semantic segmentation problems, the dimensions of T match the dimension of Y, where Y is a 4-D array of size H -by-W-by-K-by-N, where K is the number of classes, and N is the mini-batch size.

The size of Y depends on the output of the previous layer. To ensure that Y is the same size as T , you must include a layer that outputs the correct size before the output layer.

For example, to ensure that Y is a 4-D array of prediction scores for K classes, you can include a fully connected layer of size K or a convolutional layer with K filters followed by a softmax layer before the output layer.

```
function loss = forwardLoss(layer, Y, T)
    % loss = forwardLoss(layer, Y, T) returns the Dice loss between
    % the predictions Y and the training targets T.
    % Weights by inverse of region size.
    W = 1 ./ sum(sum(T,1),2).^2;
    intersection = sum(sum(Y.*T,1),2);
    union = sum(sum(Y.^2 + T.^2, 1),2);
    numer = 2*sum(W.*intersection,3) + layer.Epsilon;
    denom = sum(W.*union,3) + layer.Epsilon;
    % Compute Dice score.
    dice = numer./denom;
    % Return average Dice loss.
    N = size(Y,4);
    loss = sum((1-dice))/N;
```

end

Create Backward Loss Function

Create the backward loss function that returns the derivatives of the Dice loss with respect to the predictions Y . The syntax for backwardLoss is loss $=$ backwardLoss(layer, Y, T), where Y is the output of the previous layer and T represents the training targets.

The dimensions of Y and T are the same as the inputs in forwardLoss.

```
function dLdY = backwardLoss(layer, Y, T)
    % dLdY = backwardLoss(layer, Y, T) returns the derivatives of
    % the Dice loss with respect to the predictions Y.
    % Weights by inverse of region size.
    W = 1 ./ sum(sum(T,1),2).^2;
    intersection = sum(sum(Y.*T,1),2);
    union = sum(sum(Y.^2 + T.^2, 1),2);
```

```
    numer = 2*sum(W.*intersection,3) + layer.Epsilon;
    denom = sum(W.*union,3) + layer.Epsilon;
    N = size(Y,4);
    dLdY = (2*W.*Y.*numer./denom.^2 - 2*W.*T./denom)./N;
end
```


Completed Layer

The completed layer is provided in dicePixelClassificationLayer.m.

```
classdef dicePixelClassificationLayer < nnet.layer.ClassificationLayer
    % This layer implements the generalized Dice loss function for training
    % semantic segmentation networks.
    properties(Constant)
        % Small constant to prevent division by zero.
        Epsilon = 1e-8;
    end
    methods
        function layer = dicePixelClassificationLayer(name)
            % layer = dicePixelClassificationLayer(name) creates a Dice
            % pixel classification layer with the specified name.
            % Set layer name.
            layer.Name = name;
            % Set layer description.
            layer.Description = 'Dice loss';
                end
```

function loss = forwardLoss(layer, Y, T)
\% loss = forwardLoss(layer, Y, T) returns the Dice loss between
\% the predictions Y and the training targets T .
\% Weights by inverse of region size.
$W=1$./ sum(sum(T,1),2).^2;
intersection $=\operatorname{sum}\left(\operatorname{sum}\left(\mathrm{Y} .{ }^{*} \mathrm{~T}, 1\right), 2\right)$;
union $=\operatorname{sum}\left(\operatorname{sum}\left(Y . \wedge^{\wedge}+\mathrm{T} . \wedge 2,1\right), 2\right)$;

```
    numer = 2*sum(W.*intersection,3) + layer.Epsilon;
denom = sum(W.*union,3) + layer.Epsilon;
% Compute Dice score.
dice = numer./denom;
% Return average Dice loss.
N = size(Y,4);
loss = sum((1-dice))/N;
end
function dLdY = backwardLoss(layer, Y, T)
% dLdY = backwardLoss(layer, Y, T) returns the derivatives of
% the Dice loss with respect to the predictions Y.
% Weights by inverse of region size.
W = 1 ./ sum(sum(T,1),2).^2;
intersection = sum(sum(Y.*T,1),2);
union = sum(sum(Y.^2 + T.^2, 1),2);
numer = 2*sum(W.*intersection,3) + layer.Epsilon;
denom = sum(W.*union,3) + layer.Epsilon;
N = size(Y,4);
dLdY = (2*W.*Y.*numer./denom.^2 - 2*W.*T./denom)./N;
end
end
end
```


GPU Compatibility

For GPU compatibility, the layer functions must support inputs and return outputs of type gpuArray. Any other functions used by the layer must do the same.

The MATLAB functions used in forwardLoss and backwardLoss in dicePixelClassificationLayer all support gpuArray inputs, so the layer is GPU compatible.

Check Output Layer Validity

Create an instance of the layer.

```
layer = dicePixelClassificationLayer('dice');
```

Check the layer validity of the layer using checkLayer. Specify the valid input size to be the size of a single observation of typical input to the layer. The layer expects a H -by-W-byK -by- N array inputs, where K is the number of classes and N is the number of observations in the mini-batch.

```
numClasses = 2;
validInputSize = [4 4 numClasses];
checkLayer(layer,validInputSize, 'ObservationDimension',4)
Running nnet.checklayer.OutputLayerTestCase
Done nnet.checklayer.OutputLayerTestCase
Test Summary:
    17 Passed, 0 Failed, 0 Incomplete, 0 Skipped.
    Time elapsed: 1.6227 seconds.
```

The test summary reports the number of passed, failed, incomplete, and skipped tests.

Use Custom Layer in Semantic Segmentation Network

Create a semantic segmentation network that uses the dicePixelClassificationLayer.

layers = [

imageInputLayer([32 32 1])
convolution2dLayer(3,64,'Padding',1)
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,64,'Padding',1)
reluLayer
transposedConv2dLayer(4,64,'Stride', 2,'Cropping',1)
convolution2dLayer(1,2)
softmaxLayer
dicePixelClassificationLayer('dice')]
layers =
10x1 Layer array with layers:

1	$'$,	Image Input	$32 \times 32 \times 1$ images with 'zerocenter' normalizat
2	''	Convolution	643×3 convolutions with stride $\left[\begin{array}{ll}1 & 1] \text { and } \\ 3 & \text { '' }\end{array} \quad\right.$ ReLU

4	1 '	Max Pooling	2×2 max pooling with stride [2 2] and padd
5	''	Convolution	643×3 convolutions with stride [1 1] and
6	' '	ReLU	ReLU
7	''	Transposed Convolution	644×4 transposed convolutions with stride
8	''	Convolution	21×1 convolutions with stride [1 1] and p
9	''	Softmax	softmax
10	'dice'	Classification Output	Dice loss

Load training data for semantic segmentation using imageDatastore and pixelLabelDatastore.

```
dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
labelDir = fullfile(dataSetDir,'trainingLabels');
imds = imageDatastore(imageDir);
classNames = ["triangle" "background"];
labelIDs = [255 0];
pxds = pixelLabelDatastore(labelDir, classNames, labelIDs);
```

Associate the image and pixel label data using pixelLabelImageDatastore.
ds = pixelLabelImageDatastore(imds,pxds);

Set the training options and train the network.

```
options = trainingOptions('sgdm', ...
    'InitialLearnRate',1e-2, ...
    'MaxEpochs',100, ...
    'LearnRateDropFactor',1e-1, ...
    'LearnRateDropPeriod',50, ...
    'LearnRateSchedule','piecewise', ...
    'MiniBatchSize',128);
net = trainNetwork(ds,layers,options);
Training on single GPU.
Initializing image normalization.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Epoch & Iteration & \begin{tabular}{l}
Time Elapsed \\
(hh:mm:ss)
\end{tabular} & Mini-batch Accuracy & Mini-batch Loss & Base Learning Rate \\
\hline 1 & 1 & 00:00:03 & 27.89\% & 0.8346 & 0.01 \\
\hline 50 & 50 & 00:00:34 & 89.67\% & 0.6384 & 0.01 \\
\hline
\end{tabular}
```


Evaluate the trained network by segmenting a test image and displaying the segmentation result.

```
I = imread('triangleTest.jpg');
[C,scores] = semanticseg(I,net);
B = labeloverlay(I,C);
figure
imshow(imtile({I,B}))
```


Semantic Segmentation Using Dilated Convolutions

Train a semantic segmentation network using dilated convolutions.
A semantic segmentation network classifies every pixel in an image, resulting in an image that is segmented by class. Applications for semantic segmentation include road
segmentation for autonomous driving and cancer cell segmentation for medical diagnosis. To learn more, see "Getting Started With Semantic Segmentation Using Deep Learning".

Semantic segmentation networks like DeepLab [1] make extensive use of dilated convolutions (also known as atrous convolutions) because they can increase the receptive field of the layer (the area of the input which the layers can see) without increasing the number of parameters or computations.

Load Training Data

The example uses a simple dataset of 32-by-32 triangle images for illustration purposes. The dataset includes accompanying pixel label ground truth data. Load the training data using an imageDatastore and a pixelLabelDatastore.

```
dataFolder = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageFolderTrain = fullfile(dataFolder,'trainingImages');
labelFolderTrain = fullfile(dataFolder,'trainingLabels');
```

Create an imageDatastore for the images.

```
imdsTrain = imageDatastore(imageFolderTrain);
```

Create a pixelLabelDatastore for the ground truth pixel labels.
classNames = ["triangle" "background"];
labels = [255 0];
pxdsTrain = pixelLabelDatastore(labelFolderTrain,classNames,labels)
pxdsTrain =
PixelLabelDatastore with properties:
Files: \{200×1 cell\}
ClassNames: $\{2 \times 1$ cell\}
ReadSize:
ReadFcn: @readDatastoreImage
AlternateFileSystemRoots: \{\}

Create Semantic Segmentation Network

This example uses a simple semantic segmentation network based on dilated convolutions.

Create a data source for training data and get the pixel counts for each label.

```
pximdsTrain = pixelLabelImageDatastore(imdsTrain,pxdsTrain);
tbl = countEachLabel(pximdsTrain)
tbl=2\times3 table
    Name PixelCount ImagePixelCount
    'triangle' 10326 2.048e+05
    'background' 1.9447e+05 2.048e+05
```

The majority of pixel labels are for background. This class imbalance biases the learning process in favor of the dominant class. To fix this, use class weighting to balance the classes. You can use several methods to compute class weights. One common method is inverse frequency weighting where the class weights are the inverse of the class frequencies. This method increases the weight given to under represented classes. Calculate the class weights using inverse frequency weighting.

```
numberPixels = sum(tbl.PixelCount);
frequency = tbl.PixelCount / numberPixels;
classWeights = 1 ./ frequency;
```

Create a network for pixel classification by using an image input layer with an input size corresponding to the size of the input images. Next, specify three blocks of convolution, batch normalization, and ReLU layers. For each convolutional layer, specify 32 3-by-3 filters with increasing dilation factors and pad the inputs so they are the same size as the outputs by setting the 'Padding ' option to 'same '. To classify the pixels, include a convolutional layer with K 1-by-1 convolutions, where K is the number of classes, followed by a softmax layer and a pixelClassificationLayer with the inverse class weights.

```
inputSize = [32 32 1];
filterSize = 3;
numFilters = 32;
numClasses = numel(classNames);
layers = [
    imageInputLayer(inputSize)
    convolution2dLayer(filterSize,numFilters,'DilationFactor',1,'Padding','same')
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(filterSize,numFilters,'DilationFactor',2,'Padding','same')
    batchNormalizationLayer
```

reluLayer

```
convolution2dLayer(filterSize,numFilters,'DilationFactor',4,'Padding','same')
batchNormalizationLayer
reluLayer
convolution2dLayer(1,numClasses)
softmaxLayer
pixelClassificationLayer('Classes',classNames,'ClassWeights',classWeights)];
```


Train Network

Specify the training options.

```
options = trainingOptions('sgdm', ...
    'MaxEpochs', 100, ...
    'MiniBatchSize', 64, ...
    'InitialLearnRate', le-3);
```

Train the network using trainNetwork.

```
net = trainNetwork(pximdsTrain,layers,options);
Training on single GPU.
Initializing image normalization.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Epoch & Iteration & \begin{tabular}{l}
Time Elapsed \\
(hh:mm:ss)
\end{tabular} & Mini-batch Accuracy & \[
\begin{aligned}
& \text { Mini-batch } \\
& \text { Loss }
\end{aligned}
\] & Base Learnind Rate \\
\hline 1 & 1 & 00:00:00 & 67.54\% & 0.7098 & 0.00 \\
\hline 17 & 50 & 00:00:03 & 84.60\% & 0.3851 & 0.00 \\
\hline 34 & 100 & 00:00:06 & 89.85\% & 0.2536 & 0.00 \\
\hline 50 & 150 & 00:00:09 & 93.39\% & 0.1959 & 0.00 \\
\hline 67 & 200 & 00:00:11 & 95.89\% & 0.1559 & 0.00 \\
\hline 84 & 250 & 00:00:14 & 97.29\% & 0.1188 & 0.00 \\
\hline 100 & 300 & 00:00:18 & 98.28\% & 0.0970 & 0.00 \\
\hline
\end{tabular}
```


Test Network

Load the test data. Create an imageDatastore for the images. Create a pixelLabelDatastore for the ground truth pixel labels.
imageFolderTest = fullfile(dataFolder,'testImages');
imdsTest = imageDatastore(imageFolderTest);

```
labelFolderTest = fullfile(dataFolder,'testLabels');
pxdsTest = pixelLabelDatastore(labelFolderTest,classNames,labels);
Make predictions using the test data and trained network.
pxdsPred = semanticseg(imdsTest,net,'WriteLocation',tempdir);
Running semantic segmentation network
* Processing 100 images.
* Progress: 100.00%
```

Evaluate the prediction accuracy using evaluateSemanticSegmentation.

```
metrics = evaluateSemanticSegmentation(pxdsPred,pxdsTest);
```

Evaluating semantic segmentation results

* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processing 100 images...
[===1 100\%
Elapsed time: 00:00:00
Estimated time remaining: 00:00:00
* Finalizing... Done.
* Data set metrics:

For more information on evaluating semantic segmentation networks, see evaluateSemanticSegmentation.

Segment New Image

Read and display the test image triangleTest.jpg.

```
imgTest = imread('triangleTest.jpg');
figure
imshow(imgTest)
```


Segment the test image using semanticseg and display the results using labeloverlay.

```
C = semanticseg(imgTest,net);
B = labeloverlay(imgTest,C);
figure
imshow(B)
```


Tips

- The pixelLabelDatastore pxds and the imageDatastore imds store files that are located in a folder in lexicographical order. For example, if you have twelve files named 'file1.jpg','file2.jpg', ...,'file11.jpg', and 'file12.jpg', then the files are stored in this order:

```
'filel.jpg'
'file10.jpg'
'file11.jpg'
'file12.jpg'
'file2.jpg'
'file3.jpg'
'file9.jpg'
```

Files that are stored in a cell array are read in the same order as they are stored.

If the order of files in pxds and imds are not the same, then you may encounter a mismatch when you read a ground truth image and corresponding label data using a pixelLabelImageDatastore. If this occurs, then rename the pixel label files so that they have the correct order. For example, rename 'file1.jpg', ..., 'file9.jpg' to 'file01.jpg', ..., 'file09.jpg'.

- To extract semantic segmentation data from a groundTruth object generated by the Video Labeler or Ground Truth Labeler, use the pixelLabelTrainingData function.

See Also

Functions

trainNetwork

Objects
 ImageDatastore | groundTruth | pixelLabelDatastore | pixelLabelTrainingData

Topics

"Getting Started With Semantic Segmentation Using Deep Learning"
"Datastores for Deep Learning" (Deep Learning Toolbox)
"Deep Learning in MATLAB" (Deep Learning Toolbox)

Introduced in R2018a

partitionBylndex

Partition pixelLabelImageDatastore according to indices

Syntax

pximds2 $=$ partitionByIndex(pximds,ind)

Description

pximds2 = partitionByIndex(pximds,ind) partitions a subset of observations in a pixel label image datastore, pximds, into a new datastore, pximds2. The desired observations are specified by indices, ind.

Input Arguments

pximds - Pixel label image datastore

pixelLabelImageDatastore
Pixel label image datastore, specified as a pixelLabelImageDatastore object.

ind - Indices

vector of positive integers
Indices of observations, specified as a vector of positive integers.

Output Arguments

pximds2 - Output datastore
pixelLabelImageDatastore object
Output datastore, returned as a pixelLabelImageDatastore object containing a subset of files from pximds.

See Also
pixelLabelImageDatastore|read|readByIndex|readall
Introduced in R2018a

readByIndex

Read data specified by index from pixelLabelImageDatastore

Syntax

data $=$ readByIndex(pximds,ind)
[data,info] = readByIndex(pximds,ind)

Description

data $=$ readByIndex(pximds,ind) returns a subset of observations from a pixel label image datastore, pximds. The desired observations are specified by indices, ind.
[data,info] = readByIndex(pximds,ind) also returns information about the observations, including metadata, in info.

Input Arguments

pximds - Pixel label image datastore

pixelLabelImageDatastore
Pixel label image datastore, specified as a pixelLabelImageDatastore object.

ind - Indices

vector of positive integers
Indices of observations, specified as a vector of positive integers.

Output Arguments

data - Observations from datastore
table
Observations from the datastore, returned as a table with length(ind) number of rows.

info - Information about read data
 structure array

Information about read data, returned as a structure array. The structure array can contain the following fields.

Field Name	Description
Filename	Filename is a fully resolved path containing the path string, name of the file, and file extension.
FileSize	Total file size, in bytes. For MAT-files, FileSize is the total number of key-value pairs in the file.

See Also

partitionByIndex|pixelLabelImageDatastore|read|readall

Introduced in R2018a

shuffle

Shuffle data in pixelLabelImageDatastore

Syntax

pximds2 = shuffle(pximds)

Description

pximds2 $=$ shuffle(pximds) returns a pixelLabelImageDatastore object containing a random ordering of the data from pixel label image datastore pximds.

Input Arguments

pximds - Pixel label image datastore

pixelLabelImageDatastore
Pixel label image datastore, specified as a pixelLabelImageDatastore object.

Output Arguments

pximds2 - Output datastore
pixelLabelImageDatastore object
Output datastore, returned as a pixelLabelImageDatastore object containing randomly ordered files from pximds.

See Also

pixelLabelImageDatastore |read|readByIndex|readall

Introduced in R2018a

rcnnBoxRegressionLayer

Box regression layer for Fast and Faster R-CNN

Description

A box regression layer refines bounding box locations by using a smooth L1 loss function. Use this layer to create a Fast or Faster R-CNN object detection network.

Creation

Syntax

layer = rcnnBoxRegressionLayer
layer = rcnnBoxRegressionLayer('Name',Name)

Description

layer $=$ rcnnBoxRegressionLayer creates a box regression layer for a Fast or Faster R-CNN object detection network.
layer = rcnnBoxRegressionLayer('Name', Name) creates a box regression layer and sets the optional Name property.

Properties

Name - Layer name

' ' (default) | character vector | string scalar
Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to ' ' , then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs - Number of inputs

1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames - Input names

\{'in'\} (default)
Input names of the layer. This layer accepts a single input only.
Data Types: cell

Examples

Create R-CNN Box Regression Layer

Create an R-CNN box regression layer with the name 'rcnn_box_reg'.
rcnnBoxRegression = rcnnBoxRegressionLayer('Name','rcnn_box_reg');

See Also

regressionLayer|trainFastRCNNObjectDetector|
trainFasterRCNNObjectDetector

Topics

"Create Fast R-CNN Object Detection Network"
"Create Faster R-CNN Object Detection Network"
"Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN"
"Deep Learning in MATLAB" (Deep Learning Toolbox)
"List of Deep Learning Layers" (Deep Learning Toolbox)

Introduced in R2018b

regionProposalLayer

Region proposal layer for Faster R-CNN

Description

A region proposal layer outputs bounding boxes around potential objects in an image as part of the region proposal network (RPN) within Faster R-CNN. These outputs are further refined by additional layers within Faster R-CNN to produce the final object detection results.

There are two inputs to this layer:

- 'scores' - The classification scores produced by the RPN classification branch
- 'boxDeltas ' - The bounding box deltas produced by the RPN regression branch

Use the input names when connecting or disconnecting the region proposal layer to other layers using connectLayers or disconnectLayers (requires Deep Learning Toolbox).

Creation

Syntax

layer $=$ regionProposalLayer(anchorBoxes)
layer $=$ regionProposalLayer(anchorBoxes,' Name',Name)

Description

layer $=$ regionProposalLayer(anchorBoxes) creates a region proposal layer for building Faster R-CNN object detection networks, and sets the AnchorBoxes property.
layer $=$ regionProposalLayer(anchorBoxes,' Name', Name) creates a region proposal layer and sets the optional Name property.

Properties

AnchorBoxes - Anchor boxes

M-by-2 matrix
Anchor boxes, specified as an M-by-2 matrix defining the [height width] of M anchor boxes.

Anchor boxes are predefined bounding box templates of fixed size. The size of each anchor box is typically determined based on a priori knowledge of the scale and aspect ratio of objects in the training dataset. An RPN network is trained to predict the translation and rescaling needed to align the anchor boxes with the ground truth bounding boxes. [1]

Name - Layer name

' ' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to ' ' , then the software automatically assigns a name to the layer at training time.

Data Types: char|string

NumInputs - Number of inputs

2 (default)

Number of inputs of the layer. This layer has two inputs.
Data Types: double

InputNames - Input names
 \{'scores' 'boxDeltas'\} (default)

Input names of the layer. This layer has two inputs, named 'scores' and 'boxDeltas'.
Data Types: cell

NumOutputs - Number of outputs
 1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames - Output names

\{'out'\} (default)
Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create Region Proposal Layer

Define three square anchor boxes for the region proposal layer.

anchorBoxes = [

1616
6464
128128
];
Create a region proposal layer with the name 'region_proposal'.
regionProposal = regionProposalLayer(anchorBoxes,'Name','region_proposal');

References

[1] Ren, S., K. He, R. Girshick, and J. Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks." Advances in Neural Information Processing Systems. Vol. 28, 2015.

See Also

connectLayers|layerGraph|removeLayers|trainFasterRCNNObjectDetector

Topics

"Create Faster R-CNN Object Detection Network"
"Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN"
"Deep Learning in MATLAB" (Deep Learning Toolbox)
"List of Deep Learning Layers" (Deep Learning Toolbox)

Introduced in R2018b

roilnputLayer

ROI input layer for Fast R-CNN

Description

An ROI input layer inputs images to a Fast R-CNN object detection network.

Creation

Syntax

layer = roiInputLayer
layer = roiInputLayer('Name',Name)

Description

layer = roiInputLayer creates an ROI input layer.
layer = roiInputLayer('Name',Name) creates an ROI input layer and sets the optional Name property.

Properties

Name - Layer name

' ' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to ' ' , then the software automatically assigns a name to the layer at training time.

NumOutputs - Number of outputs

1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames - Output names

\{'out'\} (default)
Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Connect ROI Input Layer to ROI Max Pooling Layer

Create an ROI input layer.

```
roiInput = roiInputLayer('Name','roi_input');
```

Create an ROI max pooling layer with output size [4 4].

```
outputSize = [4 4];
roiPool = roiMaxPooling2dLayer(outputSize,'Name','roi_pool');
```

Add the layers to a LayerGraph.

```
lgraph = layerGraph;
lgraph = addLayers(lgraph,roiInput);
lgraph = addLayers(lgraph,roiPool);
```

Specify that the output of the ROI input layer is the ' roi ' input of the ROI max pooling layer.

```
lgraph = connectLayers(lgraph,'roi_input','roi_pool/roi');
plot(lgraph)
```


See Also

imageInputLayer| roiMaxPooling2dLayer |trainFastRCNNObjectDetector

Topics

"Create Fast R-CNN Object Detection Network"
"Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN"
"Deep Learning in MATLAB" (Deep Learning Toolbox)
"List of Deep Learning Layers" (Deep Learning Toolbox)

Introduced in R2018b

roiMaxPooling2dLayer

Neural network layer used to output fixed-size feature maps for rectangular ROIs

Description

An ROI max pooling layer outputs fixed size feature maps for every rectangular ROI within the input feature map. Use this layer to create a Fast or Faster R-CNN object detection network.

Given an input feature map of size [$H W C N$], where C is the number of channels and N is the number of observations, the output feature map size is [height width C sum (M)], where height and width are the output size. M is a vector of length N and $M(i)$ is the number of ROIs associated with the i-th input feature map.

There are two inputs to this layer:

- 'in' - The input feature map that will be cropped
- 'roi' - A list of ROIs to pool

Use the input names when connecting or disconnecting the ROI max pooling layer to other layers using connectLayers or disconnectLayers (requires Deep Learning Toolbox).

Creation

Syntax

layer = roiMaxPooling2dLayer(outputSize)
layer = roiMaxPooling2dLayer(outputSize,' Name',Name)

Description

layer = roiMaxPooling2dLayer(outputSize) creates a max pooling layer for ROIs and sets the OutputSize property.
layer = roiMaxPooling2dLayer(outputSize, 'Name' ,Name) creates a max pooling layer for ROIs and sets the optional Name property. To create a network containing an ROI max pooling layer, you must specify a layer name.

Properties

OutputSize - Pooled output size

two-element vector of positive integers
Pooled output size, specified as a two-element vector of positive integers of the form [height width].

Name - Layer name

' ' (default) | character vector | string scalar
Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to ' ' , then the software automatically assigns a name to the layer at training time.

Data Types: char \| string

NumInputs - Number of inputs

2 (default)
Number of inputs of the layer. This layer has two inputs.
Data Types: double

InputNames - Input names

\{'in' 'roi'\} (default)
Input names of the layer. This layer has two inputs, named 'in' and 'roi'.
Data Types: cell

NumOutputs - Number of outputs

1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames - Output names

\{'out'\} (default)
Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Connect ROI Input Layer to ROI Max Pooling Layer

Create an ROI input layer.
roiInput = roiInputLayer('Name','roi_input');
Create an ROI max pooling layer with output size [4 4].

```
outputSize = [4 4];
roiPool = roiMaxPooling2dLayer(outputSize,'Name','roi_pool');
```

Add the layers to a LayerGraph.
lgraph = layerGraph;
lgraph = addLayers(lgraph,roiInput);
lgraph = addLayers(lgraph,roiPool);
Specify that the output of the ROI input layer is the ' roi' input of the ROI max pooling layer.
lgraph = connectLayers(lgraph,'roi_input','roi_pool/roi');
plot(lgraph)

See Also

connectLayers | layerGraph | maxPooling2dLayer | removeLayers | roiInputLayer|trainFastRCNNObjectDetector| trainFasterRCNNObjectDetector

Topics

"Create Fast R-CNN Object Detection Network"
"Create Faster R-CNN Object Detection Network"
"Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN"
"Deep Learning in MATLAB" (Deep Learning Toolbox)
"List of Deep Learning Layers" (Deep Learning Toolbox)

Introduced in R2018b

rpnClassificationLayer

Classification layer for region proposal networks (RPNs)

Description

A region proposal network (RPN) classification layer classifies image regions as either object or background by using a cross entropy loss function. Use this layer to create a Faster R-CNN object detection network.

Creation

Syntax

layer = rpnClassificationLayer
layer = rpnClassificationLayer('Name',Name)

Description

layer = rpnClassificationLayer creates a two-class classification layer for a Faster R-CNN object detection network.
layer = rpnClassificationLayer('Name',Name) creates a two-class classification layer and sets the optional Name property.

Properties

Name - Layer name

' ' (default) | character vector | string scalar
Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to ' ' , then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs - Number of inputs

1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames - Input names

\{'in'\} (default)
Input names of the layer. This layer accepts a single input only.

Data Types: cell

Examples

Create Classification Branch of RPN

Create an RPN softmax layer with the name 'rpn_softmax'.
rpnSoftmax = rpnSoftmaxLayer('Name','rpn_softmax')
rpnSoftmax = RPNSoftmaxLayer with properties:

Name: 'rpn_softmax'

Create an RPN classification layer with the name 'rpn_cls'.

```
rpnClassification = rpnClassificationLayer('Name','rpn cls')
```

rpnClassification =
RPNClassificationLayer with properties:
Name: 'rpn cls'

Add the RPN softmax and RPN classification layers to a Layer array, to form the classification branch of an RPN.

```
numAnchors = 3;
rpnClassLayers = [
        convolution2dLayer(1,numAnchors*2,'Name','conv1x1_box_cls')
        rpnSoftmax
        rpnClassification
        ]
rpnClassLayers =
    3x1 Layer array with layers:
```

1	'convlx1_box_cls'	Convolution	61×1 convolutions with stride
2	'rpn_softmax'	RPN Softmax	rpn softmax
3	'rpn_cls'	RPN Classification Output	cross-entropy loss with 'obje

See Also

classificationLayer|rpnSoftmaxLayer|trainFasterRCNNObjectDetector

Topics

"Create Faster R-CNN Object Detection Network"
"Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN"
"Deep Learning in MATLAB" (Deep Learning Toolbox)
"List of Deep Learning Layers" (Deep Learning Toolbox)

Introduced in R2018b

rpnSoftmaxLayer

Softmax layer for region proposal network (RPN)

Description

A region proposal network (RPN) softmax layer applies a softmax activation function to the input. Use this layer to create a Faster R-CNN object detection network.

Creation

Syntax

```
layer = rpnSoftmaxLayer
layer = rpnSoftmaxLayer('Name',Name)
```


Description

layer $=$ rpnSoftmaxLayer creates a softmax layer for a Faster R-CNN object detection network.
layer = rpnSoftmaxLayer('Name',Name) creates a softmax layer and sets the optional Name property.

Properties

Name - Layer name

```
' ' (default) | character vector | string scalar
```

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to ' ' , then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs - Number of inputs

1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames - Input names

\{'in'\} (default)
Input names of the layer. This layer accepts a single input only.

Data Types: cell

NumOutputs - Number of outputs
 1 (default)

Number of outputs of the layer. This layer has a single output only.
Data Types: double

OutputNames - Output names

\{'out'\} (default)
Output names of the layer. This layer has a single output only.

Data Types: cell

Examples

Create Classification Branch of RPN

Create an RPN softmax layer with the name 'rpn_softmax'.
rpnSoftmax = rpnSoftmaxLayer('Name','rpn_softmax')
rpnSoftmax = RPNSoftmaxLayer with properties:

Name: 'rpn softmax'

```
Create an RPN classification layer with the name 'rpn_cls'.
rpnClassification = rpnClassificationLayer('Name','rpn_cls')
rpnClassification =
    RPNClassificationLayer with properties:
Name: 'rpn_cls'
```

Add the RPN softmax and RPN classification layers to a Layer array, to form the classification branch of an RPN.

```
numAnchors = 3;
rpnClassLayers = [
    convolution2dLayer(1,numAnchors*2,'Name','conv1x1 box cls')
    rpnSoftmax
    rpnClassification
    ]
rpnClassLayers =
    3x1 Layer array with layers:
```

1	'convlx__box_cls'	Convolution	61×1 convolutions with stride
2	'rpn_softmax'	RPN Softmax	rpn softmax
3	'rpn_cls'	RPN Classification Output	cross-entropy loss with 'obje

See Also

rpnClassificationLayer|softmaxLayer|trainFasterRCNNObjectDetector

Topics

"Create Faster R-CNN Object Detection Network"
"Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN"
"Deep Learning in MATLAB" (Deep Learning Toolbox)
"List of Deep Learning Layers" (Deep Learning Toolbox)

Introduced in R2018b

dicePixeIClassificationLayer

Create pixel classification layer using generalized Dice loss for semantic segmentation

Description

A Dice pixel classification layer provides a categorical label for each image pixel or voxel using generalized Dice loss.

The layer uses generalized Dice loss to alleviate the problem of class imbalance in semantic segmentation problems. Generalized Dice loss controls the contribution that each class makes to the loss by weighting classes by the inverse size of the expected region.

Creation

Syntax

layer = dicePixelClassificationLayer
layer = dicePixelClassificationLayer(Name, Value)

Description

layer = dicePixelClassificationLayer creates a Dice pixel classification output layer for semantic image segmentation networks. The layer outputs the categorical label for each image pixel or voxel processed by a CNN. The layer automatically ignores undefined pixel labels during training.
layer = dicePixelClassificationLayer(Name,Value) returns a Dice pixel classification output layer using Name,Value pair arguments to set the optional Classes and Name properties. You can specify multiple name-value pairs. Enclose each property name in quotes.

For example, dicePixelClassificationLayer('Name','pixclass') creates a Dice pixel classification layer with the name 'pixclass'.

Properties

Classes - Classes of the output layer

'auto ' (default) | categorical vector | string array | cell array of character vectors
Classes of the output layer, specified as a categorical vector, string array, cell array of character vectors, or 'auto'. If Classes is 'auto', then the software automatically sets the classes at training time. If you specify the string array or cell array of character vectors str, then the software sets the classes of the output layer to categorical(str,str). The default value is 'auto'.
Data Types: char|categorical|string|cell

OutputSize - Output size

'auto' (default)
This property is read-only.
The output size of the layer. The value is 'auto ' prior to training, and is specified as a numeric value at training time.

LossFunction - Loss function

'generalizedDiceLoss' (default)
This property is read-only.
Loss function used for training, specified as 'generalizedDiceLoss'.

Name - Layer name

' ' (default) | character vector | string scalar
Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to ' ' , then the software automatically assigns a name to the layer at training time.

Data Types: char|string

NumInputs - Number of inputs
 1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames - Input names

\{'in'\} (default)
Input names of the layer. This layer accepts a single input only.
Data Types: cell

Examples

Create 2-D Semantic Segmentation Network with Dice Pixel Classification Layer

Predict the categorical label of every pixel in an input image using a generalized Dice loss function.

```
layers = [
    imageInputLayer([480 640 3])
    convolution2dLayer(3,16,'Stride',2,'Padding',1)
    reluLayer
    transposedConv2dLayer(2,4,'Stride',2)
    softmaxLayer
    dicePixelClassificationLayer
    ]
```

```
layers =
```

layers =
6x1 Layer array with layers:

```
    6x1 Layer array with layers:
```

1	$' '$	Image Input	$480 \times 640 \times 3$ images with 'zerocenter'
2	nor		
3	''	Convolution	ReLU

More About

Dice Loss

The Dice loss function is based on the Sørensen-Dice similarity coefficient for measuring overlap between two segmented images.

The generalized Dice loss function L used by dicePixelClassificationLayer for the loss between one image Y and the corresponding ground truth T is given by:

$$
L=1-\frac{2 \sum_{k=1}^{K} w_{k} \sum_{m=1}^{M} Y_{k m} T_{k m}}{\sum_{k=1}^{K} w_{k} \sum_{m=1}^{M} Y_{k m}^{2}+T_{k m}^{2}}
$$

K is the number of classes, M is the number of elements along the first two dimensions of Y, and w_{k} is a class specific weighting factor that controls the contribution each class makes to the loss. This weighting helps counter the influence of larger regions on the Dice score, making it easier for the network to learn how to segment smaller regions. w_{k} is typically the inverse area of the expected region:

$$
w_{k}=\frac{1}{\left(\sum_{m=1}^{M} T_{k m}\right)^{2}}
$$

There are several variations of generalized Dice Loss functions [1], [2]. The function used in dicePixelClassificationLayer has squared terms to ensure that the derivative is 0 when the prediction matches the ground truth [3].

References

[1] Crum, William R., Oscar Camara, and Derek LG Hill. "Generalized overlap measures for evaluation and validation in medical image analysis." IEEE Transactions on Medical Imaging. 25.11, 2006, pp. 1451-1461.
[2] Sudre, Carole H., et al. "Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations." Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, Cham, 2017, pp. 240-248.

[3] Milletari, Fausto, Nassir Navab, and Seyed-Ahmad Ahmadi. "V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation". Fourth International Conference on 3D Vision (3DV). Stanford, CA, 2016: pp. 565571.

```
See Also
fcnLayers|pixelClassificationLayer|pixelLabelDatastore|
pixelLabelImageDatastore|segnetLayers|semanticseg|trainNetwork
```


Topics

"3-D Brain Tumor Segmentation Using Deep Learning"
"Getting Started With Semantic Segmentation Using Deep Learning"
"List of Deep Learning Layers" (Deep Learning Toolbox)
"Deep Learning in MATLAB" (Deep Learning Toolbox)
"Specify Layers of Convolutional Neural Network" (Deep Learning Toolbox)

Introduced in R2019b

pixelClassificationLayer

Create pixel classification layer for semantic segmentation

Description

A pixel classification layer provides a categorical label for each image pixel or voxel.

Creation

Syntax

layer = pixelClassificationLayer
layer = pixelClassificationLayer(Name,Value)

Description

layer = pixelClassificationLayer creates a pixel classification output layer for semantic image segmentation networks. The layer outputs the categorical label for each image pixel or voxel processed by a CNN. The layer automatically ignores undefined pixel labels during training.
layer = pixelClassificationLayer(Name,Value) returns a pixel classification output layer using Name,Value pair arguments to set the optional Classes, ClassWeights, and Name properties by using name-value pairs. You can specify multiple name-value pairs. Enclose each property name in quotes.

For example, pixelClassificationLayer('Name','pixclass') creates a pixel classification layer with the name 'pixclass'.

Properties

Classes - Classes of the output layer

' auto ' (default) | categorical vector | string array | cell array of character vectors

Classes of the output layer, specified as a categorical vector, string array, cell array of character vectors, or 'auto '. If Classes is 'auto', then the software automatically sets the classes at training time. If you specify the string array or cell array of character vectors str, then the software sets the classes of the output layer to categorical(str,str). The default value is 'auto'.

Data Types: char| categorical|string|cell

ClassWeights - Class weights

' none ' (default)| vector of real scalar
Class weights, specified as 'none' or as a vector of real scalar. The elements of the vector correspond to the classes in Classes. If you specify ClassWeights, then you must specify Classes.

Use class weighting to balance classes when there are underrepresented classes in the training data.

OutputSize - Output size

'auto' (default)
This property is read-only.
The output size of the layer. The value is 'auto ' prior to training, and is specified as a numeric value at training time.

LossFunction - Loss function

'crossentropyex' (default)
This property is read-only.
Loss function used for training, specified as 'crossentropyex'.

Name - Layer name

' ' (default) | character vector | string scalar
Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to ' ' , then the software automatically assigns a name to the layer at training time.

NumInputs - Number of inputs

1 (default)
Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames - Input names

\{'in'\} (default)
Input names of the layer. This layer accepts a single input only.
Data Types: cell

Examples

Use Pixel Classification Layer to Create Semantic Segmentation Network

Predict the categorical label of every pixel in an input image.

```
layers = [
        imageInputLayer([32 32 3])
        convolution2dLayer(3,16,'Stride',2,'Padding',1)
        reluLayer
        transposedConv2dLayer(3,1,'Stride',2,'Cropping',1)
        softmaxLayer
        pixelClassificationLayer
    ]
layers =
    6x1 Layer array with layers:
```

1	'	Image Input	$32 \times 32 \times 3$ images with 'zerocenter' normalizat
2	' '	Convolution	163×3 convolutions with stride [2 2] and
3	''	ReLU	ReLU
4	''	Transposed Convolution	13×3 transposed convolutions with stride
5	''	Softmax	softmax
6	''	Pixel Classification Layer	Cross-entropy loss

Use Weighting to Balance Classes in Training Data

Balance classes using inverse class frequency weighting when some classes are underrepresented in the training data. First, count class frequencies over the training data using pixelLabelImageDatastore. Then, set the 'ClassWeights' in pixelClassificationLayer to the computed inverse class frequencies.

Set the location of image and pixel label data.

```
dataDir = fullfile(toolboxdir('vision'),'visiondata');
imDir = fullfile(dataDir,'building');
pxDir = fullfile(dataDir,'buildingPixelLabels');
```

Create a pixel label image datastore using the ground truth images in imds and the pixel labeled images in pxds.

```
imds = imageDatastore(imDir);
classNames = ["sky" "grass" "building" "sidewalk"];
pixelLabelID = [1 2 3 4];
pxds = pixelLabelDatastore(pxDir,classNames,pixelLabelID);
pximds = pixelLabelImageDatastore(imds,pxds);
```

Tabulate class distribution in dataset.
tbl = countEachLabel(pximds)

```
tbl=4\times3 table
    Name PixelCount ImagePixelCount
    {'sky' } 3.1485e+05 1.536e+06
    {'grass' } 1.5979e+05 1.536e+06
    {'building'} 1.0312e+06 1.536e+06
    {'sidewalk'} 25313 9.216e+05
```

Calculate inverse frequency class weights.

```
totalNumberOfPixels = sum(tbl.PixelCount);
frequency = tbl.PixelCount / totalNumberOfPixels;
inverseFrequency = 1./frequency
inverseFrequency = 4×1
```

4.8632

Set 'ClassWeights' to the inverse class frequencies.
layer = pixelClassificationLayer(...
'Classes',tbl.Name, 'ClassWeights',inverseFrequency)
layer =
PixelClassificationLayer with properties:
Name:
Classes: [sky grass building sidewalk]
ClassWeights: [4×1 double]
OutputSize: 'auto'
Hyperparameters
LossFunction: 'crossentropyex'

Extended Capabilities

GPU Code Generation

Generate CUDA® code for NVIDIA ${ }^{\circledR}$ GPUs using GPU Coder ${ }^{\text {TM }}$.

See Also

Objects

DAGNetwork|dicePixelClassificationLayer|layerGraph

Functions

deeplabv3plusLayers | evaluateSemanticSegmentation|fcnLayers | segnetLayers | semanticseg|trainNetwork|unetLayers

Topics
"Getting Started With Semantic Segmentation Using Deep Learning"
"Deep Learning in MATLAB" (Deep Learning Toolbox)
"Specify Layers of Convolutional Neural Network" (Deep Learning Toolbox)

Introduced in R2017b

yolov2OutputLayer

Create output layer for YOLO v2 object detection network

Description

The yolov20utputLayer function creates a YOLOv20utputLayer object, which represents the output layer for you look only once version 2 (YOLO v2) object detection network. The output layer provides the refined bounding box locations of the target objects.

Creation

Syntax

layer = yolov20utputLayer(anchorBoxes)
layer = yolov20utputLayer(anchorBoxes,Name, Value)

Description

layer = yolov20utputLayer(anchorBoxes) creates a YOLOv20utputLayer object, layer, which represents the output layer for YOLO v2 object detection network. The layer outputs the refined bounding box locations that are predicted using a predefined set of anchor boxes specified at the input.
layer = yolov20utputLayer(anchorBoxes, Name, Value) sets the Name and LossFactors properties using name-value pairs and the input from the preceding syntax. Enclose each property name in single quotes. For example, yolov20utputLayer('Name', 'yolo_Out') creates an output layer with the name 'yolo_Out'.

Input Arguments

anchorBoxes - Set of anchor boxes
 M-by-2 matrix

Set of anchor boxes, specified as an M-by-2 matrix, where each row is of the form [height width]. The matrix defines the height and the width of M number of anchor boxes. This input sets the AnchorBoxes property of the output layer. You can use the clustering approach for estimating anchor boxes from the training data. For more information, see "Estimate Anchor Boxes From Training Data".

Properties

Name - Layer name
 ' ' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to ' ' , then the software automatically assigns a name to the layer at training time.

Data Types: char|string

LossFunction - Loss function

'mean-squared-error' (default)
Loss function, specified as 'mean-squared-error'. For more information about the loss function, see "Loss Function for Bounding Box Refinement" on page 2-81.

AnchorBoxes - Set of anchor boxes

M-by-2 matrix
This property is read-only.
Set of anchor boxes used for training, specified as a M-by-2 matrix defining the height and the width of M number of anchor boxes. This property is set by the input anchorBoxes.

LossFactors - Weights in the loss function

[5 1111 1] (default)|1-by-4 vector

This property is read-only.
Weights in the loss function, specified as a 1-by-4 vector of form [$K_{1} K_{2} K_{3} K_{4}$]. Weights increase the stability of the network model by penalizing incorrect bounding box predictions and false classifications. For more information about the weights in loss the function, see "Loss Function for Bounding Box Refinement" on page 2-81.

NumInputs - Number of inputs

1 (default)

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

InputNames - Input names

\{'in'\} (default)
Input names of the layer. This layer accepts a single input only.

Data Types: cell

Examples

Create YOLO v2 Output Layer

Create a YOLO v2 output layer with two anchor boxes.
Define the height and the width of the anchor boxes.
anchorBoxes = [16 16;32 32];
Generate a YOLO v2 output layer with the name "yolo_Out".
layer = yolov2OutputLayer(anchorBoxes,' Name','yolo_Out');
Inspect the properties of the YOLO v2 output layer.
layer
layer =
YOLOv2OutputLayer with properties:

```
Hyperparameters
    LossFunction: 'mean-squared-error'
    AnchorBoxes: [2x2 double]
    LossFactors: [5 1 1 1]
```


More About

Loss Function for Bounding Box Refinement

During training, the output layer of YOLO v2 network predicts refined bounding box locations by optimizing the mean squared error loss between predicted bounding boxes and the ground truth. The loss function is defined as

$$
\begin{aligned}
& K_{1} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} 1_{i j}^{o b j}\left[\left(x_{i}-\hat{x}_{i}\right)^{2}+\left(y_{i}-\hat{y}_{i}\right)^{2}\right] \\
& +K_{1} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} 1_{i j}^{o b j}\left[\left(\sqrt{w_{i}}-\sqrt{\hat{w}_{i}}\right)^{2}+\left(\sqrt{h_{i}}-\sqrt{\hat{h}_{i}}\right)^{2}\right] \\
& +K_{2} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} 1_{i j}^{o b j}\left(C_{i}-\hat{C}_{i}\right)^{2} \\
& \quad+K_{3} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} 1_{i j}^{\text {noobj }}\left(C_{i}-\hat{C}_{i}\right)^{2} \\
& \quad+K_{4} \sum_{i=0}^{S^{2}} 1_{i}^{\text {obj }} \sum_{\propto \in c l a s s e s}\left(p_{i}(c)-\hat{p}_{i}(c)\right)^{2}
\end{aligned}
$$

where:

- S is the number of grid cells
- B is the number of bounding boxes in each grid cell.
- $1_{i j}^{o b j}$
is 1 if the j th bounding box in grid cell i is responsible for detecting the object. Otherwise it is set to 0 . A grid cell i is responsible for detecting the object, if the overlap between the ground truth and a bounding box in that grid cell is greater than or equal to 0.6 .
- $1_{i j}^{\text {noob } j}$
is 1 if the j th bounding box in grid cell i does not contain any object. Otherwise it is set to 0 .
- $1_{i}^{\text {obj }}$ is is 1 if an object is detected in grid cell i. Otherwise it is set to 0 .
- K_{1}, K_{2}, K_{3}, and K_{4} are the weights. To adjust the weights, modify the LossFactors property.

The loss function can be split into three parts:

- Localization loss

The first and second terms in the loss function comprise the localization loss. It measures error between the predicted bounding box and the ground truth. The parameters for computing the localization loss include the position, size of the predicted bounding box, and the ground truth. The parameters are defined as follows.

- $\left(x_{i}, y_{i}\right)$, is the center of the j th bounding box relative to grid cell i.
- $\left(\hat{x}_{i}, \hat{y}_{i}\right)$, is the center of the ground truth relative to grid cell i.
- w_{i} and h_{i} is the width and the height of the j th bounding box in grid cell i, respectively. The size of the predicted bounding box is specified relative to the input image size.
- \hat{w}_{i} and \hat{h}_{i} is the width and the height of the ground truth in grid cell i, respectively.
- K_{1} is the weight for localization loss. Increase this value to increase the weightage for bounding box prediction errors.
- Confidence loss

The third and fourth terms in the loss function comprise the confidence loss. The third term measures the objectness (confidence score) error when an object is detected in the j th bounding box of grid cell i. The fourth term measures the objectness error
when no object is detected in the j th bounding box of grid cell i. The parameters for computing the confidence loss are defined as follows.

- C_{i} is the confidence score of the j th bounding box in grid cell i.
- \hat{C}_{i} is the confidence score of the ground truth in grid cell i.
- K_{2} is the weight for objectness error, when an object is detected in the predicted bounding box. You can adjust the value of K_{2} to weigh confidence scores from grid cells that contain objects.
- K_{3} is the weight for objectness error, when an object is not detected in the predicted bounding box. You can adjust the value of K_{3} to weigh confidence scores from grid cells that do not contain objects.

The confidence loss can cause the training to diverge when the number of grid cells that do not contain objects is more than the number of grid cells that contain objects. To remedy this, increase the value for K_{2} and decrease the value for K_{3}.

- Classification loss

The fifth term in the loss function comprises the classification loss. For example, suppose that an object is detected in the predicted bounding box contained in grid cell i. Then, the classification loss measures the squared error between the class conditional probabilities for each class in grid cell i. The parameters for computing the classification loss are defined as follows.

- $\quad p_{i}(c)$ is the estimated conditional class probability for object class c in grid cell i.
- $\hat{p}_{i}(c)$ is the actual conditional class probability for object class c in grid cell i.
- K_{4} is the weight for classification error when an object is detected in the grid cell. Increase this value to increase the weightage for classification loss.

Tips

To improve prediction accuracy, you can:

- Train the network with more number of images. You can expand the training dataset through data augmentation. For information on how to apply data augmentation for training dataset, see "Preprocess Images for Deep Learning" (Deep Learning Toolbox).
- Perform multiscale training by using the trainYOLOv20bjectDetector function. To do so, specify the 'TrainingImageSize' argument of trainYOLOv20bjectDetector function for training the network.
- Choose anchor boxes appropriate to the dataset for training the network. You can use the estimateAnchorBoxes function to compute anchor boxes directly from the training data.

References

[1] Joseph. R, S. K. Divvala, R. B. Girshick, and F. Ali. "You Only Look Once: Unified, RealTime Object Detection." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779-788. Las Vegas, NV: CVPR, 2016.
[2] Joseph. R and F. Ali. "YOLO 9000: Better, Faster, Stronger." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517-6525. Honolulu, HI: CVPR, 2017.

Extended Capabilities

GPU Code Generation

Generate CUDA® code for NVIDIA® GPUs using GPU Coder ${ }^{\text {TM }}$.

See Also

trainYOLOv20bjectDetector|yolov2Layers | yolov20bjectDetector| yolov2ReorgLayer

Topics

"Create YOLO v2 Object Detection Network"
"Estimate Anchor Boxes From Training Data"
"Object Detection Using YOLO v2 Deep Learning"
"Getting Started with YOLO v2"
"Anchor Boxes for Object Detection"

Introduced in R2019a

yolov2ReorgLayer

Create reorganization layer for YOLO v2 object detection network

Description

The yolov2ReorgLayer function creates a YOLOv2ReorgLayer object, which represents the reorganization layer for you look only once version 2 (YOLO v2) object detection network. The reorganization layer reorganizes the high-resolution feature maps from a lower layer by stacking adjacent features into different channels. The output of reorganization layer is fed to the depth concatenation layer. The depth concatenation layer concatenates the reorganized high-resolution features with the low-resolution features from a higher layer.

Creation

Syntax

layer = yolov2ReorgLayer(stride)
layer = yolov2ReorgLayer(stride,Name,Value)

Description

layer = yolov2ReorgLayer(stride) creates the reorganization layer for YOLO v2 object detection network. The layer reorganizes the dimension of the input feature maps according to the step size specified in stride. For details on creating a YOLO v2 network with reorganization layer, see "Design a YOLO v2 Detection Network with a Reorg Layer".
layer = yolov2ReorgLayer(stride, Name, Value) sets the Name property using a name-value pair. Enclose the property name in single quotes. For example, yolov2ReorgLayer('Name', 'yolo_Reorg') creates reorganization layer with the name 'yolo_Reorg'.

Input Arguments

stride - Step size for traversing input
 vector of two positive integers

Step size for traversing the input vertically and horizontally, specified as a 2-element vector of positive integers in form [a b]. a is the vertical step size and bis the horizontal step size.

Data Types: single|double|int8|int16|int32|int64|uint8|uint16| uint32|uint64

Properties

Name - Layer name

' ' (default) | character vector | string scalar

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to ' ' , then the software automatically assigns a name to the layer at training time.

Data Types: char | string

NumInputs - Number of inputs
 1 (default)

Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames - Input names

\{'in'\} (default)
Input names of the layer. This layer accepts a single input only.
Data Types: cell

Num0utputs - Number of outputs
 1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames - Output names

\{'out'\} (default)
Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create YOLO v2 Reorganization Layer

Specify the step size for reorganising the dimension of input feature map.

```
stride = [2 2];
```

Create a YOLO v2 reorganization layer with the specified step size and the name as "yolo_Reorg".
layer = yolov2ReorgLayer(stride,'Name','yolo_Reorg');
Inspect the properties of the YOLO v2 reorganization layer.
layer
layer =
YOLOv2ReorgLayer with properties:
Name: 'yolo_Reorg'
Hyperparameters
Stride: [2 2]

Tips

- You can find the desired value of stride using:
stride $=$ floor $\left(\frac{\text { size of input feature map to reorganization layer }}{\text { size of output feature map from higher layer }}\right)$

Algorithms

The reorganization layer improves the performance of the YOLO v2 object detection network by facilitating feature concatenation from different layers. It reorganizes the dimension of a lower layer feature map so that it can be concatenated with the higher layer feature map.

Consider an input feature map of size [$H W C$], where:

- H is the height of the feature map.
- W is the width of the feature map.
- C is the number of channels.

The reorganization layer chooses feature map values from locations based on the step sizes in stride and adds those feature values to the third dimension C. The size of the reorganized feature map from the reorganization layer is [floor(H/stride(1)) floor(W/stride(2)) Cxstride(1)×stride(2)].

For feature concatenation, the height and width of the reorganized feature map must match with the height and width of the higher layer feature map.

References

[1] Joseph. R, S. K. Divvala, R. B. Girshick, and F. Ali. "You Only Look Once: Unified, RealTime Object Detection." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779-788. Las Vegas, NV: CVPR, 2016.
[2] Joseph. R and F. Ali. "YOLO 9000: Better, Faster, Stronger." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517-6525. Honolulu, HI: CVPR, 2017.

Extended Capabilities

GPU Code Generation

Generate CUDA® code for NVIDIA® GPUs using GPU Coder ${ }^{\mathrm{TM}}$.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox ${ }^{\mathrm{TM}}$.

This function fully supports GPU arrays. For more information, see "Run MATLAB Functions on a GPU" (Parallel Computing Toolbox).

See Also
trainYOLOv20bjectDetector | yolov2Layers | yolov20bjectDetector | yolov20utputLayer | yolov2TransformLayer
\section*{Topics}
"Create YOLO v2 Object Detection Network"
"Estimate Anchor Boxes From Training Data"
"Object Detection Using YOLO v2 Deep Learning"
"Getting Started with YOLO v2"
"Anchor Boxes for Object Detection"
Introduced in R2019a

yolov2TransformLayer

Create transform layer for YOLO v2 object detection network

Description

The yolov2TransformLayer function creates a YOLOv2TransformLayer object, which represents the transform layer for you look only once version 2 (YOLO v2) object detection network. The transform layer in YOLO v2 object detection network improves the stability of the network by constraining the location predictions. The transform layer extracts activations of the last convolutional layer and transforms the bounding box predictions to fall within the bounds of the ground truth.

Creation

Syntax

layer = yolov2TransformLayer(numAnchorBoxes)
layer = yolov2TransformLayer(numAnchorBoxes,Name,Value)

Description

layer = yolov2TransformLayer(numAnchorBoxes) creates the transform layer for YOLO v2 object detection network.
layer $=$ yolov2TransformLayer(numAnchorBoxes, Name, Value) sets the Name property using a name-value pair. Enclose the property name in single quotes. For example, yolov2TransformLayer('Name', 'yolo_Transform') creates a transform layer with the name 'yolo_Transform'.

Input Arguments

numAnchorBoxes - Number of anchor boxes
positive integer

Number of anchor boxes used for training, specified as a positive integer. This input sets the NumAnchorBoxes property of the transform layer.

```
Data Types: single|double|int8| int16|int32|int64|uint8|uint16|
```

uint32 | uint64

Properties

Name - Layer name

' ' (default) | character vector | string scalar
Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to ' ' , then the software automatically assigns a name to the layer at training time.

Data Types: char|string

NumAnchorBoxes - Number of anchor boxes

positive integer
This property is read-only.
Number of anchor boxes used for training, specified as a positive integer. This property is set by the input numAnchorBoxes.

NumInputs - Number of inputs

1 (default)
Number of inputs of the layer. This layer accepts a single input only.
Data Types: double

InputNames - Input names

\{'in'\} (default)
Input names of the layer. This layer accepts a single input only.
Data Types: cell

NumOutputs - Number of outputs

1 (default)

Number of outputs of the layer. This layer has a single output only.

Data Types: double

OutputNames - Output names

\{'out'\} (default)
Output names of the layer. This layer has a single output only.
Data Types: cell

Examples

Create YOLO v2 Transform Layer

Specify the number of anchor boxes.

```
numAnchorBoxes = 5;
```

Create a YOLO v2 transform layer with the name "yolo_Transform".
layer = yolov2TransformLayer(numAnchorBoxes,' Name','yolo_Transform');
Inspect the properties of the YOLO v2 transform layer.
layer
layer =
YOLOv2TransformLayer with properties:
Name: 'yolo_Transform'
Hyperparameters
NumAnchorBoxes: 5

References

[1] Joseph. R, S. K. Divvala, R. B. Girshick, and F. Ali. "You Only Look Once: Unified, RealTime Object Detection." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779-788. Las Vegas, NV: CVPR, 2016.
[2] Joseph. R and F. Ali. "YOLO 9000: Better, Faster, Stronger." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517-6525. Honolulu, HI: CVPR, 2017.

Extended Capabilities

GPU Code Generation

Generate CUDA® code for NVIDIA® GPUs using GPU Coder ${ }^{\mathrm{TM}}$.

GPU Arrays

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox ${ }^{\mathrm{TM}}$.

This function fully supports GPU arrays. For more information, see "Run MATLAB Functions on a GPU" (Parallel Computing Toolbox).

See Also

trainYOLOv20bjectDetector|yolov2Layers | yolov20bjectDetector| yolov20utputLayer|yolov2ReorgLayer

Topics

"Create YOLO v2 Object Detection Network"
"Estimate Anchor Boxes From Training Data"
"Object Detection Using YOLO v2 Deep Learning"
"Getting Started with YOLO v2"
"Anchor Boxes for Object Detection"
Introduced in R2019a

pixelLabelDatastore

Datastore for pixel label data

Description

You can use a PixelLabelDatastore object to read pixel label data for semantic segmentation.

To read pixel label data from a PixelLabelDatastore, use the read function. This function returns a categorical array that contains a categorical label assigned to every (i, j) pixel location or (i, j, k) voxel location.

Creation

Create a PixelLabelDatastore object using the pixelLabelDatastore function described here. Once the object is created, you can use functions that access and manage the data. You can use dot notation to modify the ReadSize and ReadFcn properties.

Syntax

```
pxds = pixelLabelDatastore(gTruth)
pxds = pixelLabelDatastore(location,classNames,pixelLabelIDs)
pxds = pixelLabelDatastore(
```

\qquad

``` ,Name, Value)
```


Description

pxds = pixelLabelDatastore(gTruth) creates a PixelLabelDatastore object from a groundTruth object or an array of groundTruth objects.
pxds = pixelLabelDatastore(location,classNames,pixelLabelIDs) creates a PixelLabelDatastore object from image files that store pixel label data, in the folder or files specified by location. The function creates the object using pixel IDs that map image pixel label values to class names.
pxds = pixelLabelDatastore(\qquad , Name, Value) creates a
PixelLabelDatastore object using name-value pair arguments to set one or both of the ReadSize or AlternateFileSystemRoots properties. For image file input, you can also use name-value pair arguments to set the ReadFcn property or to specify options on page 2-98 about files to include in the datastore. You can specify multiple name-value pairs. Enclose each property name in quotes.

For example,
pixelLabelDatastore(loc, names,ids,'ReadSize', 8,'FileExtensions','png
${ }^{\prime}$) creates a pixel label datastore that includes only PNG images and that reads eight images during each call to the read function.

Input Arguments

gTruth - Ground truth data

groundTruth object | array of groundTruth objects
Ground truth data, specified as a groundTruth object or as an array of groundTruth objects. Each groundTruth object contains information about the data source, the list of label definitions, and all marked labels for a set of ground truth labels.

location - Folder or image file names

character vector | cell array of character vectors | string array
Folder or image file names, specified as a character vector, string array, or cell array of character vectors. Images must contain uint8 data.

location	Description
character vector, string array	Name of a folder. Files within subfolders of the specified folder are not automatically included in the datastore. The datastore includes only images with supported file formats and ignores any other format. See a list of supported file formats by using the imformats function.
cell array of character vectors	File names of multiple images.

pixelLabelDatastore expands the file names and stores the full file paths in the Files property.

You can use the wildcard character (*) when specifying location. This character indicates that all matching files or all files in the matching folders are included in the datastore.

If the files are not in the current folder, then you must include the full or relative path.
If the files are not available locally, then the full path of the files or folders must be an internationalized resource identifier (IRI), such as hdfs://hostname: portnumber/ path_to_file. For information on using a datastore with Amazon S3 ${ }^{\mathrm{TM}}$ and HDFS ${ }^{\mathrm{TM}}$, see "Work with Remote Data" (MATLAB).
Example: 'file1.jpg'
Example: '../dir/data/file1.png'
Example: \{'C:\dir\data\file1.tif','C:\dir\data\file2.tif'\}
Example: 'C:\dir\data*.jpg'
Data Types: char | cell

classNames - Class names

cell array of character vectors | cell array of strings
Class names, specified as a cell array of strings or character vectors.
pixelLabelDatastore converts the names to a cell array and stores the names in the ClassNames property.
Example: ["sky" "grass" "building" "sidewalk"]

pixelLabelIDs - IDs to relate pixel labels to class names

vector | m-by- 3 matrix | cell array of column vectors | cell array of m-by-3 matrices
IDs to map pixel labels to ClassNames, specified as a vector, an m-by-3 matrix, a cell array of column vectors, or a cell array of m-by- 3 matrices. Values must be integers in the range [0, 255]. m-by-3 matrices are only supported for RGB images.

Format	Description
vector	The length of the vector must equal the number of class names. Values must be unique.

Format	Description
m-by-3 matrix	m corresponds to the number of class names. Each row contains a 3-element vector representing the RGB pixel value to associate with each class name. Vectors must be unique. Use this format for pixel label data stored as RGB images.
cell array of column vectors cell array of m-by-3 matrices	Use a cell array to map multiple pixel label IDs to one class name.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: 'IncludeSubfolders', true

IncludeSubfolders - Include subfolders
 false (default) | true

Include subfolders, specified as the comma-separated pair consisting of ' IncludeSubfolders ' and false (0), or true (1). Specify true to include all files and subfolders within each folder or false to include only the files within each folder.

The IncludeSubfolders argument is not supported when you specify ground truth data gTruth.

FileExtensions - File extensions

character vector | cell array of character vectors | string scalar | string array
File extensions of files to include in the datastore, specified as the comma-separated pair consisting of 'FileExtensions' and a character vector, cell array of character vectors, string scalar, or string array. By default, the datastore includes files with all extensions supported by the imformats function.

The FileExtensions argument is not supported when you specify ground truth data gTruth.

Example: ["png" "gif" "bmp"]

Properties

Files - Files included in datastore
character vector | cell array of character vectors

This property is read-only.
Files included in the datastore, specified as a character vector or cell array of character vectors. Each character vector is a full path to a file. When you create a
PixelLabelDatastore object, use the location argument to set this property.

ClassNames - Class names

cell array of character vectors
This property is read-only.
Class names, specified as a cell array of character vectors.

ReadSize - Maximum number of image files

1 (default) | positive integer
Maximum number of image files to read in each call to the read function, specified as a positive integer.

AlternateFileSystemRoots - Alternate file system root paths string vector | cell array

Alternate file system root paths, specified as the comma-separated pair consisting of 'AlternateFileSystemRoots ' and a string vector or a cell array. Use 'AlternateFileSystemRoots ' when you create a datastore on a local machine, but need to access and process the data on another machine (possibly of a different operating system). Also, when processing data using the Parallel Computing Toolbox and the MATLAB Parallel Server ${ }^{\mathrm{TM}}$, and the data is stored on your local machines with a copy of the data available on different platform cloud or cluster machines, you must use 'AlternateFileSystemRoots' to associate the root paths.

- To associate a set of root paths that are equivalent to one another, specify 'AlternateFileSystemRoots' as a string vector. For example,
["Z:\datasets","/mynetwork/datasets"]
- To associate multiple sets of root paths that are equivalent for the datastore, specify 'AlternateFileSystemRoots' as a cell array containing multiple rows where each
row represents a set of equivalent root paths. Specify each row in the cell array as either a string vector or a cell array of character vectors. For example:
- Specify 'AlternateFileSystemRoots' as a cell array of string vectors.

```
{["Z:\datasets", "/mynetwork/datasets"];...
    ["Y:\datasets", "/mynetwork2/datasets","S:\datasets"]}
```

- Alternatively, specify 'AlternateFileSystemRoots' as a cell array of cell array of character vectors.

```
{{'Z:\datasets','/mynetwork/datasets'};...
    {'Y:\datasets', '/mynetwork2/datasets','S:\datasets'}}
```

The value of 'AlternateFileSystemRoots ' must satisfy these conditions:

- Contains one or more rows, where each row specifies a set of equivalent root paths.
- Each row specifies multiple root paths and each root path must contain at least two characters.
- Root paths are unique and are not subfolders of one another.
- Contains at least one root path entry that points to the location of the files.

For more information, see "Set Up Datastore for Processing on Different Machines or Clusters" (MATLAB).

Example: ["Z:\datasets","/mynetwork/datasets"]
Data Types: string|cell

ReadFcn - Function that reads pixel labeled image data

 @readDatastoreImage (default) | function handleFunction that reads pixel labeled image data, specified as a function handle. The custom read function must take an image file name as input, and then output the corresponding pixel labeled data as a categorical matrix, logical matrix, or numeric matrix of data type uint8. For example, if customreader is the specified function to read the image data, then it must have a signature similar to the following:

```
function C = customreader(filename)
end
```

If the read function has more than one output argument, then only the first one is used. The rest are ignored.

The ReadFcn property is not supported when you specify ground truth data gTruth.

Example: @customreader

Object Functions

combine Combine data from multiple datastores
countEachLabel Count occurrence of pixel or box labels
hasdata
Determine if data is available to read from datastore
numpartitions Number of partitions for a datastore
partition Partition a label datastore
preview \quad Reads first image from pixel label datastore
read Read data from a datastore
readall Read all data in datastore
readimage \quad Read specified pixel label data file
reset Reset datastore to initial state
transform Transform datastore

Examples

Read and Display Pixel Label Data

Overlay pixel label data on an image.
Set the location of the image and pixel label data.

```
dataDir = fullfile(toolboxdir('vision'),'visiondata');
imDir = fullfile(dataDir,'building');
pxDir = fullfile(dataDir,'buildingPixelLabels');
```

Create an image datastore.

```
imds = imageDatastore(imDir);
```

Create a pixel label datastore.

```
classNames = ["sky" "grass" "building" "sidewalk"];
pixelLabelID = [ll 2 3 4];
pxds = pixelLabelDatastore(pxDir,classNames,pixelLabelID);
```

Read the image and pixel label data. read (pxds) returns a categorical matrix, C. The element $C(i, j)$ in the matrix is the categorical label assigned to the pixel at the location l(i,j).

I = read(imds);
C = read(pxds);
Display the label categories in C.
categories(C\{1\})

```
ans = 4xl cell array
    {'sky' }
    {'grass' }
    {'building'}
    {'sidewalk'}
```

Overlay and display the pixel label data onto the image.
B = labeloverlay(I,C\{1\});
figure
imshow(B)

Read and Display 3-D Pixel Label Data

Specify the location of 3-D volume and pixel label data. This data is a labeled 3-D MRI scan of a brain.

```
dataDir = fullfile(toolboxdir('images'),'imdata');
imDir = fullfile(dataDir,'BrainMRILabeled','images');
pxDir = fullfile(dataDir,'BrainMRILabeled','labels');
```

Specify a custom ReadFcn. This example specifies a function called samplePXDSMatReader (defined at the end of the example) that read 3-D image data from .MAT image files.

```
matReader = @samplePXDSMatReader;
```

Create an image datastore.

```
imds = imageDatastore(imDir,'FileExtensions','.mat','ReadFcn',matReader);
```

Create a pixel label datastore.

```
classNames = ["edema","nonEnhancingTumor","enhancingTumour"];
```

pixelLabelID = [1 2 3];
pxds = pixelLabelDatastore(pxDir,classNames,pixelLabelID,'FileExtensions','.mat','Read

Read volume and pixel label data. L is a categorical matrix, where $L(i, j, k)$ is the categorical label assigned to V (i, j, k).

```
V = read(imds);
L = read(pxds);
```

Display the label categories.

```
categories(L)
```

```
ans = 3\times1 cell array
    {'edema' }
    {'nonEnhancingTumor'}
    {'enhancingTumour' }
```

Visualize result using labelvolshow.
h = labelvolshow(L,V);

This example defines a helper function, samplePXDSMatReader, to read the 3-D image data from the image files. This function loads a .MAT file and returns the first variable saved in that file.

```
function data = samplePXDSMatReader(filename)
    inp = load(filename);
    f = fields(inp);
    data = inp.(f{1});
end
```


Tips

- A pixelLabelDatastore stores files in lexicographical order. For example, if you have twelve files named 'file1.jpg', 'file2.jpg', ..., 'file11.jpg', and 'file12.jpg', then the files are stored in this order:
'file1.jpg'
'file10.jpg'
'file11.jpg'
'file12.jpg'
'file2.jpg'
'file3.jpg'
'file9.jpg'
In contrast, an imageDatastore stores files in the order they are added to the datastore. If you simultaneously read a ground truth image and pixel label data, then you may encounter a mismatch between the images and the labels. If this occurs, then rename the pixel label files so that they have the correct order. For example, rename 'file1.jpg', .., 'file9.jpg' to 'file01.jpg', ..., 'file09.jpg'.
- To extract semantic segmentation data from a groundTruth object generated by the Video Labeler or Ground Truth Labeler, use the pixelLabelTrainingData function.

See Also

Apps
 Image Labeler | Video Labeler

Functions

evaluateSemanticSegmentation | semanticseg

Objects

ImageDatastore | groundTruth | pixelLabelImageDatastore | randomPatchExtractionDatastore|semanticSegmentationMetrics

Topics

"3-D Brain Tumor Segmentation Using Deep Learning"
"3-D Brain Tumor Segmentation Using Deep Learning"

"Getting Started With Semantic Segmentation Using Deep Learning"
"Datastores for Deep Learning" (Deep Learning Toolbox)
"Deep Learning in MATLAB" (Deep Learning Toolbox)
"Training Data for Object Detection and Semantic Segmentation"
Introduced in R2017b

KAZEPoints

Object for storing KAZE interest points

Description

This object provides the ability to pass data between the detectKAZEPoints and extractFeatures functions. You can also use this object to manipulate and plot the data returned by these functions.Use the object to fill points interactively, where you might want to mix a non-KAZE interest oint detector with a KAZE descriptor.

Creation

Syntax

points = KAZEPoints(location)
points $=$ KAZEPoints(location, Name, Value)

Description

points $=$ KAZEPoints(location) constructs a KAZEPoints object from an M-by-2 array $[x y$] of location coordinates.

The scalar KAZEPoints object contains many points. Therefore numel (KAZEPoints) always returns 1 . This value can be different than the result of length (KAZEPoints), which returns the true number of points contained in the object.
points $=$ KAZEPoints(location, Name, Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, points = KAZEPoints('Metric',0.0)

Input Arguments

location - Location coordinates
 M-by-2 array

Location of points, specified as an M-by-2 array of [x y] coordinates.

Properties

```
Scale - Scale
1.6 (default) | scalar | vector
```

Scale, specified as a scalar. The scale sets the size at which the interest points are detected.

Metric - Strength of response

0.0 (default) | numeric value | vector

Strength of response for the detected points, specified as a numeric value. The KAZE algorithm uses a determinant of an approximated Hessian.

Orientation - Orientation

0.0 (default) | radians

Orientation of the detected feature, specified as an angle in radians. The angle is measured from the x-axis with the origin set by the location input. The extractFeatures function sets this property. Do not set it manually.

Object Functions

isempty	Determine if points object is empty
length	Number of stored points
plot	Plot points
selectStrongest	Select points with strongest metrics
size	Return the size of a points object
selectUniform	Select uniformly distributed subset of feature points

Examples

Detect KAZE Features

Detect KAZE features and display 10 strongest points.
Read an image.

```
I = imread('cameraman.tif');
```

Detect KAZE features in the image.
points = detectKAZEFeatures(I);
Select the 10 strongest points.
strongest = selectStrongest(points,10);
Display the selected points.

imshow(I);

hold on;
Display the location and scale. The size of the circles displayed relate to the scale.

```
plot(strongest);
hold on;
```


Display the [x y] coordinates for the strongest points in the MATLAB Command Window. strongest.Location

```
ans = 10x2 single matrix
```

 138.504195 .8063
 139.925395 .8802
 111.897548 .2950
 106.4036174 .1800
 44.3964106 .4899
 \(122.0368 \quad 65.9064\)
 \(116.2702 \quad 138.2877\)
 \(123.6542 \quad 64.7193\)
 \(104.2719 \quad 76.5821\)
 \(140.6228 \quad 97.9271\)

Detect KAZE Features and Display Specific Points

Detect KAZE features and display set the specific KAZE points you want to plot.
Read an image.

```
I = imread('cameraman.tif');
```

Detect KAZE features in the image.

```
points = detectKAZEFeatures(I);
```

Select and display the last 5 points detected.

```
imshow(I);
hold on;
plot(points(end-4:end));
hold off;
```


Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- To index locations with this object, use the syntax: points. Location(idx, :), for points object. See visionRecovertformCodeGeneration_kernel.m, which is used in the "Introduction to Code Generation with Feature Matching and Registration" example.

See Also

BRISKPoints |MSERRegions | SURFPoints | cornerPoints | detectBRISKFeatures | detectFASTFeatures | detectHarrisFeatures | detectKAZEFeatures | detectMSERFeatures | detectMinEigenFeatures | detectSURFFeatures|extractFeatures|matchFeatures

Introduced in R2017b

binaryFeatures

Object for storing binary feature vectors

Description

This object provides the ability to pass data between the extractFeatures and matchFeatures functions. It can also be used to manipulate and plot the data returned by extractFeatures.

Creation

Syntax

features= binaryFeatures(featureVectors)
features = binaryFeatures(featureVectors,Name,Value)

Description

features= binaryFeatures(featureVectors) constructs a binaryFeatures object from the M-by- N input matrix, featureVectors. This matrix contains M feature vectors stored in N uint8 containers.
features = binaryFeatures(featureVectors,Name,Value) uses additional options specified by one or more Name, Value pair arguments.

Input Arguments

featureVectors - Input feature vectors

M-by- N matrix
Input feature vectors, specified as an M-by- N input matrix. This matrix contains M binary feature vectors stored in N uint8 containers.

Read-only Properties

Features - Feature vectors

M-by- N matrix
Input feature vectors, saved as an M-by- N input matrix. This matrix contains M binary feature vectors stored in N uint8 containers.

NumBits - Number of bits per feature

integer
Number of bits per feature, saved as an integer. NumBits equals the number of uint8 feature vector containers times 8.

NumFeatures - Number of feature vectors

integer
Number of feature vectors contained in the binaryFeatures object, saved as a positive integer.

Examples

Match Two Sets of Binary Feature Vectors

Input feature vectors.

```
features1 = binaryFeatures(uint8([1 8 7 2; 8 1 7 2]));
features2 = binaryFeatures(uint8([8 1 7 2; 1 8 7 2]));
```

Match the vectors using the Hamming distance.

```
[indexPairs matchMetric] = matchFeatures(features1, features2)
indexPairs = 2x2 uint32 matrix
```

 12
 21

matchMetric $=2 \times 1$ single column vector
 0
 0

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathrm{Coder}^{\mathrm{TM}}$.

See Also
extractFeatures|extractHOGFeatures|matchFeatures
Introduced in R2013a

cameralntrinsics

Object for storing intrinsic camera parameters

Description

Store information about a camera's intrinsic calibration parameters, including the lens distortion parameters.

Creation

Syntax

```
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize)
intrinsics = cameraIntrinsics(
```

\qquad

``` ,Name,Value)
```


Description

intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize) returns a camera intrinsics object that contains the focal length specified as [$f x, f y$], and the camera's principal point specified as [cx, cy]. See cameraParameters for more details.
intrinsics = cameraIntrinsics(\qquad ,Name, Value) uses additional options specified by one or name-value pairs. Enclose each property name in quotes. For example, intrinsics = cameraIntrinsics('RadialDistortion',[0,0])

Input Arguments

focalLength - Camera focal length

two-element vector
Camera focal length, specified as a two-element vector, [$f x, f y$].

$$
f_{x}=F \times s x
$$

$$
f_{y}=F \times s y
$$

- F is the focal length in world units, typically millimeters
- [sx, sy] are the number of pixels per world unit in the x and y direction respectively
- $f x$ and $f y$ are in pixels

principalPoint - Optical center of camera

two-element vector
Optical center of camera, specified as a two-element vector, [$c x, c y$], in pixels.

imageSize - Image size produced by the camera

two-element vector
Image size produced by the camera, specified as a two-element vector, [mrows,ncols].

Properties

RadialDistortion - Radial lens distortion

[0,0] (default) | two-element vector | three-element vector
Radial lens distortion, specified as the comma-separated pair consisting of RadialDistortion and a two-element vector, [k1,k2], or a three-element vector, [k1,k2,k3]. k1,k2, and k3 are radial distortion coefficients. Radial distortion occurs when light rays bend more near the edges of a lens than they do at its optical center. The smaller the lens, the greater the distortion.

Radial distortion occurs when light rays bend more near the edges of a lens than they do at its optical center. The smaller the lens, the greater the distortion.

The camera parameters object calculates the radial distorted location of a point. You can denote the distorted points as ($\chi_{\text {distorted }}, y_{\text {distorted }}$), as follows:
$\chi_{\text {distorted }}=x\left(1+k_{1} * r^{2}+k_{2} * r^{4}+k_{3}{ }^{*} r^{6}\right)$
$y_{\text {distorted }}=y\left(1+k_{1} * r^{2}+k_{2}{ }^{*} r^{4}+k_{3}{ }^{*} r^{6}\right)$
$x, y=$ undistorted pixel locations
k_{1}, k_{2}, and $k_{3}=$ radial distortion coefficients of the lens
$r^{2}=x^{2}+y^{2}$
Typically, two coefficients are sufficient. For severe distortion, you can include k_{3}. The undistorted pixel locations appear in normalized image coordinates, with the origin at the optical center. The coordinates are expressed in world units.

TangentialDistortion - Tangential distortion coefficients

[0,0] (default) | two-element vector
Tangential distortion coefficients, specified as the comma-separated pair consisting of 'TangentialDistortion' and a 2 -element vector, [p_{1}, p_{2}]. Tangential distortion occurs when the lens and the image plane are not parallel.

zero tangential distortion

tangential distortion

lens and sensor are not parallel

The camera parameters object calculates the tangential distorted location of a point. You can denote the distorted points as ($x_{\text {distorted }}, y_{\text {distorted }}$), as follows:
$\chi_{\text {distorted }}=x+\left[2 * p_{1} * x * y+p_{2} *\left(r^{2}+2 * x^{2}\right)\right]$
$y_{\text {distorted }}=y+\left[p_{1} *\left(r^{2}+2 * y^{2}\right)+2 * p_{2} * x * y\right]$
$x, y=$ undistorted pixel locations p_{1} and $p_{2}=$ tangential distortion coefficients of the lens $r^{2}=x^{2}+y^{2}$
The undistorted pixel locations appear in normalized image coordinates, with the origin at the optical center. The coordinates are expressed in world units.

Skew - Camera axes skew

0 (default) | angle

Camera axes skew, specified as the comma-separated pair consisting of 'skew' and an angle. If the x and the y axes are exactly perpendicular, then the skew must be 0 .

FocalLength - Focal length

2-element vector

This property is read-only.
Focal length in x and y, stored as a 2 -element vector [$f x, f y$] in pixels.
$f x=\mathrm{F}^{*} s x$
$f y=\mathrm{F}$ * s
F is the focal length in world units, typically in millimeters, and [$s x, s y$] are the number of pixels per world unit in the x and y direction respectively. Thus, $f x$ and $f y$ are in pixels.

The focal length F influences the angle of view and thus affects the area of the scene that appears focused in an image. For a fixed subject distance:

- A short focal length offers a wide angle of view allowing to capture large area of the scene under focus. It emphasizes both the subject and the scene background.
- A long focal length offers a narrow angle of view, thus reducing the area of the scene under focus. It emphasizes more on the subject and restricts the amount of background from being captured.

PrincipalPoint - Optical center of camera

two-element vector
This property is read-only.
Optical center of camera, stored as a two-element vector [$c x, c y$] in pixels. The vector contains the coordinates of the optical center of the camera.

ImageSize - Image size produced by the camera
 two-element vector

This property is read-only.
Image size produced by the camera, stored as a two-element vector, [mrows,ncols].

IntrinsicMatrix - Projection matrix
 3-by-3 identity matrix (default) | 3-by-3 intrinsic matrix

This property is read-only.
Projection matrix, stored as the comma-separated pair consisting of 'IntrinsicMatrix' and a 3-by-3 matrix. For the matrix format, the object uses the following format:

$$
\left[\begin{array}{ccc}
f_{x} & 0 & 0 \\
s & f_{y} & 0 \\
c_{x} & c_{y} & 1
\end{array}\right]
$$

The coordinates [$c_{\chi} c_{y}$] represent the optical center (the principal point), in pixels. When the x and y axis are exactly perpendicular, the skew parameter, s, equals 0 .
$f_{x}=F^{*} S_{\mathrm{x}}$
$f_{y}=F^{*} S_{y}$
F, is the focal length in world units, typically expressed in millimeters.
[s_{x}, s_{y}] are the number of pixels per world unit in the x and y direction respectively. f_{x} and f_{y} are expressed in pixels.

Examples

Create an Object Containing Fundamental Camera Parameters

Define camera parameters without lens distortion or skew.
Specify the focal length and principal point in pixels.

```
focalLength = [800, 800];
principalPoint = [320, 240];
imageSize = [480, 640];
```

Create a camera intrinsics object.

```
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize)
```

intrinsics =
cameraIntrinsics with properties:
FocalLength: [800 800]
PrincipalPoint: [320 240]
ImageSize: [480 640]
RadialDistortion: [0 0]
TangentialDistortion: [0 0]
Skew: 0
IntrinsicMatrix: [3x3 double]

See Also undistortImage
\section*{Topics}
"Single Camera Calibrator App"
Introduced in R2017a

Camera Calibrator | Stereo Camera Calibrator | cameraPa rameters |

pcplayer

Visualize streaming 3-D point cloud data

Description

Visualize 3-D point cloud data streams from devices such as Microsoft ${ }^{\circledR}$ Kinect ${ }^{\circledR}$.
To improve performance, pcplayer automatically downsamples the rendered point cloud during interaction with the figure. The downsampling occurs only for rendering the point cloud and does not affect the saved points.

You can set the default center of rotation for the point cloud viewer to rotate around the axes center or around a point. Set the default behavior from the "Computer Vision Toolbox Preferences".

Creation

Syntax

player = pcplayer(xlimits,ylimits,zlimits)
player = pcplayer(xlimits,ylimits,zlimits,Name,Value)

Description

player = pcplayer(xlimits,ylimits,zlimits) returns a player with xlimits,ylimits, and zlimits set for the axes limits.
player $=$ pcplayer(xlimits, ylimits,zlimits, Name, Value) returns a player with additional properties specified by one or more Name, Value pair arguments.

Input Arguments

xlimits - Range of \boldsymbol{x}-axis coordinates

1-by-2 vector

Range of x-axis coordinates, specified as a 1-by-2 vector in the format [min max]. pcplayer does not display data outside these limits.

ylimits - Range of \boldsymbol{y}-axis coordinates

1-by-2 vector
Range of y-axis coordinates, specified as a 1-by-2 vector in the format [min max]. pcplayer does not display data outside these limits.

zlimits - Range of z-axis coordinates 1-by-2 vector

Range of z-axis coordinates, specified as a 1-by-2 vector in the format [min max].pcplayer does not display data outside these limits.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'VerticalAxisDir', 'Up'.

MarkerSize - Diameter of marker

6 (default) | positive scalar
Diameter of marker, specified as the comma-separated pair consisting of 'MarkerSize' and a positive scalar. The value specifies the approximate diameter of the point marker. MATLAB graphics defines the unit as points. A marker size larger than six can reduce the rendering performance.

```
VerticalAxis - Vertical axis
'Z' (default)|'X' | 'Y'
```

Vertical axis, specified as the comma-separated pair consisting of 'VerticalAxis' and ' X ', ' Y^{\prime} ' or ' Z '. When you reload a saved figure, any action on the figure resets the vertical axis to the z-axis.

VerticalAxisDir - Vertical axis direction
 'Up' (default)|'Down'

Vertical axis direction, specified as the comma-separated pair consisting of 'VerticalAxisDir' and 'Up' or 'Down'. When you reload a saved figure, any action on the figure resets the direction to the up direction.

Properties

Axes - Player axes handle

axes graphics object
Player axes handle, specified as an axes graphics object.

Usage

Color and Data Point Values in Figure

To view point data or modify color display values, hover over the axes toolbar and select one of the following options.

Feature	Description
Background color	Click Rotate and then right-click in the figure for background options.

Feature	Description
Colormap value	Click Rotate and then right-click in the figure for colormap options. You can modify colornap values for the coordinate and range values available, depending on the type of point cloud displayed.
	Rotale 30 t
View	Click Rotate to change the viewing angle of the point cloud figure to the $X Z, Z X, Y Z, Z Y, X Y$, or the $Y X$ plane. Click Restore View to reset the viewing angle.

OpenGL Option

pcplayer supports the 'opengl' option for the Renderer figure property only.

Object Functions

hide Hide player figure
isOpen Visible or hidden status for player
show Show player
view Display point cloud

Examples

Terminate a Point Cloud Processing Loop

Create the player and add data.

```
player = pcplayer([0 1],[0 1],[0 1]);
```

Display continuous player figure. Use the isOpen function to check if player figure window is open.

```
while isOpen(player)
    ptCloud = pointCloud(rand(1000,3,'single'));
    view(player,ptCloud);
end
```

Terminate while-loop by closing pcplayer figure window.

See Also

pcdenoise|pcdownsample|pcfitplane|pcmerge|pcread|pcregistericp| pcshow| pcshowpair|pcwrite|planeModel|plot3|pointCloud|scatter3

Introduced in R2015b

view

Display point cloud

Syntax

```
view(player,ptCloud)
view(player,xyzPoints)
view(player,xyzPoints,color)
view(player,xyzPoints,colorMap)
```


Description

view(player, ptCloud) displays a point cloud in the pcplayer figure window, player. The points, locations, and colors are stored in the ptCloud object.
view(player, xyzPoints) displays the points of a point cloud at the locations specified by the xyzPoints matrix. The color of each point is determined by the z value.
view(player, xyzPoints, color) displays a point cloud with colors specified by color.
view(player, xyzPoints, colorMap) displays a point cloud with colors specified by colorMap.

Examples

View Rotating 3-D Point Cloud

Load point cloud.
ptCloud = pcread('teapot.ply');
Define a rotation matrix and 3-D transform.

```
x = pi/180;
R = [ cos(x) sin(x) 0 0
    -sin(x) cos(x) 0 0
        0 0 1 0
        0 0 0 1];
tform = affine3d(R);
```

Compute $x-y_{-} y_{-}$limits that ensure that the rotated teapot is not clipped.

```
lower = min([ptCloud.XLimits ptCloud.YLimits]);
```

upper $=\max ([p t C l o u d . X L i m i t s ~ p t C l o u d . Y L i m i t s]) ;$
xlimits = [lower upper];
ylimits = [lower upper];
zlimits = ptCloud.ZLimits;

Create the player and customize player axis labels.
player = pcplayer(xlimits,ylimits,zlimits);
xlabel(player.Axes,'X (m)');
ylabel(player.Axes,'Y (m)');
zlabel(player.Axes,'Z (m)');

Rotate the teapot around the z-axis.

```
for i = 1:360
    ptCloud = pctransform(ptCloud,tform);
    view(player,ptCloud);
end
```


Input Arguments

ptCloud - Point cloud
pointCloud object

Point cloud, specified as a pointCloud object. The object contains the locations, intensities, and RGB colors to render the point cloud.

Point Cloud Property	Color Rendering Result
Location only	Maps the z-value to a color value in the current color map.
Location and Intensity	Maps the intensity to a color value in the current color map.
Location and Color	Use provided color.
Location, Intensity, and Color	Use provided color.

player - Player

pcplayer object
Player for visualizing 3-D point cloud data streams, specified as a pcplayer object.

xyzPoints - Point cloud x, y, and z locations

M-by-3 numeric matrix | M-by- N-by-3 numeric matrix
Point cloud x, y, and z locations, specified as either an M-by- 3 or an M-by- N-by- 3 numeric matrix. The M-by- N-by-3 numeric matrix is commonly referred to as an organized point cloud. The xyzPoints numeric matrix contains M or M-by- $N[x, y, z]$ points. The z values in the numeric matrix, which generally correspond to depth or elevation, determine the color of each point.

color - Point cloud color

1-by-3 RGB vector | short name of color | long name of color | M-by-3 matrix | M-by- N-by-3 matrix

Point cloud color of points, specified as one of:

- 1-by-3 RGB vector
- short name of a MATLAB ColorSpec color, such as 'b'
- long name of a MATLAB ColorSpec color, such as 'blue'
- M-by- 3 matrix
- M-by- N-by-3 matrix

You can specify the same color for all points or a different color for each point. When you set color to single or double, the RGB values range between [0,1]. When you set color to uint8, the values range between [0, 255].

Points Input	Color Selection	Valid Values of C	
xyzPoints	Same color for all points	1-by-3 RGB vector, or the short or long name of a MATLAB ColorSpec color	
	Different color for each point	M-by-3 matrix or M-by- N-by-3 matrix containing RGB values for each point.	$\left[\begin{array}{lll} x_{1} & y_{1} & z_{1} \\ \vdots & \\ x_{m} & y_{m} & z_{m} \end{array}\right] \rightarrow$ M-by-3 M-by- N-by-3

colorMap - Point cloud color map
M-by-1 vector | M-by- N matrix
Point cloud color of points, specified as one of:

- M-by- 1 vector
- M-by- N matrix

Points Input	Color Selection	Valid Values of C	
xyzPoints	Different color for each point	Vector or M-by- N matrix. The matrix must contain values that are linearly mapped to a color in the current colormap.	

Introduced in R2015b

pointTrack class

Object for storing matching points from multiple views

Syntax

track = pointTrack(viewIDs,points)

Description

track $=$ pointTrack(viewIDs, points) returns an object that stores matching 2-D points from multiple views. You can also create this point track object using the findTracks method of the viewSet object.

Input Arguments

viewIDs - View IDs of camera poses

M-element vector
View IDs of camera poses, specified as an M-element vector of scalar integers.

points - 2-D points that match across multiple camera views

M-by-2 matrix
2-D points that match across multiple camera views, specified as an M-by- 2 matrix of (x, y) point coordinates. You can use the matchFeatures function to find these points, and then save them using this object.

Output Arguments

track - Point track object
pointTrack object

Point track object, returned as a pointTrack object. You can use this object to store matching 2-D points from multiple views. You can also create this point track object using the findTracks method of the viewSet object.

Examples

Create a Point Track Object

Save (x, y) points and view IDs.

```
points = [10,20;11,21;12,22];
```

viewIDs = [1 2 3];

Create a pointTrack object to save points and IDs.
track = pointTrack(viewIDs,points);

See Also

bundleAdjustment|matchFeatures|triangulateMultiview|viewSet| vision. PointTracker

Topics
"3-D Point Cloud Registration and Stitching"
"Coordinate Systems"

Introduced in R2016a

vision.PointTracker

Package: vision

Track points in video using Kanade-Lucas-Tomasi (KLT) algorithm

Description

The point tracker object tracks a set of points using the Kanade-Lucas-Tomasi (KLT), feature-tracking algorithm. You can use the point tracker for video stabilization, camera motion estimation, and object tracking. It works particularly well for tracking objects that do not change shape and for those that exhibit visual texture. The point tracker is often used for short-term tracking as part of a larger tracking framework.

As the point tracker algorithm progresses over time, points can be lost due to lighting variation, out of plane rotation, or articulated motion. To track an object over a long period of time, you may need to reacquire points periodically.

To track a set of points:
1 Create the vision. PointTracker object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax

pointTracker = vision. PointTracker
pointTracker = vision. PointTracker(Name, Value)

Description

pointTracker = vision.PointTracker returns a point tracker object that tracks a set of points in a video.
pointTracker = vision.PointTracker(Name,Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, pointTracker = vision.PointTracker('NumPyramidLevels',3)

Initialize Tracking Process:

To initialize the tracking process, you must use initialize to specify the initial locations of the points and the initial video frame.
initialize(pointTracker, points,I) initializes points to track and sets the initial video frame. The initial locations points, must be an M-by- 2 array of [x y] coordinates. The initial video frame, I, must be a 2-D grayscale or RGB image and must be the same size and data type as the video frames passed to the step method.

The detectFASTFeatures, detectSURFFeatures, detectHarrisFeatures, and detectMinEigenFeatures functions are few of the many ways to obtain the initial points for tracking.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

NumPyramidLevels - Number of pyramid levels

integer (default) | 3
Number of pyramid levels, specified as integer. The point tracker implementation of the KLT algorithm uses image pyramids. The tracker generates an image pyramid, where each level is reduced in resolution by a factor of two compared to the previous level.

Selecting a pyramid level greater than 1, enables the algorithm to track the points at multiple levels of resolution, starting at the lowest level. Increasing the number of pyramid levels allows the algorithm to handle larger displacements of points between frames. However, computation cost also increases. Recommended values are between 1 and 4.

Each pyramid level is formed by down-sampling the previous level by a factor of two in width and height. The point tracker begins tracking each point in the lowest resolution level, and continues tracking until convergence. The object propagates the result of that level to the next level as the initial guess of the point locations. In this way, the tracking is refined with each level, up to the original image. Using the pyramid levels allows the point tracker to handle large pixel motions, which can comprise distances greater than the neighborhood size.

MaxBidirectionalError - Forward-backward error threshold inf (default) | scalar

Forward-backward error threshold, specified as a scalar. If you set the value to less than inf, the tracker tracks each point from the previous to the current frame. It then tracks the same points back to the previous frame. The object calculates the bidirectional error. This value is the distance in pixels from the original location of the points to the final location after the backward tracking. The corresponding points are considered invalid when the error is greater than the value set for this property. Recommended values are between 0 and 3 pixels.

Using the bidirectional error is an effective way to eliminate points that could not be reliably tracked. However, the bidirectional error requires additional computation. When you set the MaxBidirectionalError property to inf, the object does not compute the bidirectional error.

BlockSize - Size of neighborhood

[31 31] (default)|two-element vector

Size of neighborhood around each point being tracked, specified as a two-element vector, [height, width]. The height and width must be odd integers. This neighborhood defines the area for the spatial gradient matrix computation. The minimum value for BlockSize is [5 5]. Increasing the size of the neighborhood, increases the computation time.

MaxIterations - Maximum number of search iterations

30 (default) | integer
Maximum number of search iterations for each point, specified as an integer. The KLT algorithm performs an iterative search for the new location of each point until convergence. Typically, the algorithm converges within 10 iterations. This property sets the limit on the number of search iterations. Recommended values are between 10 and 50.

Usage

Syntax

```
[points,point_validity] = pointTracker(I)
[points,point_validity,scores] = pointTracker(I)
setPoints(pointTracker,points)
setPoints(pointTracker,points,point_validity)
```


Description

[points, point_validity] = pointTracker(I) tracks the points in the input frame, I.
[points, point_validity,scores] = pointTracker(I) additionally returns the confidence score for each point.
setPoints (pointTracker, points) sets the points for tracking. The function sets the M-by-2 points array of $[x y]$ coordinates with the points to track. You can use this function if the points need to be redetected because too many of them have been lost during tracking.
setPoints(pointTracker, points, point_validity) additionally lets you mark points as either valid or invalid. The input logical vector point_validity of length M, contains the true or false value corresponding to the validity of the point to be tracked. The length M corresponds to the number of points. A false value indicates an invalid point that should not be tracked. For example, you can use this function with the estimateGeometricTransform function to determine the transformation between the point locations in the previous and current frames. You can mark the outliers as invalid.

Input Arguments

I - Video frame
 grayscale | truecolor (RGB)

Video frame, specified as grayscale or truecolor (RGB).

Output Arguments

points - Tracked points

M-by-2 array
Tracked points, returned as an M-by-2 array of [x y] coordinates that correspond to the new locations of the points in the input frame, I.

point_validity - Reliability of track
 M-by-1 logical array

Reliability of track for each point, returned as an an M-by-1 logical array. A point can be invalid for several reasons. The point can become invalid if it falls outside of the image.

Also, it can become invalid if the spatial gradient matrix computed in its neighborhood is singular. If the bidirectional error is greater than the MaxBidirectionalError threshold, this condition can also make the point invalid.

score - Confidence score

M-by-1 array

Confidence score between 0 and 1, returned as an M-by-1 array. The values correspond to the degree of similarity between the neighborhood around the previous location and new location of each point. These values are computed as a function of the sum of squared differences between the previous and new neighborhoods. The greatest tracking confidence corresponds to a perfect match score of 1 .

Object Functions

To use an object function, specify the System object ${ }^{\mathrm{TM}}$ as the first input argument. For example, to release system resources of a System object named obj, use this syntax:

```
release(obj)
```


Specific to vision.PointTracker

initialize Initialize video frame and points to track

Common to All System Objects

step Run System object algorithm

release	Release resources and allow changes to System object property values and input characteristics
reset	Reset internal states of System object

Examples

Track a Face in Scene

Create System objects for reading and displaying video and for drawing a bounding box of the object.

```
videoFileReader = vision.VideoFileReader('visionface.avi');
videoPlayer = vision.VideoPlayer('Position',[100,100,680,520]);
```

Read the first video frame, which contains the object, define the region.

```
objectFrame = videoFileReader();
```

objectRegion $=[264,122,93,93]$;

As an alternative, you can use the following commands to select the object region using a mouse. The object must occupy the majority of the region:
figure; imshow(objectFrame);
objectRegion=round(getPosition(imrect))
Show initial frame with a red bounding box.

```
objectImage = insertShape(objectFrame,'Rectangle',objectRegion,'Color','red');
figure;
imshow(objectImage);
title('Red box shows object region');
```

Red box shows object region

Detect interest points in the object region.
points $=$ detectMinEigenFeatures(rgb2gray(objectFrame), 'ROI',objectRegion);
Display the detected points.
pointImage = insertMarker(objectFrame,points.Location,'+','Color','white'); figure;
imshow(pointImage);
title('Detected interest points');

Detected interest points

Create a tracker object.
tracker = vision. PointTracker('MaxBidirectionalError',1);
Initialize the tracker.
initialize(tracker, points.Location, objectFrame);
Read, track, display points, and results in each video frame.

```
while ~isDone(videoFileReader)
    frame = videoFileReader();
    [points,validity] = tracker(frame);
    out = insertMarker(frame,points(validity, :),'+');
```

videoPlayer(out);
end

Release the video reader and player.

```
release(videoPlayer);
release(videoFileReader);
```


References

[1] Lucas, Bruce D. and Takeo Kanade. "An Iterative Image Registration Technique with an Application to Stereo Vision,"Proceedings of the 7th International Joint Conference on Artificial Intelligence, April, 1981, pp. 674-679.
[2] Tomasi, Carlo and Takeo Kanade. Detection and Tracking of Point Features, Computer Science Department, Carnegie Mellon University, April, 1991.
[3] Shi, Jianbo and Carlo Tomasi. "Good Features to Track," IEEE Conference on Computer Vision and Pattern Recognition, 1994, pp. 593-600.
[4] Kalal, Zdenek, Krystian Mikolajczyk, and Jiri Matas. "Forward-Backward Error: Automatic Detection of Tracking Failures," Proceedings of the 20th International Conference on Pattern Recognition, 2010, pages 2756-2759, 2010.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries. See "Portable C Code Generation for Functions That Use OpenCV Library".
- See "System Objects in MATLAB Code Generation" (MATLAB Coder).

See Also

detectHarrisFeatures|detectMinEigenFeatures | detectSURFFeatures | estimateGeometricTransform|imrect|insertMarker|
vision.HistogramBasedTracker

Topics

"Face Detection and Tracking Using CAMShift"
"Face Detection and Tracking Using the KLT Algorithm"
"Face Detection and Tracking Using Live Video Acquisition"
"Detect and Track Face"

External Websites

Object Recognition and Tracking for Augmented Reality

Detect and Track Multiple Faces in a Live Video Stream

Introduced in R2012b

viewSet class

Object for managing data for structure-from-motion and visual odometry

Syntax

vSet $=$ viewSet

Description

vSet $=$ viewSet returns an empty viewSet object that stores views and connections between views. A view includes feature points and an absolute camera pose. A connection between two views includes point correspondences and the relative camera pose between them. Once you populate a viewSet object, you can use it to find point tracks across multiple views and retrieve the camera poses to be used
by triangulateMultiview and bundleAdjustment functions.

Code Generation Support:

Supports Code Generation: No
Supports MATLAB Function block: No
"Code Generation Support, Usage Notes, and Limitations"

Properties

These properties are read-only.

NumViews - Number of views

integer
Number of views, stored as an integer.

Views - View attributes

four-column table

View attributes, stored as a four-column table. The table contains columns for ViewID, Points, Orientation, and Location. Use the poses method to obtain the IDs, orientation, and location for the points.

Connections - Pairwise connections between views

five-column table
Pairwise connections between views, stored as a five-column table. The columns are ViewID1, ViewID2, Matches, Relative0rientation, and RelativeLocation. The number of entries in the table represent the number of connections. Each index in the Matches column represents a connection between the two views indicated by the view IDs.

EV Variables - vSet.Connections						
	vSet x	et.Connec	tions \times			
vSet.Connections						
	$\begin{gathered} 1 \\ \text { ViewId1 } \end{gathered}$	$\begin{gathered} 2 \\ \text { ViewId2 } \end{gathered}$	$\begin{gathered} 3 \\ \text { Matches } \end{gathered}$	$\stackrel{4}{4}$	5 RelativeLocation	
1	1		2229×2 uint32	[]	[]	
2	2		3262×2 uint32	[]	[]	
3	3		4203×2 uint32	[]	[]	
4	4		5155×2 uint32	[]	[]	
5						
7	-					

Output Arguments

vSet - View set object

viewSet object
viewSet object used to store views and connections between the views.

V Variables - vSet	
vSet \times	
(0) 1x1 viewSet	
Property -	Value
\# Views	5×4 table
\# Connections	4×5 table
\boxplus NumViews	5

Methods

addView	Add a new view to view set object
updateView	Modify an existing view in a view set object
deleteView	Delete an existing view from view set object
hasView	Check if view exists
addConnection	Add a connection between two views
updateConnection	Modify a connection between two views in a view set object
deleteConnection	Delete a connection between two views from view set object
hasConnection	Check if a connection exists between two views
findTracks	Find matched points across multiple views
poses	Returns camera poses associated to views

Examples

Find Point Tracks Across Sequence of Images

Load images.

```
imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
images = imageSet(imageDir);
```

Compute features for the first image.

```
I = rgb2gray(read(images, 1));
pointsPrev = detectSURFFeatures(I);
[featuresPrev,pointsPrev] = extractFeatures(I,pointsPrev);
```

Create a viewSet object.

```
vSet = viewSet;
vSet = addView(vSet,1,'Points',pointsPrev);
```

Compute features and matches for the rest of the images.

```
for i = 2:images.Count
    I = rgb2gray(read(images,i));
```

```
points = detectSURFFeatures(I);
[features, points] = extractFeatures(I,points);
vSet = addView(vSet,i,'Points',points);
pairsIdx = matchFeatures(featuresPrev,features);
vSet = addConnection(vSet,i-1,i,'Matches',pairsIdx);
featuresPrev = features;
end
Find point tracks.
tracks = findTracks(vSet);
```


See Also

bundleAdjustment| detectBriskFeatures | detectFastFeatures detectHarrisFeatures | detectMSERFeatures | detectMinEigenFeatures | detectSURFFeatures | matchFeatures | pointTrack| table| triangulateMultiview

Topics

"Structure From Motion From Multiple Views"
"Structure From Motion From Two Views"
"Code Generation for Depth Estimation From Stereo Video"
"Single Camera Calibrator App"
"Structure from Motion"

Introduced in R2016a

addView

Class: viewSet
Add a new view to view set object

Syntax

```
vSet = addView(vSet,viewId)
vSet = addView(vSet,viewId,Name,Value)
```


Description

vSet $=$ addView(vSet, viewId) adds the view specified by viewID to the specified viewSet object.
vSet $=$ addView(vSet, viewId,Name, Value) uses additional options specified by one or more Name, Value pair arguments.

Input Arguments

vSet - View set object

viewSet object
viewSet object.

viewId - Camera pose view ID
 integer

Camera pose view ID in the viewSet object, specified as an integer.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.

You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'Location','[0,0,0]'

Points - Image points

M-by-2 matrix | points object
Image points, specified as the comma-separated pair consisting of 'Points' and an M-by-2 matrix of $[x, y]$ coordinates or any points object.

Orientation - Absolute orientation of the camera
 3-by-3 matrix

Absolute orientation of the camera, specified as the comma-separated pair consisting of 'Orientation' and a 3-by-3 matrix.

Location - Absolute location of the camera

three-element vector
Absolute location of the camera, specified as the comma-separated pair consisting of 'Location' and a three-element vector.

Output Arguments

vSet - View set object

viewSet object
viewSet object containing the added view specified by viewId.

Examples

Add View to View Set Object

Create an empty viewSet object.
vSet = viewSet;
Detect interest points in the image.

```
imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I = imread(fullfile(imageDir,'image1.jpg'));
points = detectSURFFeatures(rgb2gray(I));
```

Add the points to the object.

```
vSet = addView(vSet,1,'Points',points,'Orientation',eye(3),'Location',[0,0,0]);
```


Introduced in R2016a

updateView

Class: viewSet
Modify an existing view in a view set object

Syntax

```
vSet = updateView(vSet,viewId)
vSet = updateView(vSet,viewId,Name,Value)
vSet = updateView(vSet,views)
```


Description

vSet $=$ updateView(vSet, viewId) modifies the view specified by viewId in the specified viewSet object, vSet.
vSet = updateView(vSet, viewId,Name, Value) uses additional options specified by one or more Name, Value pair arguments.
vSet $=$ updateView(vSet, views) modifies a view or a set of views specified by the view table.

Input Arguments

vSet - View set object

viewSet object
viewSet object.
viewId - Camera pose view ID
integer
Camera pose view ID in the viewSet object, specified as an integer.

views - Camera views
 table

Camera views, specified as a table. The table must contain a column named ViewID, and one or more columns named Points, Orientation, or Location.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, ... , NameN, ValueN.

Example: Location, '[0,0,0]'

Points - Image points

M-by-2 matrix | points object
Image points, specified as the comma-separated pair consisting of 'Points' and an M-by-2 matrix of $[x, y]$ coordinates or any points object.

Orientation - Orientation of the second camera relative to the first camera 3-by-3 matrix

Orientation of the second camera relative to the first camera, specified as the commaseparated pair consisting of 'Orientation' and a 3-by-3 matrix that represents the $[x, y, z]$ orientation of the second camera.

Location - Location of the second camera relative to the first camera three-element vector

Location of the second camera relative to the first camera, specified as the commaseparated pair consisting of 'Location' and a three-element vector that represents the $[x, y, z]$ location of the second camera in the first camera's coordinate system.

Output Arguments

vSet - View set object

viewSet object

viewSet object containing the modified view specified by viewId.

Examples

Update View in View Set Object

Create an empty viewSet object.

```
vSet = viewSet;
```

Detect interest points in the image.

```
imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I = imread(fullfile(imageDir,'imagel.jpg'));
points = detectSURFFeatures(rgb2gray(I));
```

Add the points to the object.

```
vSet = addView(vSet,1,'Points',points);
```

Update the view to specify the camera pose.

```
vSet = updateView(vSet, 1,'Orientation',eye(3),'Location',[0,0,0]);
```


Introduced in R2016a

deleteView

Class: viewSet
Delete an existing view from view set object

Syntax

vSet $=$ deleteView(vSet,viewId)

Description

vSet $=$ deleteView (vSet, viewId) deletes an existing view or a set of views from the specified viewSet object,vSet.

Input Arguments

vSet - View set object

viewSet object
A viewSet object.
viewId - View IDs
integer scalar | vector
View IDs, specified as an integer scalar for a single view, or as a vector of integers for a set of views.

Output Arguments

vSet - View set object
viewSet object
viewSet object.

Examples

Delete a View from View Set Object

Create an empty viewSet object.

```
vSet = viewSet;
```

Detect interest points in the image.

```
imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I = imread(fullfile(imageDir,'image1.jpg'));
points = detectSURFFeatures(rgb2gray(I));
```

Add a view.

```
vSet = addView(vSet,1,'Points',points);
```

Delete the view.
vSet = deleteView(vSet,1);

Introduced in R2016a

hasView

Class: viewSet
Check if view exists

Syntax

tf = hasView(vSet,viewId)

Description

$\mathrm{tf}=$ hasView(vSet, viewId) returns 1 if the view specified by viewID exists and 0 if it does not exist.

Input Arguments

vSet - View set object

viewSet object
viewSet object.
viewId1 - View ID
integer
View ID in the viewSet object, specified as an integer.

Output Arguments

tf - Validity of view connection
logical
Validity of view connection, returned as a logical 1 or 0.

Examples

Check If View Exists

Create an empty viewSet object.
vSet = viewSet;
Detect interest points in the image.
imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion'); I = imread(fullfile(imageDir,'image1.jpg'));
points = detectSURFFeatures(rgb2gray(I));
Add a new view.
vSet = addView(vSet, 1,'Points',points);
Confirm that the view with ID 1 exists.
tf = hasView(vSet,1);

Introduced in R2016a

addConnection

Class: viewSet
Add a connection between two views

Syntax

```
vSet = addConnection(vSet,viewId1,viewId2)
vSet = addConnection(vSet,viewId1,viewId2,Name,Value,)
```


Description

vSet $=$ addConnection(vSet,viewId1,viewId2) adds a connection between two views in the specified viewSet object, vSet.
vSet $=$ addConnection(vSet,viewId1,viewId2,Name,Value,) uses additional options specified by one or more Name, Value pair arguments.

Input Arguments

vSet - View set object

viewSet object
viewSet object.
viewId1 - View ID 1
integer
View ID 1 in the viewSet object, specified as an integer.

viewId2 - View ID 2

integer
View ID 2 in the viewSet object, specified as an integer.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: 'Location','[0,0,0]'

Matches - Indices of matched points between two views

M-by-2 matrix
Indices of matched points between two views, specified as the comma-separated pair consisting of 'Matches' and an M-by-2 matrix.

Orientation - Orientation of the second camera relative to the first camera 3-by-3 matrix

Orientation of the second camera relative to the first camera, specified as the commaseparated pair consisting of 'Orientation' and a 3-by-3 matrix that represents the $[x, y, z]$ orientation of the second camera.

Location - Location of the second camera relative to the first camera
 three-element vector

Location of the second camera relative to the first camera, specified as the commaseparated pair consisting of 'Location' and a three-element vector that represents the $[x, y, z]$ location of the second camera in the first camera's coordinate system.

Output Arguments

vSet - View set object

viewSet object
viewSet object.

Examples

Add Connection Between Two Views in View Set Object

Create an empty viewSet object.

```
vSet = viewSet;
```

Read a pair of images.

```
imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I1 = rgb2gray(imread(fullfile(imageDir,'image1.jpg')));
I2 = rgb2gray(imread(fullfile(imageDir,'image2.jpg')));
```

Detect interest points in the two images.

```
points1 = detectSURFFeatures(I1);
points2 = detectSURFFeatures(I2);
```

Add the points to the viewSet object.

```
vSet = addView(vSet,1,'Points',points1);
vSet = addView(vSet,2,'Points',points2);
```

Extract feature descriptors from both images.

```
features1 = extractFeatures(I1,points1);
features2 = extractFeatures(I2,points2);
```

Match features and store the matches.
indexPairs = matchFeatures(features1,features2);
Add the connection between the two views.

```
vSet = addConnection(vSet,1,2,'Matches',indexPairs);
```


Introduced in R2016a

updateConnection

Class: viewSet
Modify a connection between two views in a view set object

Syntax

vSet $=$ updateConnection(vSet, viewId1, viewId2)
vSet $=$ updateConnection(vSet,viewId1,viewId2,Name,Value)

Description

vSet $=$ updateConnection(vSet,viewId1,viewId2) modifies a connection between two views in the specified view set object, vSet.
vSet $=$ updateConnection(vSet,viewId1,viewId2,Name,Value) uses additional options specified by one or more Name, Value pair arguments. Unspecified properties have default values.

Input Arguments

vSet - View set object

viewSet object
viewSet object.
viewId1 - View ID 1
integer
View ID 1 in the viewSet object, specified as an integer.
viewId2 - View ID 2
integer
View ID 2 in the viewSet object, specified as an integer.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'Location', '[0,0,0]'

Matches - Indices of matched points between two views

M-by-2 matrix
Indices of matched points between two views, specified as the comma-separated pair consisting of 'Matches' and an M-by-2 matrix.

Orientation - Orientation of the second camera relative to the first camera 3-by-3 matrix

Orientation of the second camera relative to the first camera, specified as the commaseparated pair consisting of 'Orientation' and a 3-by-3 matrix that represents the $[x, y, z]$ orientation of the second camera.

Location - Location of the second camera relative to the first camera
 three-element vector

Location of the second camera relative to the first camera, specified as the commaseparated pair consisting of 'Location' and a three-element vector that represents the $[x, y, z]$ location of the second camera in the first camera's coordinate system.

Output Arguments

vSet - View set object

viewSet object
A viewSet object containing the modified connection.

Examples

Update Connection Between Two Views in View Set Object

Create an empty viewSet object.

```
vSet = viewSet;
```

Read a pair of images.

```
imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I1 = rgb2gray(imread(fullfile(imageDir,'image1.jpg')));
I2 = rgb2gray(imread(fullfile(imageDir,'image2.jpg')));
```

Detect interest points in the two images.

```
points1 = detectSURFFeatures(I1);
points2 = detectSURFFeatures(I2);
```

Add the points to the viewSet object.

```
vSet = addView(vSet, 1,'Points',points1);
vSet = addView(vSet, 2,'Points',points2);
```

Extract feature descriptors.

```
features1 = extractFeatures(I1,points1);
```

features2 = extractFeatures(I2,points2);

Match features and store the matches.

```
indexPairs = matchFeatures(features1, features2);
vSet = addConnection(vSet,1,2,'Matches',indexPairs);
```

Update the connection to store a relative pose between the views.

```
vSet = updateConnection(vSet,1,2,'Orientation', eye(3),'Location',[1 0 0]);
```


Introduced in R2016a

deleteConnection

Class: viewSet

Delete a connection between two views from view set object

Syntax

vSet $=$ deleteConnection(vSet, viewId1, viewId2)

Description

vSet $=$ deleteConnection(vSet,viewId1,viewId2) deletes a connection between two views in the specified viewSet object, vSet.

Input Arguments

vSet - View set object

viewSet object
viewSet object.

viewId1 - View ID 1

integer
View ID 1 in the viewSet object, specified as an integer.

viewId2 - View ID 2

integer
View ID 2 in the viewSet object, specified as an integer.

Output Arguments

vSet - View set object

viewSet object
viewSet object.

Examples

Delete a Connection Between Two Views In View Set Object
Create an empty viewSet object.
vSet = viewSet;
Read a pair of images.

```
imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
I1 = rgb2gray(imread(fullfile(imageDir,'image1.jpg')));
I2 = rgb2gray(imread(fullfile(imageDir,'image2.jpg')));
```

Detect interest points in the two images.

```
points1 = detectSURFFeatures(I1);
points2 = detectSURFFeatures(I2);
```

Add the points to the viewSet object.

```
vSet = addView(vSet,1,'Points',points1);
vSet = addView(vSet,2,'Points',points2);
```

Extract feature descriptors.
features1 = extractFeatures(I1,points1);
features2 = extractFeatures(I2,points2);
Match features and store the matches.
indexPairs = matchFeatures(features1, features2);
vSet = addConnection(vSet,1,2,'Matches',indexPairs);
Delete the connection between the views.

```
vSet = deleteConnection(vSet,1,2);
```

Introduced in R2016a

hasConnection

Class: viewSet

Check if a connection exists between two views

Syntax

tf = hasConnection(vSet,viewId1,viewId2)

Description

tf = hasConnection(vSet,viewId1,viewId2) returns true if both views exist and have a connection.

Input Arguments

vSet - View set object

viewSet object
viewSet object.

viewId1 - View ID 1

integer
View ID 1 in the viewSet object, specified as an integer.

viewId2 - View ID 2

integer
View ID 2 in the viewSet object, specified as an integer.

Output Arguments

tf - Validity of view connection

logical
Validity of view connection, returned as a logical 1 or 0 .

Examples

Check Whether a Connection Exists Between Two Views

Create an empty viewSet object.
vSet = viewSet;
Add a pair of views.
vSet = addView(vSet,1);
vSet = addView(vSet,2);
Add a connection.
vSet = addConnection(vSet,1,2);
Confirm that the connection exists.
tf = hasConnection(vSet,1,2);

Introduced in R2016a

findTracks

Class: viewSet
Find matched points across multiple views

Syntax

tracks = findTracks(vSet)
tracks = findTracks(vSet,viewIds)

Description

```
tracks = findTracks(vSet) finds point tracks across multiple views.
tracks = findTracks(vSet,viewIds) finds point tracks across a subset of views.
```


Input Arguments

vSet - View set object

viewSet object
viewSet object.
viewIds - Subset of views
vector of integers
Subset of views in the viewSet object, specified as a vector of integers.

Output Arguments

tracks - Point track objects

array of pointTrack objects

Point track objects, returned as an array of pointTrack objects. Each track contains 2-D projections of the same 3-D world point.

Examples

Find Point Tracks Across Sequence of Images

Load images.

```
imageDir = fullfile(toolboxdir('vision'),'visiondata','structureFromMotion');
images = imageSet(imageDir);
```

Compute features for the first image.

```
I = rgb2gray(read(images, 1));
pointsPrev = detectSURFFeatures(I);
[featuresPrev,pointsPrev] = extractFeatures(I,pointsPrev);
```

Create a viewSet object.

```
vSet = viewSet;
vSet = addView(vSet,1,'Points',pointsPrev);
```

Compute features and matches for the rest of the images.

```
for i = 2:images.Count
    I = rgb2gray(read(images,i));
    points = detectSURFFeatures(I);
    [features, points] = extractFeatures(I,points);
    vSet = addView(vSet,i,'Points',points);
    pairsIdx = matchFeatures(featuresPrev,features);
    vSet = addConnection(vSet,i-1,i,'Matches',pairsIdx);
    featuresPrev = features;
end
```

Find point tracks.

```
tracks = findTracks(vSet);
```


Introduced in R2016a

poses

Class: viewSet

Returns camera poses associated to views

Syntax

```
cameraPoses = poses(vSet)
cameraPoses = poses(vSet,viewIds)
```


Description

cameraPoses $=$ poses (vSet) returns the camera poses that correspond to the views contained in the input viewSet, object, vSet.
cameraPoses $=$ poses(vSet,viewIds) returns the camera poses that correspond to a subset of views specified by the vector viewIds.

Input Arguments

vSet - View set object

viewSet object
viewSet object.
viewId - View IDs
integer scalar | vector
View IDs, specified as an integer scalar for a single view, or as a vector of integers for a set of views.

Output Arguments

cameraPoses - Camera pose information

three-column table
Camera pose information, returned as a three-column table. The table contains columns for ViewId, Orientation, and Location. The view IDs correspond to the IDs in the viewSet object. The orientations are specified as 3-by-3 rotation matrices and locations are specified as three-element vectors. You can pass the cameraPoses table to the triangulateMultiview and the bundleAdjustment functions.

Examples

Retrieve Camera Poses from View Set Object

Create an empty viewSet object.

```
vSet = viewSet;
```

Add views to the object.

```
vSet = addView(vSet,1,'Orientation',eye(3),'Location',[0,0,0]);
vSet = addView(vSet,2,'Orientation',eye(3),'Location',[1,0,0]);
```

Retrieve the absolute camera poses.

```
camPoses = poses(vSet);
```


See Also

bundleAdjustment|triangulateMultiview

Introduced in R2016a

acfObjectDetector

Detect objects using aggregate channel features

Description

The acf0bjectDetector object detects objects from an image, using the aggregate channel features (ACF) object detector. To detect objects in an image, pass the trained detector to the detect function.

The ACF object detector recognizes specific objects in images, based on the training images and the object ground truth locations used with the trainACFObjectDetector function.

Creation

Create an acf0bjectDetector object by calling the trainACFObjectDetector function with training data.

```
detector = trainACFObjectDetector(trainingData,...)
```


Properties

ModelName - Name of classification model

character vector | string scalar
Name of the classification model, specified as a character vector or string scalar. By default, the name is set to the heading of the second column of the trainingData table specified in the trainACFObjectDetector function. You can modify this name after creating your acf0bjectDetector object.
Example: 'stopSign'

ObjectTrainingSize - Size of training images

[height width] vector
This property is read-only.

Size of training images, specified as a [height width] vector.

Example: [100 100]

NumWeakLearners - Number of weak learners integer

This property is read-only.
Number of weak learners used in the detector, specified as an integer.
NumWeakLearners is less than or equal to the maximum number of weak learners for the last training stage. To restrict this maximum, you can use the 'MaxWeakLearners ' name-value pair in the trainACFObjectDetector function.

Object Functions

detect Detect objects using ACF object detector

Examples

Train a Stop Sign Detector Using an ACF Object Detector

Use the trainACFObjectDetector with training images to create an ACF object detector that can detect stop signs. Test the detector with a separate image.

Load the training data.

```
load('stopSignsAndCars.mat')
```

Select the ground truth for stop signs. These ground truth is the set of known locations of stop signs in the images.

```
stopSigns = stopSignsAndCars(:,1:2);
```

Add the full path to the image files.

```
stopSigns.imageFilename = fullfile(toolboxdir('vision'),...
    'visiondata',stopSigns.imageFilename);
```

Train the ACF detector. You can turn off the training progress output by specifying 'Verbose', false as a Name, Value pair.

```
acfDetector = trainACFObjectDetector(stopSigns,'NegativeSamplesFactor',2);
ACF Object Detector Training
The training will take 4 stages. The model size is 34x31.
Sample positive examples(~100% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.
Stage 1:
Sample negative examples(~100% Completed)
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has }19\mathrm{ weak learners.
```


Stage 2:

```
Sample negative examples(~100\% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed. The trained classifier has 20 weak learners.
```


Stage 3:

```
Sample negative examples(~100\% Completed)
Found 84 new negative examples for training. Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 54 weak learners.
```


Stage 4:

```
Sample negative examples(~100\% Completed)
Found 84 new negative examples for training. Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 61 weak learners.
ACF object detector training is completed. Elapsed time is 85.1445 seconds.
```

Test the ACF detector on a test image.
img = imread('stopSignTest.jpg');
[bboxes,scores] = detect(acfDetector,img);
Display the detection results and insert the bounding boxes for objects into the image.

```
for i = 1:length(scores)
```

 annotation \(=\) sprintf('Confidence \(=\% .1 f^{\prime}\),scores(i));
 img = insertObjectAnnotation(img,'rectangle',bboxes(i,:),annotation);
 end
figure
imshow(img)

References

[1] Dollar, P., R. Appel, S. Belongie, and P. Perona. "Fast Feature Pyramids for Object
Detection." Pattern Analysis and Machine Intelligence, IEEE Transactions. Vol. 36, Issue 8, 2014, pp. 1532-1545.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
This function supports C/C++ code generation with the limitations:

- Supports code generation (requires MATLAB Coder) only in generic MATLAB Host Computer target platform.

See Also

Apps
Image Labeler | Video Labeler
\section*{Functions}
detectPeopleACF | groundTruth | trainACFObjectDetector| trainCascade0bjectDetector

Introduced in R2017a

rcnnObjectDetector

Detect objects using R-CNN deep learning detector

Description

The rcnnObjectDetector object detects objects from an image, using a R-CNN (regions with convolution neural networks) object detector. To detect objects in an image, pass the trained detector to the detect function. To classify image regions, pass the detector to the classifyRegions function.

Use of the rcnnObjectDetector requires Statistics and Machine Learning Toolbox ${ }^{\text {TM }}$ and Deep Learning Toolbox.

When using the detect or classifyRegions functions with rcnnObjectDetector, use of a CUDA ${ }^{\circledR}$ enabled NVIDIA ${ }^{\circledR}$ GPU with compute capability 3.0 or higher is highly recommended. The GPU reduces computation time significantly. Usage of the GPU requires Parallel Computing Toolbox.

Creation

Create a rcnnObjectDetector object by calling the trainRCNNObjectDetector function with training data (requires Deep Learning Toolbox).

```
detector = trainRCNNObjectDetector(trainingData,...)
```


Properties

Network - Series network object
 SeriesNetwork|DAGNetwork

Series network object representing the convolutional neural network (CNN), specified as an SeriesNetwork or DAGNetwork. The object is used within the R-CNN detector.

RegionProposalFcn - Custom region proposal
function handle

Custom region proposal function handle, specified as a function name. A custom function proposalFcn must have the following functional form:

```
[bboxes,scores] = proposalFcn(I)
```

The input argument I is an image. The function must return rectangular bounding boxes in an M-by- 4 array. Each row of bboxes contains a four-element vector, [x, y, width, height], that specifies the upper-left corner and size of a bounding box in pixels. The function must also return a score for each bounding box in an M-by-1 vector. Higher scores indicate that the bounding box is more likely to contain an object.

ClassNames - Object class names
 cell array

Object class names, specified as a cell array. The array contains the names of the object classes the R-CNN detector was trained to find.

BoxRegressionLayer - Bounding box regression layer

character vector

This property is read-only.
Bounding box regression layer name, specified as a character vector. This property is set during training using the BoxRegressionLayer argument of trainRCNNObjectDetector.

Object Functions

detect

Detect objects using R-CNN deep learning detector
classifyRegions Classify objects in image regions using R-CNN object detector

Examples

Train R-CNN Stop Sign Detector

Load training data and network layers.
load('rcnnStopSigns.mat', 'stopSigns', 'layers')
Add the image directory to the MATLAB path.

```
imDir = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata',...
    'stopSignImages');
addpath(imDir);
```

Set network training options to use mini-batch size of 32 to reduce GPU memory usage. Lower the InitialLearningRate to reduce the rate at which network parameters are changed. This is beneficial when fine-tuning a pre-trained network and prevents the network from changing too rapidly.

```
options = trainingOptions('sgdm', ...
    'MiniBatchSize', 32, ...
    'InitialLearnRate', le-6, ...
    'MaxEpochs', 10);
```

Train the R-CNN detector. Training can take a few minutes to complete.

```
rcnn = trainRCNNObjectDetector(stopSigns, layers, options, 'NegativeOverlapRange',

Training an R-CNN Object Detector for the following object classes:
```

* stopSign

```

Step 1 of 3: Extracting region proposals from 27 training images...done.
Step 2 of 3: Training a neural network to classify objects in training data...
\begin{tabular}{|c|c|c|c|c|c|}
\hline Epoch & Iteration & Time Elapsed (seconds) & Mini-batch Loss & Mini-batch Accuracy & Base Lear Rate \\
\hline 3 & 50 & 9.27 & 0.2895 & 96.88\% & 0.000 \\
\hline 5 & 100 & 14.77 & 0.2443 & 93.75\% & 0.000 \\
\hline 8 & 150 & 20.29 & 0.0013 & 100.00\% & 0.000 \\
\hline 10 & 200 & 25.94 & 0.1524 & 96.88\% & 0.000 \\
\hline
\end{tabular}

Network training complete.
Step 3 of 3: Training bounding box regression models for each object class...100.00\%.
R-CNN training complete.
*** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Test the R-CNN detector on a test image.
```

img = imread('stopSignTest.jpg');

```
[bbox, score, label] = detect(rcnn, img, 'MiniBatchSize', 32);
Display strongest detection result.
```

[score, idx] = max(score);
bbox = bbox(idx, :);
annotation = sprintf('%s: (Confidence = %f)', label(idx), score);

```
detectedImg = insertObjectAnnotation(img, 'rectangle', bbox, annotation);
figure
imshow(detectedImg)


Remove the image directory from the path.
```

rmpath(imDir);

```

\section*{Resume Training an R-CNN Object Detector}

Resume training an R-CNN object detector using additional data. To illustrate this procedure, half the ground truth data will be used to initially train the detector. Then, training is resumed using all the data.

Load training data and initialize training options.
```

load('rcnnStopSigns.mat', 'stopSigns', 'layers')
stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
stopSigns.imageFilename);
options = training0ptions('sgdm', ...
'MiniBatchSize', 32, ...
'InitialLearnRate', 1e-6, ...
'MaxEpochs', 10, ...
'Verbose', false);

```

Train the R-CNN detector with a portion of the ground truth.
```

rcnn = trainRCNNObjectDetector(stopSigns(1:10,:), layers, options, 'NegativeOverlapRan

```

Get the trained network layers from the detector. When you pass in an array of network layers to trainRCNNObjectDetector, they are used as-is to continue training.
```

network = rcnn.Network;
layers = network.Layers;

```

Resume training using all the training data.
```

rcnnFinal = trainRCNNObjectDetector(stopSigns, layers, options);

```

\section*{Create a network for multiclass R-CNN object detection}

Create an R-CNN object detector for two object classes: dogs and cats.
```

objectClasses = {'dogs','cats'};

```

The network must be able to classify both dogs, cats, and a "background" class in order to be trained using trainRCNNObjectDetector. In this example, a one is added to include the background.
```

numClassesPlusBackground = numel(objectClasses) + 1;

```

The final fully connected layer of a network defines the number of classes that the network can classify. Set the final fully connected layer to have an output size equal to the number of classes plus a background class.
```

layers = [...
imageInputLayer([[28 28 1])
convolution2dLayer(5,20)
fullyConnectedLayer(numClassesPlusBackground);
softmaxLayer()
classificationLayer()];

```

These network layers can now be used to train an R-CNN two-class object detector.

\section*{Use A Saved Network In R-CNN Object Detector}

Create an R-CNN object detector and set it up to use a saved network checkpoint. A network checkpoint is saved every epoch during network training when the trainingOptions 'CheckpointPath' parameter is set. Network checkpoints are useful in case your training session terminates unexpectedly.

Load the stop sign training data.
load('rcnnStopSigns.mat','stopSigns','layers')
Add full path to image files.
```

stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
stopSigns.imageFilename);

```

Set the 'CheckpointPath' using the training0ptions function.
```

checkpointLocation = tempdir;
options = trainingOptions('sgdm','Verbose',false, ...
'CheckpointPath',checkpointLocation);

```

Train the R-CNN object detector with a few images.
```

rcnn = trainRCNNObjectDetector(stopSigns(1:3,:),layers,options);

```

Load a saved network checkpoint.
```

wildcardFilePath = fullfile(checkpointLocation,'convnet_checkpoint__*.mat');
contents = dir(wildcardFilePath);

```

Load one of the checkpoint networks.
```

filepath = fullfile(contents(1).folder,contents(1).name);
checkpoint = load(filepath);
checkpoint.net

```

\section*{ans =}

SeriesNetwork with properties:
Layers: [15×1 nnet.cnn.layer.Layer]

Create a new R-CNN object detector and set it up to use the saved network.
rcnnCheckPoint = rcnnObjectDetector();
rcnnCheckPoint.RegionProposalFcn = @rcnnObjectDetector.proposeRegions;
Set the Network to the saved network checkpoint.
rcnnCheckPoint.Network = checkpoint.net
rcnnCheckPoint \(=\)
rcnnObjectDetector with properties:
Network: [1×1 SeriesNetwork]
ClassNames: \{'stopSign' 'Background'\}

RegionProposalFcn: @rcnnObjectDetector.proposeRegions

\section*{See Also}

\author{
Apps \\ Image Labeler | Video Labeler
}

\section*{Functions}

SeriesNetwork|fastRCNNObjectDetector|fasterRCNNObjectDetector | selectStrongestBboxMulticlass|trainNetwork|trainRCNNObjectDetector| vision.CascadeObjectDetector

\section*{Topics}
"Image Category Classification Using Deep Learning"
"Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN"

\section*{Introduced in R2016b}

\section*{bagOfFeatures}

Bag of visual words object

\section*{Description}

Manage your image collections and partition them into training and validation sets. You can construct a bag of visual words for use in image category classification. The training and classification includes support for Parallel Computing Toolbox.

\section*{Creation}

\section*{Syntax}
```

bag = bag0fFeatures(imds)
bag = bagOfFeatures(imds,'CustomExtractor',extractorFcn)
bag = bagOfFeatures(imds,Name,Value)

```

\section*{Description}
bag = bag0fFeatures(imds) returns a bag of features object. The bag output object is generated using samples from the imds input. By default, the visual vocabulary is created from SURF features extracted from images in imds.
bag = bag0fFeatures(imds,'CustomExtractor',extractorFcn) returns a bag of features that uses a custom feature extractor function to extract features from images in imds. extractorFcn is a function handle to a custom feature extraction function.
bag = bag0fFeatures(imds,Name, Value) sets properties using one or more namevalue pairs. Enclose each property name in quotes. For example, bag = bagOfFeatures('Verbose',true)

This object supports parallel computing using multiple MATLAB workers. Enable parallel computing from the "Computer Vision Toolbox Preferences" dialog box. To open

Computer Vision Toolbox preferences, on the Home tab, in the Environment section, click Preferences. Then select Computer Vision Toolbox.

\section*{Input Arguments}

\section*{imds - Images}

ImageDatastore object
Images, specified as an ImageDatastore object. The bag0fFeatures extracts an equal number of strongest features from the images contained in the imds object.
number of strongest features \(=\min (\) number of features found in each set) x StrongestFraction

The object obtains the StrongestFraction value from the 'StrongestFeatures ' property.

\section*{extractorFcn - Custom feature extractor function}
function handle
Custom feature extractor function, specified the comma-separated pair consisting of 'CustomExtractor' and a function handle. This custom function extracts features from the output bagOfFeatures object to learn the visual vocabulary of the object.

The function, extractorFcn, must be specified as a function handle for a file:
extractorFcn = @exampleBagOfFeaturesExtractor;
bag = bagOfFeatures(imds,'CustomExtractor',extractorFcn)
where exampleBag0fFeaturesExtractor is a MATLAB function. For example:
function [features,featureMetrics] = exampleBagOfFeaturesExtractor(img)
...
The function must be on the path or in the current working directory.
For more details on the custom extractor function and its input and output requirements, see "Create a Custom Feature Extractor".

You can open an example function file, and use it as a template by typing the following command at the MATLAB command-line:
```

edit('exampleBagOfFeaturesExtractor.m')

```

\section*{Properties}

\section*{CustomExtractor - Custom extraction function}
function handle
Custom feature extractor function, specified as a handle to a function. The custom feature extractor function extracts features used to learn the visual vocabulary for bagOfFeatures. You must specify 'CustomExtractor' and the function handle, extractorFcn, to a custom feature extraction function.

The function, extractorFcn, must be specified as a function handle for a file:
```

extractorFcn = @exampleBagOfFeaturesExtractor;
bag = bagOfFeatures(imds,'CustomExtractor',extractorFcn)

```
where exampleBagOfFeaturesExtractor is a MATLAB function such as:
```

function [features,featureMetrics] = exampleBagOfFeaturesExtractor(img)

```
...
The function must be on the path or in the current working directory.
For more details on the custom extractor function and it's input and output requirements, see "Create a Custom Feature Extractor". You can open an example function file, and use it as a template by typing the following command at the MATLAB command-line:
```

edit('exampleBagOfFeaturesExtractor.m')

```

\section*{VocabularySize - Number of visual words}

500 (default) | integer scalar
Number of visual words to include in the bagOfFeatures object, specified as the comma-separated pair consisting of 'VocabularySize' and an integer scalar in the range [2, inf]. The VocabularySize value corresponds to \(K\) in the K-means clustering (Statistics and Machine Learning Toolbox) algorithm used to quantize features into the visual vocabulary.

\section*{StrongestFeatures - Fraction of strongest features \\ 0.8 (default)| [0,1]}

Fraction of strongest features, specified as the comma-separated pair consisting of 'StrongestFeatures' and a value in the range [0,1]. The value represents the fraction of strongest features to use from each label in the imds input.

\section*{Verbose - Enable progress display to screen true (default) | false}

Enable progress display to screen, specified as the comma-separated pair consisting of 'Verbose' and the logical true or false.

\section*{PointSelection - Selection method for picking point locations 'Grid' (default)|'Detector'}

Selection method for picking point locations for SURF feature extraction, specified as the comma-separated pair consisting of 'PointSelection' and either 'Grid ' or 'Detector'. There are two stages for feature extraction. First, you select a method for picking the point locations, (SURF 'Detector' or 'Grid'), with the PointSelection property. The second stage extracts the features. The feature extraction uses a SURF extractor for both point selection methods.

When you set PointSelection to 'Detector', the feature points are selected using a speeded up robust feature (SURF) detector. Otherwise, the points are picked on a predefined grid with spacing defined by 'GridStep'. This property applies only when you are not specifying a custom extractor with the CustomExtractor property.

\section*{GridStep - Grid step size}
[8 8] (default) | 1-by-2 [x y] vector
Grid step size in pixels, specified as the comma-separated pair consisting of 'GridStep' and an 1-by-2 [xy] vector. This property applies only when you set PointSelection to 'Grid' and you are not specifying a custom extractor with the CustomExtractor property. The steps in the \(x\) and \(y\) directions define the spacing of a uniform grid. Intersections of the grid lines define locations for feature extraction.

\section*{BlockWidth - Patch size to extract upright SURF descriptor}

\section*{[32 6496 128] (default) | 1 -by- \(N\) vector}

Patch size to extract upright SURF descriptor, specified as the comma-separated pair consisting of 'BlockWidth' and a 1-by- \(N\) vector of \(N\) block widths. This property applies only when you are not specifying a custom extractor with the CustomExtractor property. Each element of the vector corresponds to the size of a square block from which the function extracts upright SURF descriptors. Use multiple square sizes to extract multiscale features. All the square specified are used for each extraction points on the grid. This property only applies when you set PointSelection to 'Grid '. The block width corresponds to the scale of the feature. The minimum BlockWidth is 32 pixels.


\section*{Upright - Orientation of SURF feature vector true (default) | logical scalar}

Orientation of SURF feature vector, specified as the comma-separated pair consisting of 'Upright' and a logical scalar. This property applies only when you are not specifying a custom extractor with the CustomExtractor property. Set this property to true when you do not need to estimate the orientation of the SURF feature vectors. Set it to false when you need the image descriptors to capture rotation information.

\section*{Object Functions}
encode Create histogram of visual word occurrences

\section*{Examples}

\section*{Create a Bag of Visual Words}

Load two image sets.
```

setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imgSets = imageSet(setDir,'recursive');

```

Pick the first two images from each image set to create training sets.
```

trainingSets = partition(imgSets,2);

```

Create the bag of features. This process can take a few minutes.
```

bag = bagOfFeatures(trainingSets,'Verbose',false);

```

Compute histogram of visual word occurrences for one of the images. Store the histogram as feature vector.
```

img = read(imgSets(1),1);
featureVector = encode(bag,img);

```

\section*{Create a Bag of Features with a Custom Feature Extractor}

Load an image set.
```

setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',...
'foldernames');

```

Specify a custom feature extractor.
```

extractor = @exampleBagOfFeaturesExtractor;
bag = bagOfFeatures(imds,'CustomExtractor',extractor)
Creating Bag-Of-Features.

* Image category 1: books
* Image category 2: cups
* Extracting features using a custom feature extraction function: exampleBagOfFeatures
* Extracting features from 12 images...done. Extracted 230400 features.
* Keeping 80 percent of the strongest features from each category.
* Using K-Means clustering to create a 500 word visual vocabulary.
* Number of features : }18432
* Number of clusters (K) : 500
* Initializing cluster centers...100.00%.
* Clustering...completed 26/100 iterations (~0.56 seconds/iteration)...converged in 26
* Finished creating Bag-Of-Features
bag =
bagOfFeatures with properties:

```
            CustomExtractor: @exampleBagOfFeaturesExtractor

\section*{Extended Capabilities}

\section*{Automatic Parallel Support}

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox \({ }^{\mathrm{TM}}\).

To run in parallel, set 'UseParallel' to true or enable this by default using the Computer Vision Toolbox preferences.

For more information, see "Parallel Computing Toolbox Support".

\section*{See Also}
imageCategoryClassifier|imageDatastore|trainImageCategoryClassifier

\section*{Topics}
"Image Category Classification Using Bag of Features"
"Image Classification with Bag of Visual Words"
"Create a Custom Feature Extractor"

Introduced in R2014b

\section*{encode}

Create histogram of visual word occurrences

\section*{Syntax}
```

featureVector = encode(bag,I)
[featureVector,words] = encode(bag,I)
featureVector= encode(bag,imds)
[featureVector,words] = encode(bag,imds)

```
[___] = encode( __ , Name, Value)

\section*{Description}
featureVector \(=\) encode(bag, I) returns a feature vector that represents a histogram of visual word occurrences contained in the input image, I. The input bag contains the bag0fFeatures object.
[featureVector,words] = encode(bag,I) optionally returns the visual words as a visualWords object. The visualWords object stores the visual words that occur in I and stores the locations of those words.
featureVector= encode(bag,imds) returns a feature vector that represents a histogram of visual word occurrences contained in imds. The input bag contains the bag0fFeatures object.
[featureVector,words] = encode(bag,imds) optionally returns an array of visualWords occurrences in imds. The visualWords object stores the visual words that occur in I and stores the locations of those words.
[ ___ ] = encode( \(\qquad\) ,Name, Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, encode('Sparse0utput',false)

This method supports parallel computing using multiple MATLAB workers. Enable parallel computing from the "Computer Vision Toolbox Preferences" dialog box. To open

Computer Vision Toolbox preferences, on the Home tab, in the Environment section, click Preferences. Then select .

\section*{Examples}

\section*{Encode an Image into a Feature Vector}

Load a set of image.
```

setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',...
'foldernames');

```

Pick the first two images from each label.
```

trainingSet = splitEachLabel(imds,2);

```

Create bag of features.
```

bag = bagOfFeatures(trainingSet);
Creating Bag-Of-Features.

* Image category 1: books
* Image category 2: cups
* Selecting feature point locations using the Grid method.
* Extracting SURF features from the selected feature point locations.
** The GridStep is [8 8] and the BlockWidth is [32 64 96 128].

```
* Extracting features from 4 images...done. Extracted 76800 features.
* Keeping 80 percent of the strongest features from each category.
* Using K-Means clustering to create a 500 word visual vocabulary.
* Number of features : 61440
* Number of clusters (K) : 500
* Initializing cluster centers...100.00\%.
* Clustering...completed 24/100 iterations (~0.24 seconds/iteration)...converged in 24
* Finished creating Bag-Of-Features

Encode one of the images into a feature vector.
```

img = readimage(trainingSet,1);
featureVector = encode(bag,img);

```

\section*{Input Arguments}

\section*{bag - Bag of features}
bagOfFeatures object
Bag of features, specified as a bag0fFeatures object.

\section*{I - Input image}
grayscale image | truecolor image
Input image, I, specified as a grayscale or truecolor image.
```

imds - Images
ImageDatastore object

```

Images, specified as an ImageDatastore object.

\section*{Name-Value Pair Arguments}

Example: 'SparseOutput',false

\section*{Normalization - Type of normalization}

\section*{'L2' (default)|'none'}

Type of normalization applied to the feature vector, specified as the comma-separated pair consisting of 'Normalization' and either 'L2' or 'none'.

\section*{SparseOutput - Output sparsity}

\section*{false (default) |true}

Output sparsity, specified as the comma-separated pair consisting of 'Sparse0utput' and as true or false. Set this property to true to return the visual word histograms in a sparse matrix. Setting this property to true reduces memory consumption for large visual vocabularies where the visual word histograms contain many zero elements.

\section*{Verbose - Enable progress display to screen \\ true (default) | false}

Enable progress display to screen, specified as the comma-separated pair consisting of 'Verbose' and the logical true or false.

\section*{Output Arguments}
featureVector - Histogram of visual word occurrences
1-by-bag. VocabularySize | M-by-bag. VocabularySize
Histogram of visual word occurrences, specified as \(M\)-by-bag. VocabularySize vector, where \(M\) is the total number of images in imds, numel (imds. Files).

\section*{words - Visual words object}
visualWords object
Visual words object, returned as a visual words object or an array of visual words objects. The visualWords object stores the visual words that occur in the images and stores the locations of those words.

\section*{Extended Capabilities}

\section*{Automatic Parallel Support}

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox \({ }^{\mathrm{TM}}\).

To run in parallel, set 'UseParallel' to true or enable this by default using the Computer Vision Toolbox preferences.

For more information, see "Parallel Computing Toolbox Support".

\author{
See Also \\ bagOffeatures \\ Introduced in R2014b
}

\section*{imageCategoryClassifier}

Predict image category

\section*{Description}

The imageCategoryClassifier object contains a linear support vector machine (SVM) classifier trained to recognize an image category.

You must have a Statistics and Machine Learning Toolbox license to use this classifier. This classifier supports parallel computing using multiple MATLAB workers. Enable parallel computing using the "Computer Vision Toolbox Preferences" dialog. To open the Computer Vision Toolbox preferences, on the Home tab, in the Environment section, click Preferences. Select Computer Vision System Toolbox.

\section*{Creation}

Use the trainImageCategoryClassifier function to create the imageCategoryClassifier object.
bag = bagOfFeatures(trainingSet);
categoryClassifier = trainImageCategoryClassifier(trainingSet,bag);

\section*{Properties}

\section*{Labels - Category labels \\ cell array}

Category labels, specified as a cell array.

\section*{NumCategories - Number of trained categories}
integer
Number of trained categories, stored as an integer value.

\section*{Object Functions}
evaluate Evaluate image classifier on collection of image sets predict Predict image category

\section*{Examples}

\section*{Train, Evaluate, and Apply Image Category Classifier}

Load two image categories.
```

setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',...
foldernames');

```

Split the data set into a training and test data. Pick 30\% of images from each set for the training data and the remainder \(70 \%\) for the test data.
```

[trainingSet,testSet] = splitEachLabel(imds,0.3,'randomize');

```

Create bag of visual words.
```

bag = bagOfFeatures(trainingSet);
Creating Bag-Of-Features.

* Image category 1: books
* Image category 2: cups
* Selecting feature point locations using the Grid method.
* Extracting SURF features from the selected feature point locations.
** The GridStep is [8 8] and the BlockWidth is [32 64 96 128].
* Extracting features from 4 images...done. Extracted 76800 features.
* Keeping 80 percent of the strongest features from each category.
* Using K-Means clustering to create a 500 word visual vocabulary.
* Number of features : 61440
* Number of clusters (K) : 500
* Initializing cluster centers...100.00%.
* Clustering...completed 20/100 iterations (~0.27 seconds/iteration)...converged in 20

```
```

* Finished creating Bag-Of-Features

```

Train a classifier with the training sets.
```

categoryClassifier = trainImageCategoryClassifier(trainingSet,bag);

```
Training an image category classifier for 2 categories.
* Category 1: books
* Category 2: cups
* Encoding features for 4 images...done.
* Finished training the category classifier. Use evaluate to test the classifier on a

Evaluate the classifier using test images. Display the confusion matrix.
```

confMatrix = evaluate(categoryClassifier,testSet)

```
Evaluating image category classifier for 2 categories.
* Category 1: books
* Category 2: cups
* Evaluating 8 images...done.
* Finished evaluating all the test sets.
* The confusion matrix for this test set is:

\begin{tabular}{ll}
0.7500 & 0.2500 \\
0.2500 & 0.7500
\end{tabular}

Find the average accuracy of the classification.
```

mean(diag(confMatrix))
ans = 0.7500

```

Apply the newly trained classifier to categorize new images.
```

img = imread(fullfile(setDir,'cups','bigMug.jpg'));
[labelIdx, score] = predict(categoryClassifier,img);

```

Display the classification label.
```

categoryClassifier.Labels(labelIdx)
ans = 1xl cell array
{'cups'}

```

\section*{References}
[1] Csurka, G., C. R. Dance, L. Fan, J. Willamowski, and C. Bray Visual Categorization with Bag of Keypoints, Workshop on Statistical Learning in Computer Vision, ECCV 1 (1-22), 1-2.

\section*{Extended Capabilities}

\section*{Automatic Parallel Support}

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox \({ }^{\mathrm{TM}}\).

To run in parallel, set 'UseParallel' to true or enable this by default using the Computer Vision Toolbox preferences.

For more information, see "Parallel Computing Toolbox Support".

\section*{See Also \\ bagOfFeatures|fitcecoc|imageDatastore|trainImageCategoryClassifier \\ Topics \\ "Image Category Classification Using Bag of Features" "Image Classification with Bag of Visual Words" \\ Introduced in R2014b}

\section*{predict}

Predict image category

\section*{Syntax}
```

[labelIdx,score] = predict(categoryClassifier,I)
[labelIdx,score] = predict(categoryClassifier,imds)
[labelIdx,score] = predict(___,'Verbose',true)

```

\section*{Description}
[labelIdx,score] = predict(categoryClassifier,I) returns the predicted label index and score for the input image.
predict supports parallel computing using multiple MATLAB workers. Enable parallel computing using the "Computer Vision Toolbox Preferences" dialog. To open Computer Vision Toolbox preferences, on the Home tab, in the Environment section, click Preferences. Select Computer Vision Toolbox.
[labelIdx,score] = predict(categoryClassifier,imds) returns the predicted label index and score for the images specified in imds.
[labelIdx,score] = predict( ___,'Verbose',true) also enables progress display to the screen. Set to false to turn it off.

\section*{Examples}

\section*{Predict Category for Image}

Load two image category sets.
```

setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',...
'foldernames');

```

Separate the two sets into training and test data. Pick 30\% of images from each set for the training data and the remainder \(70 \%\) for the test data.
[trainingSet,testSet] = splitEachLabel(imds,0.3,'randomize');
Create a bag of visual words.
```

bag = bagOfFeatures(trainingSet);

```

Creating Bag-Of-Features.
* Image category 1: books
* Image category 2: cups
* Selecting feature point locations using the Grid method.
* Extracting SURF features from the selected feature point locations. ** The GridStep is [8 8] and the BlockWidth is [32 6496 128].
* Extracting features from 4 images...done. Extracted 76800 features.
* Keeping 80 percent of the strongest features from each category.
```

* Using K-Means clustering to create a 500 word visual vocabulary.

```
* Number of features : 61440
* Number of clusters (K) : 500
* Initializing cluster centers...100.00\%.
* Clustering...completed 20/100 iterations (~0.29 seconds/iteration)...converged in 20
* Finished creating Bag-Of-Features

Train a classifier.
```

categoryClassifier = trainImageCategoryClassifier(trainingSet,bag);

```
```

Training an image category classifier for 2 categories.

```
* Category 1: books
* Category 2: cups
* Encoding features for 4 images...done.
* Finished training the category classifier. Use evaluate to test the classifier on a
Predict category label for one of the images in test set.
```

img = readimage(testSet,1);
[labelIdx, score] = predict(categoryClassifier,img);
categoryClassifier.Labels(labelIdx)
ans = 1x1 cell array
{'books'}

```

\section*{Input Arguments}

\section*{I - Input image}
\(M\)-by- \(N\)-by-3 truecolor image | \(M\)-by- \(N\) 2-D grayscale image
Input image, specified as either an \(M\)-by- \(N\)-by-3 truecolor image or an \(M\)-by- \(N\) 2-D grayscale image.

\section*{categoryClassifier - Image category classifier}
imageCategoryClassifier object
Image category classifier, specified as an imageCategoryClassifier object.

\section*{imds - Images}

ImageDatastore object
Images, specified as an ImageDatastore object.

\section*{Output Arguments}

\section*{labelIdx - Predicted label index}

M-by-1 vector | scalar
Predicted label index, returned as either an \(M\)-by- 1 vector for \(M\) images or a scalar value for a single image. The label Idx output value corresponds to the index of an image set used to train the bag of features. The prediction index corresponds to the class with the lowest average binary loss of the ECOC SVM classifier.

\section*{score - Prediction score}

1-by- \(N\) vector | \(M\)-by- \(N\) matrix

Prediction score, specified as a 1-by- \(N\) vector or an \(M\)-by- \(N\) matrix. \(N\) represents the number of classes. \(M\) represents the number of images in the imageSet input object, imgSet. The score provides a negated average binary loss per class. Each class is a support vector machine (SVM) multiclass classifier that uses the error-correcting output codes (ECOC) approach.

\section*{Extended Capabilities}

\section*{Automatic Parallel Support}

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox \({ }^{\mathrm{TM}}\).

To run in parallel, set 'UseParallel' to true or enable this by default using the Computer Vision Toolbox preferences.

For more information, see "Parallel Computing Toolbox Support".

\section*{See Also}
evaluate |imageCategoryClassifier
Introduced in R2014b

\section*{evaluate}

Evaluate image classifier on collection of image sets

\section*{Syntax}
```

confMat = evaluate(categoryClassifier,imds)

```
[confMat,knownLabelIdx,predictedLabelIdx,score] = evaluate(
categoryClassifier,imds)

\section*{Description}
confMat = evaluate(categoryClassifier,imds) returns a normalized confusion matrix, confMat.
[confMat,knownLabelIdx,predictedLabelIdx,score] = evaluate( categoryClassifier,imds) additionally returns the corresponding label indexes and score.

\section*{Examples}

\section*{Train, Evaluate, and Apply Image Category Classifier}

Load two image categories.
```

setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',...
'foldernames');

```

Split the data set into a training and test data. Pick 30\% of images from each set for the training data and the remainder \(70 \%\) for the test data.
[trainingSet,testSet] = splitEachLabel(imds,0.3,'randomize');
Create bag of visual words.
```

bag = bag0fFeatures(trainingSet);
Creating Bag-Of-Features.

* Image category 1: books
* Image category 2: cups
* Selecting feature point locations using the Grid method.
* Extracting SURF features from the selected feature point locations.
** The GridStep is [8 8] and the BlockWidth is [32 64 96 128].
* Extracting features from 4 images...done. Extracted 76800 features.
* Keeping 80 percent of the strongest features from each category.
* Using K-Means clustering to create a }500\mathrm{ word visual vocabulary.
* Number of features : 61440
* Number of clusters (K) : 500
* Initializing cluster centers...100.00%.
* Clustering...completed 20/100 iterations (~0.27 seconds/iteration)...converged in 20
* Finished creating Bag-Of-Features

```

Train a classifier with the training sets.
```

categoryClassifier = trainImageCategoryClassifier(trainingSet,bag);

```
Training an image category classifier for 2 categories.
* Category 1: books
* Category 2: cups
* Encoding features for 4 images...done.
* Finished training the category classifier. Use evaluate to test the classifier on a
Evaluate the classifier using test images. Display the confusion matrix.
confMatrix = evaluate(categoryClassifier,testSet)
Evaluating image category classifier for 2 categories.
* Category 1: books
* Category 2: cups
```

* Evaluating 8 images...done.
* Finished evaluating all the test sets.
* The confusion matrix for this test set is:
PREDICTED
KNOWN | books cups
books | 0.75 0.25
cups | 0.25 0.75
* Average Accuracy is 0.75.
confMatrix = 2×2
0.7500 0.2500
0.2500 0.7500

```

Find the average accuracy of the classification.
mean(diag(confMatrix))
ans \(=0.7500\)

Apply the newly trained classifier to categorize new images.
```

img = imread(fullfile(setDir,'cups','bigMug.jpg'));
[labelIdx, score] = predict(categoryClassifier,img);

```

Display the classification label.
```

categoryClassifier.Labels(labelIdx)
ans = lx1 cell array
{'cups'}

```

\section*{Input Arguments}

\section*{imds - Data store object of images}

ImageDatastore object
Images, specified in an ImageDatastore object.

\section*{categoryClassifier - Image category classifier}
imageCategoryClassifier object
Image category classifier, specified as an imageCategoryClassifier object.

\section*{Output Arguments}

\section*{confMat - Confusion matrix}
matrix
Confusion matrix, returned as a matrix. The row indices correspond to known labels and the columns correspond to the predicted labels.

\section*{knownLabelIdx - Label index for image set}

M-by-1 vector | scalar
Label index for image set, returned as an \(M\)-by- 1 vector for \(M\) images. The knownLabelIdx output value corresponds to the index of an image set used to train the bag of features.

\section*{predictedLabelIdx - Predicted label index}

M-by-1 vector
Predicted label index, returned as an \(M\)-by- 1 vector for \(M\) images. The predictedLabelIdx output value corresponds to the index of an image set used to train the bag of features. The predicted index corresponds to the class with the largest value in the score output.

\section*{score - Prediction score}
\(M\)-by- \(N\) matrix
Prediction score, specified as an \(M\)-by- \(N\) matrix. \(N\) represents the number of classes. \(M\) represents the number of images in the imageSet input object, imgSet. The score
provides a negated average binary loss per class. Each class is a support vector machine (SVM) multiclass classifier that uses the error-correcting output codes (ECOC) approach.

\author{
See Also \\ imageCategoryClassifier|predict \\ Introduced in R2014b
}

\section*{intrinsicsEstimationErrors class}

Object for storing standard errors of estimated camera intrinsics and distortion coefficients

\section*{Syntax}
intrinsicsEstimationErrors

\section*{Description}
intrinsicsEstimationErrors contains the standard errors of estimated camera intrinsics and distortion coefficients. You can access the intrinsics and distortion standard errors using the object properties.

\section*{Properties}

\section*{SkewError}

Standard error of camera axes skew estimate

\section*{FocalLengthError}

Standard error of focal length estimate
PrincipalPointError
Standard error of principal point estimate

\section*{RadialDistortionError}

Standard error of radial distortion estimate

\section*{TangentialDistortionError}

Standard error of tangential distortion estimate

\author{
See Also \\ \section*{Topics} \\ "Single Camera Calibrator App" \\ Introduced in R2013b
}

Camera Calibrator | Stereo Camera Calibrator | cameraCalibrationErrors | extrinsicsEstimationErrors|stereoCalibrationErrors

\section*{extrinsicsEstimationErrors class}

Object for storing standard errors of estimated camera extrinsics

\section*{Syntax}
extrinsicsEstimationErrors

\section*{Description}
extrinsicsEstimationErrors contains the standard errors of estimated camera extrinsics. You can access the extrinsics standard errors using the object properties.

\section*{Properties}

\section*{RotationVectorsError}

Standard error of camera rotations estimate

\section*{TranslationVectorsError}

Standard error of camera translations estimate

\author{
See Also \\ Camera Calibrator | Stereo Camera Calibrator | cameraCalibrationErrors | intrinsicsEstimationErrors|stereoCalibrationErrors
}

\section*{Topics}
"Single Camera Calibrator App"

Introduced in R2013b

\section*{BRISKPoints}

Object for storing BRISK interest points

\section*{Description}

This object provides the ability to pass data between the detectBRISKFeatures and extractFeatures functions. You can also use it to manipulate and plot the data returned by these functions. You can use the object to fill the points interactively in situations where you might want to mix a non-BRISK interest point detector with a BRISK descriptor.

\section*{Creation}

\section*{Syntax}
```

points = BRISKPoints(Location)
points = BRISKPoints(Location,Name,Value)

```

\section*{Description}
points \(=\) BRISKPoints(Location) constructs a BRISKPoints object from an M-by-2 array of [x y] point coordinates, Location.
points \(=\) BRISKPoints(Location,Name, Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, points = BRISKPoints('Metric',0.0)

\section*{Input Arguments}

\section*{Location - Point locations}

M-by-2 array (default)
Point locations, specified as an M-by-2 array of [xy] point coordinates.

\section*{Properties}

\section*{Count - Number of points}

0 (default) | integer
Number of points held by the BRISK object, specified as a numeric value.

\section*{Location - Point locations}

M-by-2 array (default)
Point locations, specified as an \(M\)-by-2 array of [x y] point coordinates.

\section*{Scale - Scale}
12.0 (default) | scalar

Scale at which the feature is detected, specified as a value greater than or equal to 1.6.

\section*{Metric - Strength of detected feature}

\section*{0.0 (default) | numeric scalar}

Strength of detected feature, specified as a numeric value. The BRISK algorithm uses a determinant of an approximated Hessian.

\section*{Orientation - Orientation \\ 0.0 (default) | angle in radians}

Orientation of the detected feature, specified as an angle, in radians. The angle is measured counterclockwise from the X-axis with the origin specified by the Location property. Do not set this property manually. Use the call to extractFeatures to fill in this value. The extractFeatures function modifies the default value of 0.0. Using BRISK interest points to extract a non-BRISK descriptor, (e.g. SURF, FREAK, MSER, etc.), can alter Orientation values. The Orientation is mainly useful for visualization purposes.

\section*{Object Functions}
\begin{tabular}{ll} 
plot & Plot points \\
isempty & Determine if points object is empty \\
length & Number of stored points \\
selectStrongest & Select points with strongest metrics
\end{tabular}
\begin{tabular}{ll} 
size & Return the size of a points object \\
selectUniform & Select uniformly distributed subset of feature points
\end{tabular}

\section*{Examples}

\section*{Detect BRISK Features in an Image}

Read an image and detect the BRISK interest points.
I = imread('cameraman.tif');
points = detectBRISKFeatures(I);
location = [100:228;100:228]';
points \(=\) BRISKPoints(location);
Select and plot the 10 strongest interest points.
```

strongest = points.selectStrongest(10);
imshow(I); hold on;
plot(strongest);

```


Display the [x y] coordinates.
```

 strongest.Location
 ans = 10x2 single matrix

```
100100
        101101
        102102
        103103
        104104
        105105
        106106
        107107
        108108
        109109

\section*{Tips}

Although BRISKPoints can hold many points, it is a scalar object. Therefore, numel(BRISKPoints) always returns 1 . This value can differ from
length(BRISKPoints), which returns the true number of points held by the object.

\section*{References}
[1] Leutenegger, S., M. Chli, and R. Siegwart. BRISK: Binary Robust Invariant Scalable Keypoints, Proceedings of the IEEE International Conference on Computer Vision (ICCV) 2011.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
Usage notes and limitations:
- To index locations with this object, use the syntax: points. Location(idx, :), for points object. See visionRecovertformCodeGeneration kernel.m, which is used in the "Introduction to Code Generation with Feature Matching and Registration" example.

\section*{See Also}

KAZEPoints |MSERRegions | ORBPoints | SURFPoints | cornerPoints | detectBRISKFeatures | detectFASTFeatures | detectHarrisFeatures | detectMSERFeatures | detectMinEigenFeatures | detectORBFeatures | detectSURFFeatures|extractFeatures|matchFeatures

Introduced in R2014a

\section*{imageSet class}

Define collection of images

\section*{Syntax}
```

imgSet = imageSet(imageLocation)
imgSetVector = imageSet(imgFolder,'recursive')

```

\section*{Construction}
imgSet = imageSet(imageLocation) returns an object for storing an image data set or a collection of image data sets. You can use this object to manage your image data. The object contains image descriptions, locations of images, and the number of images in your collection.
imgSetVector = imageSet(imgFolder,'recursive') returns a vector of image sets found through a recursive search starting from imgFolder. The imgSetVector output is a 1-by-NumFolders vector, where NumFolders is the number of folders that contain at least one image.

\section*{Input Arguments}

\section*{imageLocation - Image file location \\ character vector | cell array}

Image file location, specified as a character vector or a cell array. The vector must specify the folder name that contains the images. The image files name extensions must be supported by imread. The cell array must contain image locations.

\section*{Example 2.1. Image file location}
\{'imagePath1','imagePath2', ..., 'imagePathX'\}, where each imagePath represents the path to an each image.

\section*{imgFolder - Start recursive image search folder character vector}

Start recursive image search folder, specified as a character vector. The function searches the folder structure recursively, starting from imgFolder.

\section*{Properties}

\section*{Description - Information about the image set}
character vector
Information about the image set, specified as a character vector. When you create an image set by recursively searching folders or by specifying a single folder location, the Description property is set to the folder name. When you specify individual image files, the Description property is not set. You can set the property manually.

\section*{Data Types: char}

\section*{Count - Number of images in image set integer}

Number of images in image set.
Data Types: double | single

\section*{ImageLocation - Image locations}
cell array of character vectors
Image locations, given as a cell array of character vectors.

\section*{Data Types: cell}

\section*{Methods}
\begin{tabular}{ll} 
partition & Divide image set into subsets \\
read & Read image at specified index \\
select & Select subset of images from image set
\end{tabular}

\title{
Common to All System Objects \\ release Allow System object property value changes
}

\section*{Examples}

\section*{Create an Image Set From a Folder of Images}

Read the folder of images.
imgFolder = fullfile(toolboxdir('vision'),'visiondata','stopSignImages');
imgSet = imageSet(imgFolder);
Display the first image in the image set collection.
imshow(read(imgSet,1));


\section*{Create an Array of Image Sets from Multiple Folders}

Identify the path to the image sets.
imgFolder = fullfile(matlabroot, 'toolbox','vision',...
```

 'visiondata','imageSets');
    ```

Recursively scan the entire image set folder.
```

imgSets = imageSet(imgFolder,'recursive')

```
imgSets=1×2 object
1x2 imageSet array with properties:
Description
ImageLocation
Count

Display the names of the scanned folders.
```

{imgSets.Description}

```
ans \(=1 \times 2\) cell array
    \{'books'\} \{'cups'\}

Display 2nd image from the 'cups' folder.
imshow(read(imgSets(2),2));


\section*{Create an Image Set by Specifying Individual Images \\ Specify individual images.}

As an alternative to the method below, you can pick the files manually using imgetfile: imgFiles = imgetfile('MultiSelect',true);
imgFiles = \{ fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages','ima fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages','ima؛

\section*{Create image set.}
imgSet = imageSet(imgFiles);

\section*{See Also}
bagOfFeatures|imageCategoryClassifier|imgetfile| trainImageCategoryClassifier

\section*{Topics}
"Image Category Classification Using Bag of Features"

\section*{Introduced in R2014b}

\section*{partition}

Class: imageSet
Divide image set into subsets

\section*{Syntax}
```

[set1,set2,...,setN] = partition(imgSet,groupSizes)
[set1,set2,...,setN] = partition(imgSet,groupPercentages)
[set1,set2,...,setN] = partition(

```
\(\qquad\)
``` , method)
```


## Description

[set1,set2,...,setN] = partition(imgSet,groupSizes) partitions the input image set, imgSet, into the collection of subsets specified in groupSizes.
[set1,set2,...,setN] = partition(imgSet,groupPercentages) returns the partitioned image sets in terms of percentages.
[set1,set2,...,setN] = partition( __ , method) additionally specifies a method, 'sequential' or 'randomized'.

## Input Arguments

## imgSet - Image set <br> array of imageSet objects

Image set, specified as an array of imageSet objects.

## groupSizes - Group size

scalar
Group size of images, specified as a scalar. The number of output arguments must be between 1 and length(groupSizes) +1 .

## Example 2.2. Example

If you set groupSizes to [20 60], the method returns 20 images in set1, 60 images in set2, and the remainder of images in set3.

## groupPercentages - Group size percentage

scalar
Group size of images by percentage.

## Example 2.3. Example

If you set groupPercentages to [0.1 0.5], the method returns $10 \%$ of images in set1, $50 \%$ in set 2 , and the remainder in set 3 .

method - Image selection method<br>'sequential' (default)|'randomized'

Image selection method, specified as either method or ' randomized '. When you set method to ' randomized ' the images are randomly selected to form the new sets. When you set method to 'sequential' the images are selected sequentially.

## Examples

## Partition Image Set

Create an image set.

```
imgFolder = fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages');
imgSet = imageSet(imgFolder);
```

Divide the set into two groups: one with five images and the other with the remainder of the images from imgSet.
[setA1, setA2] = partition(imgSet,5);
Randomly partition the set into three groups: one with $\mathbf{2 0 \%}$ of the images, the second group with $\mathbf{3 0 \%}$, and the third group with $\mathbf{5 0 \%}$.

```
[setB1, setB2, setB3] = partition(imgSet, [0.2, 0.3],'randomized');
```


## read

Class: imageSet
Read image at specified index

## Syntax

image $=$ read(imgSet,idx)

## Description

image $=$ read(imgSet,idx) returns an image from the imgSet image set, located at the index idx.

## Input Arguments

imgSet - Image set
array of imageSet objects
Image set, specified as an array of imageSet objects.

## idx - Image location index <br> scalar

Image location index, specified as a scalar value.

## Examples

## Display Image from an Image Set

## Create an image set.

```
imgFolder = fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages');
imgSet = imageSet(imgFolder);
```


## Display the fourth image from the set.

imshow(read(imgSet, 4));


## select

Class: imageSet
Select subset of images from image set

## Syntax

```
imgSetOut = select(imgSet,idx)
```


## Description

imgSetOut = select(imgSet,idx) returns a new image set, imgSetOut, using the selection of images specified by the index idx.

## Input Arguments

## imgSet - Image set

array of imageSet objects
Image set, specified as an array of imageSet objects.

## idx - Image location index

scalar | vector of linear indices | vector of logical indices
Image location index, specified as a scalar, vector of linear indices, or a vector of logical indices. The function uses the idx index to select the subset of images.

## Examples

## Select Images Specified by an Index

## Read images from a folder.

imgFolder = fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages'); imgSet = imageSet(imgFolder);

Select images 2 and 4 from the image set.
imgSetOut = select(imgSet, [2, 4]);
Select every other image from the image set.
imgSetOut2 = select(imgSet, 1:2:imgSet.Count);

## invertedImageIndex class

Search index that maps visual words to images

## Syntax

```
imageIndex = invertedImageIndex(bag)
imageIndex = invertedImageIndex(bag,'SaveFeatureLocations',tf)
imageIndex = invertedImageIndex(
```

$\qquad$

``` ,Name, Value)
```


## Construction

imageIndex = invertedImageIndex(bag) returns a search index object that you can use with the retrieveImages function to search for an image. The object stores the visual word-to-image mapping based on the input bag, a bag0fFeatures object.

```
imageIndex = invertedImageIndex(bag,'SaveFeatureLocations',tf)
```

optionally specifies whether or not to save the feature location data in imageIndex.
imageIndex = invertedImageIndex( $\qquad$ ,Name, Value) uses additional options specified by one or more Name, Value pair arguments, using any of the preceding syntaxes.

## Input Arguments

## bag - Bag of visual words

bag0fFeatures object
Bag of visual words, specified as a bag0fFeatures object.

## SaveFeatureLocations - Save feature locations

true (default) | false

Save feature locations, specified as a logical scalar. When you set this property to true, the image feature locations are saved in the imageIndex output object. Use location data
to verify the spatial or geometric image search results. If you do not require feature locations, set this property to false to reduce memory consumption.

## Properties

## ImageLocation - Indexed image locations cell array

Indexed image locations, stored as a cell array.

## ImageWords - Visual words

1-by-M vector of visualWords objects
Visual words, stored as a 1-by-M vector of visualWords objects for each indexed image. The visualWords object contains the WordIndex, Location, VocabularySize, and Count properties for each indexed image.

## WordFrequency - Word occurrence

$M$-by-1 vector
Word occurrence, specified as an $M$-by-1 vector. The vector contains the percentage of images in which each visual word occurs. These percentages are analogous to document frequency in text retrieval applications. The WordFrequency property contains the percentage of images in which each visual word occurs. It is often helpful to suppress the most common words to reduce the search set when looking for the most relevant images. Also helpful, is to suppress rare words as they probably come from outliers in the image set.

You can control how much the top and bottom end of the visual word distribution affects the search results by tuning the WordFrequencyRange property. A good way to set this value is to plot the sorted WordFrequency values.

## BagOfFeatures - Bag of visual words

bagOfFeatures object
Bag of visual words, specified as the bag0fFeatures object used in the index.

## MatchThreshold - Percentage of similar words required between query and potential image match

0.01 (default) | numeric value in the range [0 1]

Percentage of similar words required between a query and a potential image match, specified as a numeric value in the range [0, 1]. To obtain more search results, lower this threshold.

## WordFrequencyRange - Word frequency range

## [0.01 0.9] (default)|two-element vector

Word frequency range, specified as a two-element vector of a lower and upper percentage, [lower upper]. Use the word frequency range to ignore common words (the upper percentage range) or rare words (the lower percentage range) within the image index. These words often occur as repeated patterns or outliers and can reduce search accuracy. You can control how much the top and bottom end of the visual word distribution affects the search results by tuning the WordFrequencyRange property. A good way to set this value is to plot the sorted WordFrequency values.

## Methods

addImages	Add new images to image index
removeImages	Remove images from image index

## Examples

## Search ROI for Object

Define a set of images to search.

```
imageFiles = ...
 {'elephant.jpg', 'cameraman.tif', ...
 'peppers.png', 'saturn.png',...
 'pears.png', 'stapleRemover.jpg', ...
 'football.jpg', 'mandi.tif',...
 'kids.tif', 'liftingbody.png', ...
 'office_5.jpg', 'gantrycrane.png',...
 'moon.tif', 'circuit.tif', ...
 'tape.png', 'coins.png'};
imgSet = imageSet(imageFiles);
```

Learn the visual vocabulary.

```
bag = bagOfFeatures(imgSet,'PointSelection','Detector',...
 'VocabularySize',1000);
Creating Bag-Of-Features.
* Image category 1: <undefined>
* Selecting feature point locations using the Detector method.
* Extracting SURF features from the selected feature point locations.
** detectSURFFeatures is used to detect key points for feature extraction.
* Extracting features from 16 images in image set 1...done. Extracted 3680 features.
* Keeping 80 percent of the strongest features from each category.
* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 2944.
** Using the strongest }2944\mathrm{ features from each of the other image categories.
* Using K-Means clustering to create a }1000\mathrm{ word visual vocabulary.
* Number of features : 2944
* Number of clusters (K) : 1000
```

* Initializing cluster centers...100.00\%.
* Clustering...completed 24/100 iterations (~0.13 seconds/iteration)...converged in 24
* Finished creating Bag-Of-Features

Create an image search index and add images.

```
imageIndex = invertedImageIndex(bag);
```

addImages(imageIndex, imgSet);
Encoding images using Bag-Of-Features.

* Image category 1: <undefined>
* Encoding 16 images from image set 1...done.
* Finished encoding images.

Specify a query image and an ROI to search for the target object, elephant.

```
queryImage = imread('clutteredDesk.jpg');
queryROI = [130 175 330 365];
```

figure
imshow(queryImage)
rectangle('Position',queryROI,'EdgeColor','yellow')


You can also use the imrect function to select an ROI interactively. For example, queryROI = getPosition(imrect).

Find images that contain the object.

```
imageIDs = retrieveImages(queryImage,imageIndex,'ROI',queryROI)
```

```
imageIDs = 15×1
 1
 1 1
 2
 6
 8
 12
 3
 1 4
 1 3
 1 6
bestMatch = imageIDs(1);
figure
imshow(imageIndex.ImageLocation{bestMatch})
```



## References

Sivic, J. and A. Zisserman. Video Google: A text retrieval approach to object matching in videos. ICCV (2003) pg 1470-1477.

Philbin, J., O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. CVPR (2007).

## See Also

bag0fFeatures|evaluateImageRetrieval|imageSet|indexImages | retrieveImages

Topics<br>"Image Retrieval Using Customized Bag of Features"<br>"Image Retrieval with Bag of Visual Words"

## Introduced in R2015a

## addlmages

Class: invertedImageIndex
Add new images to image index

## Syntax

```
addImages(imageIndex,imds)
addImages(imageIndex,imds,'Verbose',true)
```


## Description

addImages(imageIndex,imds) adds the images in imds into the imageIndex object.
addImages(imageIndex,imds,'Verbose',true) also displays progress information.
'Verbose' to false to turn display off.
This object supports parallel computing using multiple MATLAB workers. Enable parallel computing from the "Computer Vision Toolbox Preferences" dialog box. To open Computer Vision Toolbox preferences, on the Home tab, in the Environment section, click Preferences. Then select Computer Vision Toolbox .

## Input Arguments

## imageIndex - Image search index

invertedImageIndex object
Image search index, specified as an invertedImageIndex object.

## imds - Images <br> ImageDatastore object

Images, specified as an ImageDatastore object. imds contains new images to add to an existing index. Duplicate images are not ignored.

## Examples

## Add Image to Image Index

Define a set of images to search

```
imageFiles = ...
 {'elephant.jpg', 'cameraman.tif', ...
 'peppers.png', 'saturn.png',...
 'pears.png', 'stapleRemover.jpg', ...
 'football.jpg', 'mandi.tif',...
 'kids.tif', 'liftingbody.png', ...
 'office_5.jpg', 'gantrycrane.png',...
 'moon.tif', 'circuit.tif', ...
 'tape.png', 'coins.png'};
imds = imageDatastore(imageFiles);
```

Learn the visual vocabulary.

```
bag = bagOfFeatures(imds,'PointSelection','Detector',...
 'VocabularySize',1000,'Verbose',false);
```

Create an image search index.

```
imageIndex = invertedImageIndex(bag);
```

Add images.

```
addImages(imageIndex,imds);
```

Encoding images using Bag-Of-Features.

* Encoding 16 images...done.


## removelmages

Class: invertedImageIndex
Remove images from image index

## Syntax

removeImages(imageIndex,indices)

## Description

removeImages(imageIndex, indices) removes the images from the imageIndex object that correspond to the indices input.

## Input Arguments

## imageIndex - Image search index

invertedImageIndex object
Image search index, specified as an invertedImageIndex object.

## indices - Image indices

vector
Image indices, specified as a row or column vector. The indices correspond to the images within imageIndex.Location.

## Examples

Remove Indexed Image
Create image set.

```
dataDir = fullfile(toolboxdir('vision'),'visiondata','imageSets','cups');
imds = imageDatastore(dataDir);
Index the image set.
imageIndex = indexImages(imds)
Creating an inverted image index using Bag-Of-Features.
Creating Bag-Of-Features.
* Selecting feature point locations using the Detector method.
* Extracting SURF features from the selected feature point locations.
** detectSURFFeatures is used to detect key points for feature extraction.
* Extracting features from 6 images...done. Extracted 1708 features.
* Keeping 80 percent of the strongest features from each category.
* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 1366.
** Using the strongest }1366\mathrm{ features from each of the other image categories.
* Using K-Means clustering to create a 20000 word visual vocabulary.
* Number of features : 1366
* Number of clusters (K) : 1366
* Initializing cluster centers...100.00%.
* Clustering...completed 1/100 iterations (~0.09 seconds/iteration)...converged in 1 i
* Finished creating Bag-Of-Features
Encoding images using Bag-Of-Features.
* Encoding 6 images...done.
Finished creating the image index.
imageIndex =
 invertedImageIndex with properties:
ImageLocation: {6x1 cell}
```

```
 ImageWords: [6x1 vision.internal.visualWords]
 WordFrequency: [1x1366 double]
 BagOfFeatures: [1x1 bagOfFeatures]
 MatchThreshold: 0.0100
 WordFrequencyRange: [0.0100 0.9000]
imageIndex.ImageLocation
ans = 6x1 cell array
 {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\bigMug.jpg' }
 {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\blueCup.jpg' }
 {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\handMade.jpg' }
 {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\holdingCup.jpg'}
 {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\plaid.jpg' }
 {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\plainWhite.jpg'}
```


## Remove first and third image.

```
removeImages(imageIndex,[1 3]);
imageIndex.ImageLocation
```

```
ans = 4xl cell array
 {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\blueCup.jpg' }
 {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\holdingCup.jpg'}
 {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\plaid.jpg' }
 {'B:\matlab\toolbox\vision\visiondata\imageSets\cups\plainWhite.jpg'}
```


## cameraCalibrationErrors

Object for storing standard errors of estimated camera parameters

## Description

cameraCalibrationErrors contains the standard errors of estimated camera parameters. The estimateCameraParameters function returns the cameraCalibrationErrors object. You can access the intrinsics and extrinsics standard errors using the object properties. You can display the standard errors using the object's displayErrors method.

## Properties

## IntrinsicsErrors - Standard intrinsics error intrinsicsEstimationErrors object

Standard error of the estimated intrinsics for a camera, specified as a intrinsicsEstimationErrors object.

## ExtrinsicsErrors - Standard extrinsics error

 extrinsicsEstimationErrors objectStandard error of the estimate rotations and translations for a camera relative to the calibration pattern, specified as a extrinsicsEstimationErrors object.

## Object Functions

displayErrors Display standard errors of camera parameter estimates

## Examples

## Estimate and Display Camera Calibration Standard Errors

Create a set of calibration images.

```
images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','mono'));
```

Detect the calibration pattern.
[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);
Generate the world coordinates of the corners of the squares. The units of the square are in millimeters.

```
squareSize = 29;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);
```

Calibrate the camera.

```
I = readimage(images,1);
imageSize = [size(I,1),size(I,2)];
[params,~,errors] = estimateCameraParameters(imagePoints,worldPoints, ...
 ImageSize',imageSize);
```

Display the standard errors.

```
displayErrors(errors,params);
 Standard Errors of Estimated Camera Parameters
```


## Intrinsics

Focal length (pixels): [ 714.1886 +/- 3.3219
Principal point (pixels): [ 563.6481 +/- 5.3967
Radial distortion: [ -0.3536 +/- 0.0091
$\left.\begin{array}{r}710.3785+/-4.0579 \\ 355.7252+/-3.3036 \\ 0.1730+/-0.0488\end{array}\right]$

## Extrinsics

Rotation vectors:

-0.6096	/-0.0054
-0.7283	+/-0.0050
-0.6722	+/-0.0051
-0.5836	+/-0.0056
-0.3157	+/-0.0065
-0.7581	+/-0.0052
-0.7515	+/-0.0051
-0.6223	+/-0.0053
0.3443	+/-0.0063


$-0.1789+/-$	0.0073
$-0.0996+/-$	0.0072
$-0.1444+/-$	0.0074
$-0.2901+/-$	0.0074
$-0.1441+/-$	0.0075
$0.1947+/-$	0.0072
$0.0767+/-$	0.0072
$0.0231+/-$	0.0073
$-0.2226+/-$	0.0073

Translation vectors (mm):
$[-146.0517+/-6.0391$
$[-209.4358+/-6.9637$
$[-129.3825+/-7.0907$
$[-151.0049+/-$
$[-174.9500+/-6.7056$
$[-134.3097+/-7.8887$
$[-173.9846+/-7.6891$
$[-202.9448+/-7.4327$
$[-319.8862+/-6.3213$

$-26.8685+/-3.7318$
$-59.4565+/-4.3578$
$-44.1030+/-4.3751$
$-27.3253+/-4.1339$
$-24.3499+/-4.1606$
$-103.4981+/-4.8925$
$-73.1691+/-$
$-87.9091+/-4812$
$-119.8898+/-$

## See Also

## Apps <br> Camera Calibrator | Stereo Camera Calibrator

## Classes

cameraParameters|extrinsicsEstimationErrors|
intrinsicsEstimationErrors|stereoCalibrationErrors|stereoParameters

## Functions

detectCheckerboardPoints |estimateCameraParameters | generateCheckerboardPoints | showExtrinsics | showReprojectionErrors | undistortImage | undistortPoints

## Topics

"Evaluating the Accuracy of Single Camera Calibration"
"Single Camera Calibrator App"

Introduced in R2014b

## stereoCalibrationErrors class

Object for storing standard errors of estimated stereo parameters

## Syntax

stereoCalibrationErrors

## Description

stereoCalibrationErrors contains the standard errors of estimated stereo parameters. The estimateCameraParameters function returns the stereoCalibrationErrors object. You can access the standard errors for stereo calibration using the object's properties. You can display the standard errors using the object displayErrors method.

## Properties

## Camera1IntrinsicsErrors

Standard errors of camera 1 estimated intrinsics and distortion coefficients, specified as an intrinsicsEstimationErrors object.

## Camera1ExtrinsicsErrors

Standard errors of camera 1 estimated extrinsics parameters, specified as an extrinsicsEstimationErrors object.

## Camera2IntrinsicsErrors

Standard errors of camera 2 estimated intrinsics and distortion coefficients, specified as an intrinsicsEstimationErrors object.

## Rotation0fCamera2Error

Standard errors of rotated vector of camera 2 relative to camera 1, specified as a 3element vector.

## TranslationOfCamera2Error

Standard errors of translation of camera 2 relative to camera 1, specified as a 3 -element vector

## Methods

displayErrors Display standard errors of camera parameter estimation

## Examples

## Estimate and Display Stereo Calibration Standard Errors

Specify calibration images.

```
imageDir = fullfile(toolboxdir('vision'), 'visiondata', ...
 'calibration','stereo');
leftImages = imageDatastore(fullfile(imageDir,'left'));
rightImages = imageDatastore(fullfile(imageDir,'right'));
```

Detect the checkerboards.

```
[imagePoints, boardSize] = detectCheckerboardPoints(...
```

    leftImages.Files,rightImages.Files);
    Specify world coordinates of checkerboard keypoints. Square size is in millimeters.

```
squareSize = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);
```

Calibrate the stereo camera system. Here both cameras have the same resolution.

```
I = readimage(leftImages,1);
imageSize = [size(I, 1), size(I, 2)];
```

```
[params, ~, errors] = estimateCameraParameters(imagePoints,worldPoints, ...
 'ImageSize',imageSize);
```


## Display standard errors.

## displayErrors(errors, params);

## Standard Errors of Estimated Stereo Camera Parameters

## Camera 1 Intrinsics

Focal length (pixels): [ 1038.0286 +/- 0. 6533
Principal point (pixels):[ 656.0841 +/- 0.3408
Radial distortion: [ -0.3617 +/- 0.0008
$\left.\begin{array}{r}1037.9145+/-0.6389 \\ 485.5485+/-0.2639 \\ 0.1866+/- \\ \hline\end{array}\right]$

Camera 1 Extrinsics
Rotation vectors:

$-0.0271+/-0.0006$
3. 1125
$-0.0523+/-0.0005$
-3. 0991
$-0.0523+/-0.0005$
-3.1113
$-0.0604+/-0.0004$
-3. 0552
$-0.0306+/-0.0005$
-3. 0331

- 3.0334
- 3.0833
- 3.0943
- 3.0652
-3. 1039

Translation vectors (mm):


$227.0500+/-$	0.4002	1492.8672
$191.7200+/-$	0.4094	1589.9146
$191.1429+/-$	0.4030	1578.4779
$196.7495+/-$	0.4030	1580.5404
$150.9910+/-$	0.5406	2119.3253
$176.8785+/-$	0.5276	2066.8343
$167.8675+/-$	0.5158	2010.7713
$166.2016+/-$	0.5153	1968.1798
$165.5372+/-$	0.4991	1868.3334
$-14.7981+/-$	0.6039	2255.6170

Camera 2 Intrinsics

Focal length (pixels): [ 1042.4817 +/- 0.6644 1042.2692 +/- 0.6534 ]

```
Principal point (pixels):[640.5972 +/- 0.3305
Radial distortion: [-0.3614 +/- 0.0007 0.1822 +/- 0.0022]
479.0652 +/- 0.2633
Position And Orientation of Camera 2 Relative to Camera 1
Rotation of camera 2: [-0.0037 +/- 0.0002 0.0050 +/- 0.0004
Translation of camera 2 (mm): [-119.8720 +/- 0.0401 -0.4005 +/- 0.0414
```


## See Also

## Apps <br> Camera Calibrator | Stereo Camera Calibrator

## Classes

cameraCalibrationErrors | cameraParameters|extrinsicsEstimationErrors |intrinsicsEstimationErrors|stereoParameters

## Functions

detectCheckerboardPoints |estimateCameraParameters |
generateCheckerboardPoints | showExtrinsics | showReprojectionErrors | undistortImage |undistortPoints

## Topics

"Single Camera Calibrator App"
"Stereo Camera Calibrator App"
Introduced in R2014b

## displayErrors

Class: stereoCalibrationErrors
Display standard errors of camera parameter estimation

## Syntax

displayErrors(estimationErrors,stereoParams)

## Description

displayErrors(estimationErrors,stereoParams) displays stereo parameters and corresponding standard errors to the screen. The estimationErrors input must be a stereoCalibrationErrors object. The stereoParams input must be a stereoParameters object.

## MSERRegions

Object for storing MSER regions

## Description

This object describes MSER regions and corresponding ellipses that have the same second moments as the regions. It passes data between the detectMSERFeatures and extractFeatures functions. The object can also be used to manipulate and plot the data returned by these functions.

## Creation

## Syntax

regions $=$ MSERRegions(pixellist)

## Description

regions $=$ MSERRegions(pixellist) constructs an MSER regions object, regions regions from the pixel list,pixellist.

## Input Arguments

## pixellist - Point coordinates for detected MSER regions

M-by-1 cell array
Point coordinates for detected MSER regions, specified as a $M$-by- 1 cell array. Each cell contains a $P$-by-2 array of [x y] coordinates for the detected MSER regions, where $P$ varies based on the number of pixels in a region.

## Properties

## Location - Locations of ellipses

M-by-2 array (default)
This property is read-only.
Locations of ellipses, stored as an M-by-2 array of [x y] coordinates. The ellipses that have the same second moments as the MSER regions.

## Axes - Major and minor axis

two-element vector (default)
This property is read-only.
Major and minor axis, stored as a two-element vector, [majorAxis minorAxis]. This vector specifies the major and minor axis of the ellipse that have the same second moments as the MSER regions.

Orientation - Ellipse orientation
scalar in the range -pi/2 to $+\mathrm{pi} / 2$
This property is read-only.
Ellipse orientation, stored as a value in the range from -pi/2 to $+\mathrm{pi} / 2$ radians. This value represents the orientation of the ellipse as measured from the $X$-axis to the major axis of the ellipse. You can use this property for visualization purposes.

## Count - Number of stored regions

0 (default) | integer
Number of stored regions, specified as an integer.

## Object Functions

isempty Determine if points object is empty
length Number of stored points
size Return the size of a points object
plot Plot MSER regions

## Examples

## Detect MSER Features in an Image

Load an image.
I = imread('cameraman.tif');
Detect and store regions.
regions = detectMSERFeatures(I);
Display the centroids and axes of detected regions.

```
imshow(I); hold on;
plot(regions);
```



## Display MSER Feature Regions from the MSERRegions Object

Detect and display the first 10 regions contained in the MSERRegions object.
Detect MSER features.
I = imread('cameraman.tif');
regions = detectMSERFeatures(I);
Display the first 10 regions in the MSERRegions object.
imshow(I); hold on;
plot(regions(1:10),'showPixelList', true);


## Combine MSER Region Detector with SURF Descriptors

Extract and display SURF descriptors at locations identified by MSER detector.
Read image.
I = imread('cameraman.tif');
Detect MSER features.

```
regionsObj = detectMSERFeatures(I);
```

Extract and display SURF descriptors.
[features, validPtsObj] = extractFeatures(I, regionsObj);
imshow(I); hold on;
plot(validPtsObj,'showOrientation',true);


## Tips

Although MSERRegions may hold many regions, it is a scalar object. Therefore, numel(MSERRegions) always returns 1. This value may differ from
length(MSERRegions), which returns the true number of regions held by the object.

## References

[1] Nister, D., and H. Stewenius, "Linear Time Maximally Stable Extremal Regions", Lecture Notes in Computer Science. 10th European Conference on Computer Vision, Marseille, France: 2008, no. 5303, pp. 183-196.
[2] Matas, J., O. Chum, M. Urba, and T. Pajdla. "Robust wide baseline stereo from maximally stable extremal regions. "Proceedings of British Machine Vision Conference, pages 384-396, 2002.

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathrm{Coder}^{\mathrm{TM}}$.
Usage notes and limitations:

- For code generation, you must specify both the pixellist cell array and the length of each array, as the second input. The object outputs, regions. PixelList as an array. The region sizes are defined in regions.Lengths.


## See Also

BRISKPoints | KAZEPoints | ORBPoints | SURFPoints | cornerPoints | detectMSERFeatures | detectSURFFeatures |edge | extractFeatures | matchFeatures

## Topics

"Find MSER Regions in an Image" on page 3-339
"Detect SURF Interest Points in a Grayscale Image" on page 3-355
"Automatically Detect and Recognize Text in Natural Images"
Introduced in R2012a

## cornerPoints

Object for storing corner points

## Description

This object stores information about feature points detected from a 2-D grayscale image.

## Creation

## Syntax

```
points = cornerPoints(location)
points = cornerPoints(location,Name,Value)
```


## Description

points = cornerPoints(location) constructs a cornerPoints object from an M-by-2 array $[x y]$ of location coordinates.
points = cornerPoints(location,Name,Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, points = cornerPoints('Metric',0.0)

## Input Arguments

## location - Location coordinates <br> M-by-2 array

Location of points, specified as an $M$-by-2 array of [x y] coordinates.

## Properties

## Count - Number of points

0 (default) | integer
Number of points held by the corner points object, specified as a numeric value.

## Metric - Strength of detected feature

0.0 (default) | numeric scalar

Strength of detected feature, specified as a numeric value. The algorithm uses a determinant of an approximated Hessian.

## Object Functions

plot Plot points
isempty Determine if points object is empty
length Number of stored points
selectStrongest Select points with strongest metrics
size Return the size of a points object
selectUniform Select uniformly distributed subset of feature points
gather Retrieve cornerPoints from the GPU

## Examples

## Plot Strongest Features from Detected Feature Points

Read an image.

```
I = imread('cameraman.tif');
```

Detect feature points.

```
points = detectHarrisFeatures(I);
```

Display the ten strongest points.
strongest $=$ selectStrongest(points,10);
imshow(I)
hold on
plot (strongest)


Display the $(x, y)$ coordinates of the strongest points.
strongest.Location

ans $=10 \times 2$	single mat
112.4516	208.4412
108.6510	228.1681
136.6969	114.7962
181.4160	205.9876
135.5823	123.4529
100.4951	174.3253
146.7581	94.7393
135.2899	92.6485
129.8439	110.0350
130.5716	91.0424

## Create Corner Points Object and Display Points

Create a checkerboard image.
I = checkerboard(50,2,2);
Load the locations of corner points.

location $=$| $[51$ | 51 | 51 | 100 | 100 | 100 | 151 | 151 | $151 ;$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 50 | 100 | 150 | 50 | 101 | 150 | 50 | 100 | $150]$ |

Save the points in a cornerPoints object.

```
points = cornerPoints(location);
```

Display the points on the checkerboard.

```
imshow(I)
hold on
plot(points)
```



## Tips

Although cornerPoints may hold many points, it is a scalar object. Therefore, numel(cornerPoints) always returns 1. This value may differ from length(cornerPoints), which returns the true number of points held by the object.

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathrm{Coder}^{\mathrm{TM}}$.
Usage notes and limitations:

- To index locations with this object, use the syntax: points. Location(idx, :), for points object. See visionRecovertformCodeGeneration_kernel.m, which is used in the "Introduction to Code Generation with Feature Matching and Registration" example.


## See Also

BRISKPoints | KAZEPoints | MSERRegions | ORBPoints | SURFPoints | binaryFeatures|detectBRISKFeatures|detectFASTFeatures | detectHarrisFeatures | detectMSERFeatures | detectMinEigenFeatures | detect0RBFeatures | detectSURFFeatures |extractFeatures | extractHOGFeatures | matchFeatures

## Introduced in R2012a

## SURFPoints

Object for storing SURF interest points

## Description

This object provides the ability to pass data between the detectSURFFeatures and extractFeatures functions. It can also be used to manipulate and plot the data returned by these functions. You can use the object to fill the points interactively. You can use this approach in situations where you might want to mix a non-SURF interest point detector with a SURF descriptor.

## Creation

## Syntax

```
points = SURFPoints(location)
points = SURFPoints(location,Name,Value)
```


## Description

points $=$ SURFPoints(location) constructs a SURFPoints object from an $M$-by-2 array of [ $x y$ ] point coordinates.
points $=$ SURFPoints(location, Name, Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, points = SURFPoints('Metric',0.0)

## Input Arguments

## location - Point coordinates

M-by-2 array of [ $x y$ ] point coordinates.

Point coordinates, specified as an M-by-2 array of form [x y] coordinates. $M$ denotes the number of points.

## Properties

## Count - Number of points

0 (default) | integer
Number of points held by the object, specified as a numeric value.

## location - Point locations

M-by-2 array (default)
Point locations, specified as an M-by-2 array of [x y] point coordinates.

## Scale - Scale <br> 12.0 (default) | scalar

Scale at which the feature is detected, specified as a value greater than or equal to 1.6.

## Metric - Strength of detected feature

## 0.0 (default) | numeric scalar

Strength of detected feature, specified as a numeric value.

## Orientation - Orientation

## 0.0 (default) | angle in radians

Orientation of the detected feature, specified as an angle, in radians. The angle is measured counter-clockwise from the X-axis with the origin specified by the Location property. Do not set this property manually. Rely instead, on the call to extractFeatures to fill in this value. The extractFeatures function modifies the default value of 0.0 .The Orientation is mainly useful for visualization purposes.

## SignOfLaplacian - Sign of Laplacian <br> 0 (default) |-1|1

Sign of the Laplacian determined during the detection process, specified as $-1,0$, or 1 . You can use this parameter to accelerate the feature matching process.

Blobs with identical metric values but different signs of Laplacian can differ by their intensity values. For example, a white blob on a blackground versus a black blob on a
white background. You can use this parameter to quickly eliminate blobs that do not match.

For non-SURF detectors, this property is not relevant. For example, for corner features, you can simply use the default value of 0 .

## Object Functions

plot
Plot points
isempty Determine if points object is empty
length Number of stored points
selectStrongest Select points with strongest metrics
size $\quad$ Return the size of a points object
selectUniform Select uniformly distributed subset of feature points

## Examples

## Detect SURF Features

## Read in image.

```
 I = imread('cameraman.tif');
```


## Detect SURF features.

```
 points = detectSURFFeatures(I);
```


## Display location and scale for the $\mathbf{1 0}$ strongest points.

```
strongest = points.selectStrongest(10);
imshow(I); hold on;
plot(strongest);
```



Display [xy] coordinates for the $\mathbf{1 0}$ strongest points on command line.

```
 strongest.Location
ans = 10x2 single matrix
 139.7482 95.9542
 107.4502 232.0347
 116.6112 138.2446
 105.5152 172.1816
 113.6975 48.7220
 104.4210 75.7348
 111.3914 154.4597
 106.2879 175.2709
 131.1298 98.3900
 124.2933 64.4942
```


## Detect SURF Features and Display the Last 5 Points

## Read in image.

I = imread('cameraman.tif');
Detect SURF feature.
points = detectSURFFeatures(I);
Display the last 5 points.
imshow(I); hold on;
plot(points(end-4:end));


## Tips

Although SURFPoints may hold many points, it is a scalar object. Therefore, numel(surfPoints) always returns 1 . This value may differ from length(surfPoints), which returns the true number of points held by the object.

## References

[1] Bay, H., A. Ess, T. Tuytelaars, and L. Van Gool. "SURF:Speeded Up Robust Features." Computer Vision and Image Understanding (CVIU).Vol. 110, No. 3, pp. 346-359, 2008.

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- To index locations with this object, use the syntax: points. Location(idx, :), for points object. See visionRecovertformCodeGeneration_kernel.m, which is used in the "Introduction to Code Generation with Feature Matching and Registration" example.


## See Also

BRISKPoints |MSERRegions | ORBPoints | cornerPoints | detectFASTFeatures | detectHarrisFeatures|detectMSERFeatures | detectMinEigenFeatures | detectORBFeatures| detectSURFFeatures|extractFeatures|matchFeatures

## Topics

"Detect SURF Interest Points in a Grayscale Image" on page 3-355
"Display MSER Feature Regions from the MSERRegions Object" on page 2-267
"Find MSER Regions in an Image" on page 3-339
"Detect MSER Features in an Image" on page 2-266

## Introduced in R2011b

## ORBPoints

Object for storing ORB keypoints

## Description

An ORBPoints object stores the Oriented FAST and rotated BRIEF (ORB) keypoints in an image. You can specify the keypoints and store them as an ORBPoints object. You can also use the detect0RBFeatures function to detect the ORB keypoints in an image. The detect0RBFeatures function stores the detected ORB keypoints as an ORBPoints object. Use "Object Functions" on page 2-285 to plot, select, and manipulate the detected ORB keypoints.

## Creation

## Syntax

```
points = ORBPoints
points = ORBPoints(location)
points = ORBPoints(location,Name,Value)
```


## Description

points $=$ ORBPoints creates an ORBPoints object with default property values.
points $=$ ORBPoints(location) creates an ORBPoints object from a set of location coordinates specified by location. The location input sets the Location property.
points = ORBPoints(location,Name,Value) sets properties of the object using one or more name-value pair arguments. Enclose each property name in quotes. For example, ORBPoints(location, 'Count', 15 ) creates an ORBPoints object with Count property set to 15.

## Properties

## Location - Location of keypoints

[ ] (default) | M-by-2 matrix

This property is read-only.
Location of keypoints, specified as an $M$-by-2 matrix. Each row is of the form [ $x y$ ] and represents the location of a keypoint. $M$ is the number of keypoints. You cannot set this property as a name-value pair. Use the location input argument.

## Metric - Strength of keypoints

[ ] (default) | scalar | $M$-element vector.
This property is read-only.
Strength of keypoints, specified as one of these values:

- A scalar - Detected keypoints have the same strength. In this case, the object assigns the same Metric value to all keypoints.
- An $M$-element vector - Detected keypoints have different strength values. In this case, the object assigns different Metric value to each keypoint. $M$ is the number of keypoints.


## Example: ORBPoints(location,'Metric', 0.5)

## Data Types: single

## Count - Number of keypoints

0 (default) | nonnegative integer
This property is read-only.
Number of keypoints held by the object, specified as a nonnegative integer.

## Scale - Scale factor

## [ ] (default) | scalar | $M$-element vector

This property is read-only.
Scale factor, specified as one of these values:

- A scalar - All keypoints are detected at the same level of decomposition. In this case, the object assigns the same Scale value to all keypoints.
- An $M$-element vector - The keypoints are detected at different levels of decomposition. In this case, the object assigns different Scale value to each keypoint. $M$ is the number of keypoints.

The scale factor specifies the level of decomposition at which a keypoint is detected.
Example: ORBPoints(location, 'Scale', 1.2)
Data Types: single

## Orientation - Angle of keypoints in radians

[ ] (default) | scalar | $M$-element vector
This property is read-only.
Angle of keypoints in radians, specified as one of these values:

- A scalar - Detected keypoints are of the same orientation. In this case, the object assigns the same Orientation value to all keypoints.
- An $M$-element vector - Detected keypoints are of different orientation. In this case, the object assigns different Orientation value to each keypoint. $M$ is the number of keypoints.

The angle made by a keypoint is defined with reference to the horizontal axis of the image. The coordinate of the keypoint is set as the origin of the axis.

Example: ORBPoints(location, 'Orientation', 0.7854)
Data Types: single|double|int8|int16|int32|int64|uint8|uint16| uint32 | uint64

## Object Functions

isempty
selectStrongest Select points with strongest metrics
size Return the size of a points object
selectUniform Select uniformly distributed subset of feature points

## Examples

## Create and Modify Properties of ORBPoints

Read an image into the workspace.

```
I = imread('licensePlates.jpg');
```

Convert the image into a grayscale image.

```
I = rgb2gray(I);
```

Specify the location of keypoints in the image.

```
location = [400 398;485 343;274 323;274 367;241 313;302 213];
```

Create an ORBPoints object and display its properties.

```
points = ORBPoints(location)
```

points =
$6 \times 1$ ORBPoints array with properties:
Location: [6×2 single]
Metric: [6×1 single]
Count: 6
Scale: [6×1 single]
Orientation: [6×1 single]

Inspect the Scale and Orientation properties of the ORBPoints object.
points.Scale

```
ans = 6x1 single column vector
```

    1
    1
    1
    1
    1
    1
    ```
points.Orientation
ans = 6\times1 single column vector
 0
 0
 0
 0
 0
 0
```

Specify the scale value for each keypoint.

```
scale = [2.1 2.5 2.5 4 2.3 3.9];
```

Specify the angle values for the keypoints as 0.7854 radians.
angle = 0.7854;
Create an ORBPoints object with the keypoints and the updated scale and angle values. The output is an ORBPoints object containing keypoints with the modified Scale and Orientation properties.

```
points = ORBPoints(location,'Scale',scale,'Orientation',angle);
```

Inspect the updated Scale values.

```
points.Scale
```

ans $=6 \times 1$ single column vector
2.1000
2.5000
2.5000
4.0000
2.3000
3.9000

Inspect the updated Orientation values. Since the Orientation value is a scalar, the object assigns same value to all keypoints.
points.Orientation

```
ans = 6\times1 single column vector
 0.7854
 0.7854
 0.7854
 0.7854
 0.7854
 0.7854
```

Display the image and plot the ORB keypoints on the image.
figure
imshow(I)
hold on
plot(points)


## Detect and Store ORB Keypoints

Read an image into the workspace.
I = imread('cameraman.tif');
Use the detectORBFeatures function to detect ORB keypoints in the image. The function returns the detected ORB keypoints as an ORBPoints object.
points = detectORBFeatures(I);

Use the selectUniform object function to select 10 ORB keypoints. The output of the selectUniform object function is an ORBPoints object.

```
newPoints = selectUniform(points,10,size(I))
newPoints =
 10x1 ORBPoints array with properties:
 Location: [10\times2 single]
 Metric: [10\times1 single]
 Count: 10
 Scale: [10×1 single]
 Orientation: [10×1 single]
```

Display the location and scale of the selected keypoints on the image.

```
figure
imshow(I)
hold on
plot(newPoints)
```



Display the ( $x, y$ ) coordinates of the selected keypoints.

```
x = newPoints.Location(:,1);
y = newPoints.Location(:,2);
[x y]
ans = 10\times2 single matrix
 147 62
 111 63
 143 67
 127 89
 47 124
 34 154
 183 205
 113 206
 111 207
 148 66
```

Display the orientation of the selected keypoints.

```
newPoints.Orientation
```

```
ans = 10\times1 single column vector
```

```
ans = 10\times1 single column vector
```

    5.4682
    0.7888
    5.3084
    6.2443
    2.8221
    3.8440
    6.1212
    6.0344
    4.8840
    5.5535
    
## Tips

Although ORBPoints can hold many points, it is a scalar object. Therefore, numel (ORBPoints) always returns 1. This value can differ from length (ORBPoints), which returns the true number of points held by the object.

## References

[1] Rublee, E., V. Rabaud, K. Konolige, and G. Bradski. "ORB: An Efficient Alternative to SIFT or SURF." In Proceedings of the 2011 International Conference on Computer Vision, pp. 2564-2571. Barcelona, Spain: IEEE, 2011.

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathrm{Coder}^{\mathrm{TM}}$.
This function supports C/C++ code generation with the limitations:

- Use in a MATLAB Function block is not supported.


## See Also

BRISKPoints |KAZEPoints |MSERRegions | SURFPoints | cornerPoints | detectBRISKFeatures | detectFASTFeatures | detectHarrisFeatures | detectMinEigenFeatures | detectORBFeatures |extractFeatures| matchFeatures

## Topics

"Point Feature Types"
"Local Feature Detection and Extraction"

Introduced in R2019a

## vision.AlphaBlender

Package: vision
Combine images, overlay images, or highlight selected pixels

## Description

The AlphaBlender System object combines two images, overlays one image over another, or highlights selected pixels.

To combine two images, overlay one image over another, or highlight selected pixels:
1 Create the vision.AlphaBlender object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

## Creation

## Syntax

alphablend = vision.AlphaBlender
alphablend = vision.AlphaBlender(Name,Value)

## Description

alphablend = vision.AlphaBlender creates an alpha blender System object, alphablend, which combines two images, overlays one image over another, or highlights selected pixels.
alphablend = vision.AlphaBlender(Name, Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, alphablend = vision.AlphaBlender('Operation','Blend')

## Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

## Operation - Operation

'Blend'|'Binary mask'|'Highlight selected pixels'
Operation, specified as 'Blend', 'Binary mask', or 'Highlight selected pixels'.

| Operation | Description |
| :--- | :--- |
| 'Blend ' | Linearly combine the pixels of one image <br> with the another image. |
| 'Binary mask' | Overwrite the pixel values of one image <br> with the pixel values of another image. |
| 'Highlight selected pixels' | Uses the mask binary image input to <br> determine which pixels are set to the <br> maximum value supported by their data <br> type. |

## OpacitySource - Source of opacity factor

## Property (default)|'Input port'

Source of opacity factor, specified as 'Property' or 'Input port'. This property applies when you set the Operation property to Blend.

## Opacity - Pixel scale value

0.75 (default) | scalar | matrix

Pixel scale value, specified as a scalar or matrix. The object scales each pixel before combining the images. This property applies when you set the OpacitySource property to Property.

## Tunable: Yes

## MaskSource - Binary mask source

## 'Property' (default)|'Input port'

Binary mask source, specified as 'Property' or 'Input port'. This property applies when you set the Operation property to Binary mask

## Mask - Overwrite scalar

1 (default) | 0 | binary scalar | matrix of binary scalars
Overwrite scalar, specified as 0 or 1 for every pixel, or a matrix of 0 s and 1s. This property applies when you set the MaskSource property to Property.

Tunable: Yes

## LocationSource - Source for upper-left location <br> 'Property' (default)|'Input port'

Source of location of the upper-left corner of second input image
Source for the upper-left corner location of the second input image, specified as Property or Input port.

## Location - Location

## [1 1]|two-element vector

Location of the upper-left corner of the second input image relative to the location of the first input image, specified as a two-element vector in the format [x y]. This property applies when you set the LocationSource property to Property.

See "Coordinate Systems" for a discussion on pixel coordinates and spatial coordinates, which are the two main coordinate systems used in the Computer Vision Toolbox.

Tunable: Yes
Fixed-Point Properties

## RoundingMethod - Rounding method

'Floor' (default)|'Convergent'|'Floor' | ...
Rounding method, specified as 'Ceiling','Convergent', 'Floor', 'Nearest', 'Round','Simplest','Zero', or 'Floor'

## OverflowAction - Overflow action 'Wrap' (default)|'Saturate'

Overflow action for fixed-point operations, specified as 'Wrap' or 'Saturate'.

## OpacityDataType - Opacity word and fraction lengths

'Same word length as input' (default)|'Custom'
Opacity word and fraction lengths for fixed-point operations, specified as 'Same word length as input' or 'Custom'.

## CustomOpacityDataType - Opacity word and fraction lengths

numerictype([],16) (default) | unscaled numerictype object
Opacity word and fraction lengths factor for fixed-point operations, specified as an unscaled numerictype object with a Signedness of Auto. This property applies when you set the OpacityDataType property to Custom

## ProductDataType - Product word and fraction lengths

'Custom' (default)|'Same as first input'
Product word and fraction lengths, specified as 'Custom' or 'Same as first input'.

## CustomProductDataType - Product word and fraction lengths

numerictype([],32,10) (default) | scaled numerictype object
Product word and fraction lengths, specified as a scaled numerictype object with a 'Signedness' of 'Auto'. This property applies when you set the 'ProductDataType' property to 'Custom'

## AccumulatorDataType - Accumulator word and fraction lengths

'Same as product' (default)|'Custom'
Accumulator word and fraction lengths, specified as 'Same as product','Same as first input', or 'Custom'.

## CustomAccumulatorDataType - Accumulator word and fraction lengths

 numerictype([],32,10) (default) | scaled numerictype objectAccumulator word and fraction lengths, specified as a scaled numerictype object with a 'Signedness' of 'Auto'.

## OutputDataType - Output word and fraction lengths

'Same as product' (default)|'Custom'
Output word and fraction lengths, specified as 'Same as first input' or 'Custom'.

## CustomOutputDataType - Output word and fraction lengths

numerictype([],32,10) (default) | scaled numerictype object
Output word and fraction lengths, specified as a scaled numerictype object with a 'Signedness' of 'Auto'.

## Usage

## Syntax

```
ab = alphablend(I1,I2)
ab = alphablend(I1,I2,opacity)
ab = alphablend(I1,I2,mask)
ab = alphablend(I1,mask)
ab = alphablend(I1,I2,___,location)
```


## Description

$a b=a l p h a b l e n d(I 1, I 2)$ returns a alpha blender object that blends images I1 and I2.
$\mathrm{ab}=$ alphablend(I1,I2,opacity) uses the opacity input to combine pixel values of I1 and I2. To use the opacity input, you must set the Operation property to 'Blend' and the OpacitySource property to 'Input port'
$a b=a l p h a b l e n d(I 1, I 2$, mask) uses the mask input to overlay I1 over I2. To use the mask input with an overlay, you must set the Operation property to 'Binary mask' and the MaskSource property to 'Input port'.
$\mathrm{ab}=\mathrm{alphablend}(\mathrm{I} 1$, mask) uses the mask input to determine which pixels in I1 are set to the maximum value supported by their data type. To use the mask input with an overlay, you must set the Operation property to 'Highlight selected pixels' and the MaskSource property to 'Input port'.
ab = alphablend(I1,I2, $\qquad$ , location) additionally sets the upper-left corner location for I2. To use the location input, you must set the LocationSource property to 'Input port'.

## Input Arguments

## I1 - Input image

M-by- $N$-by-3 truecolor | M-by-N 2-D grayscale image
Input image, specified in truecolor or 2-D grayscale.
Data Types: single | double | int16|uint8|uint16

## I2 - Input image <br> $M$-by- $N$-by-3 truecolor | $M$-by-N 2-D grayscale image

Input image, specified in truecolor or 2-D grayscale.
Data Types: single| double | int16|uint8|uint16

## opacity - Scale

scalar | matrix
Pixel scale value, specified as a scalar or matrix. The object scales each pixel before combining the images.

## mask - Overwrite scalar

binary scalar|matrix of binary scalars
Overwrite scalar, specified as 0 or 1 for every pixel, or a matrix of 0 s and 1 s .

## location - Location

two-element vector
Location of the upper-left corner of the second input image relative to the location of the first input image, specified as a two-element vector in the format [x y].

Tunable: Yes

## Output Arguments

## alphablend - Blended output image

M-by- $N$-by-3 truecolor | M-by-N 2-D grayscale image

Output blended image, returned as a combined image, overlayed image, or an image with selected pixels highlighted.

## Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:
release(obj)

## Common to All System Objects

step Run System object algorithm

```
release Release resources and allow changes to System object property values and input characteristics
reset Reset internal states of System object
```


## Examples

## Blend Two Images

Display the two images.

```
I1 = im2single(imread('blobs.png'));
I2 = im2single(imread('circles.png'));
subplot(1,2,1);
imshow(I1);
subplot(1,2,2);
imshow(I2);
```



Blend the two images and display the result.
blender = vision.AlphaBlender;
J = blender(I1,I2);
figure;
imshow(J);


## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- See "System Objects in MATLAB Code Generation" (MATLAB Coder).


## See Also

insertText

## Introduced in R2012a

## vision.BinaryFileReader

Package: vision
Read video data from binary files

## Description

The BinaryFileReader object reads video data from binary files.
To read a binary file:
1 Create the vision. BinaryFileReader object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

## Creation

## Syntax

```
bFileReader = vision.BinaryFileReader
bFileReader = vision.BinaryFileReader(Name,Value)
bFileReader = vision.BinaryFileReader(file,Name,Value)
```


## Description

bFileReader = vision. BinaryFileReader returns a binary file reader object, bFileReader, that reads binary video data from the specified file in I420 Four Character Code (FOURCC) video format.
bFileReader = vision.BinaryFileReader(Name,Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, bFileReader = vision.BinaryFileReader('Filename','vipmen.bin')
bFileReader = vision.BinaryFileReader(file,Name,Value) returns a binary file reader System object, bFileReader, with the Filename property set to file and other specified properties set to the specified values.

## Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

## Filename - File name

vipmen. bin (default) | character vector
File name, specified as a character vector. The full path for the file needs to be specified only if the file is not on the MATLAB path.

## VideoFormat - Video file format <br> 'Four character codes' (default) |'Custom'

Video file format, specified as 'Four character codes' or 'Custom'.

## FourCharacterCode - Four Character Code video format

binary file format
Four Character Code video format, specified as one of the available video formats. For more information on four character codes, see https://www.fourcc.org. This property applies when you set the VideoFormat property to 'Four character codes'.

## BitstreamFormat - Format of data <br> 'Planar' (default)|'Packed'

Format of data, specified as 'Planar' or 'Packed '.This property applies when you set the VideoFormat property to Custom.

## OutputSize - Size of output

M-by- $N$ matrix

Size of output, specified as an $M$-by- $N$ matrix. This property applies when you set the BitstreamFormat property to 'Packed'.

## VideoComponentCount - Number of video components in video stream 3 (default) | 1 | 2 | 4

Number of video components in video stream, specified as $1,2,3$ or 4 . This number corresponds to the number of video component outputs. This property applies when you set the VideoFormat property to 'Custom' .

## VideoComponentBits - Bit size of video components <br> [8 8 8] (default)|vector

Bit size of video components, specified as an integer vector of length $N$, where $N$ is the value of the VideoComponentCount property. This property applies when you set the VideoFormat property to 'Custom'.

## VideoComponentSizes - Size of video components [120 160; 60 80; 60 80] (default) $\mid N$-by-2 array

Size of video components, specified as an $N$-by- 2 array, where $N$ is the value of the VideoComponentCount property. Each row of the matrix corresponds to the size of that video component, with the first element denoting the number of rows and the second element denoting the number of columns. This property applies when you set the VideoFormat property to 'Custom' and the BitstreamFormat property to 'Planar'.

## VideoComponentOrder - Order of video components

 [1 223$]$ (default)| 1-by- $N$ vectorOrder of video components, specified as a 1-by- $N$ vector. This property must be set to a vector of length $N$, where $N$ is set according to how you set the BitstreamFormat property. When you set the BitStreamFormat property to 'Planar', you must set $N$ equal to the value of the VideoComponentCount property. Otherwise, you can set $N$ equal to or greater than the value of the VideoComponentCount property. This property applies when you set the VideoFormat property to 'Custom'.

## InterlacedVideo - Interlaced video status

false (default)|true
Interlaced video status, specified as true or false. Set this property to true if the video stream represents interlaced video data. This property applies when you set the VideoFormat property to 'Custom'.

## LineOrder - Fill binary file format

## 'Top line first' (default)|'Bottom line first'

Fill binary file format, specified as 'Top line first', or 'Bottom line first'. If you set this property to 'Top line first', the first row of the video frame gets filled first. If you set this property to 'Bottom line first', the last row of the video frame gets filled first.

## SignedData - Signed data <br> false (default) | true

Signed data, specified as true or false. Set this property to true for signed input data. This property applies when you set the VideoFormat property to 'Custom'

## ByteOrder - Byte order

```
'Little endian' (default)|'Big endian'
```

Byte order, specified as as 'Little endian' or 'Big endian'. This property applies when you set the VideoFormat property to 'Custom'.

## PlayCount - Play count

## 1 (default) | positive integer

Play count for the number of times to play the file, specified as a positive integer.

## Usage

## Syntax

```
[Y,Cb,Cr] = bFileReader()
Y = bFileReader()
[Y,Cb,Cr,Alpha] = bFileReader()
[
```

$\qquad$

``` , EOF ] = bFileReader()
```


## Description

$[\mathrm{Y}, \mathrm{Cb}, \mathrm{Cr}]=\mathrm{bFileReader}()$ reads the luminance, Y and chrominance, Cb and Cr components of a video stream from the specified binary file when you set the

VideoFormat property to 'Four character codes '. Alternatively, it reads the values when you set the VideoFormat property to 'Custom' and the VideoComponentCount property to 2.
$Y=b F i l e R e a d e r()$ reads the video component $Y$ from the binary file when you set the VideoFormat property to 'Custom' and the VideoComponentCount property to 1.
[ $\mathrm{Y}, \mathrm{Cb}, \mathrm{Cr}, \mathrm{Alpha}]=\mathrm{bFileReader()}$ additionally reads the Alpha when you set the VideoFormat property to 'Custom' and the VideoComponentCount property to 4.
[ $\qquad$ , EOF ] = bFileReader() also returns the end-of-file indicator, EOF. EOF is set to true when the output contains the last video frame in the file.

## Output Arguments

## $\mathbf{Y}$ - Luminance value

$M$-by- $N$ matrix
Luminance value, returned as an $M$-by- $N$ matrix.

## Cb - Chrominance value

$M$-by- $N$ matrix
Chrominance value, returned as an $M$-by- $N$ matrix.

## Cr - Chrominance value

$M$-by- $N$ matrix
Chrominance value, returned as an $M$-by- $N$ matrix.

## Alpha - Transparency scalar

Transparency value, returned as a scalar in the range $[0,1]$.

## Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax: release(obj)

# Specific to vision.BinaryFileReader <br> isDone End-of-file status (logical) <br> <br> Common to All System Objects <br> <br> Common to All System Objects <br> step Run System object algorithm <br> $\begin{array}{ll}\text { release } & \begin{array}{l}\text { Release resources and allow changes to System object property values and } \\ \text { input characteristics }\end{array} \\ \text { reset } & \text { Reset internal states of System object }\end{array}$ 

## Examples

## Read Binary Video File and Play Back on Screen

Create a binary file reader and video player object.

```
hbfr = vision.BinaryFileReader();
hvp = vision.VideoPlayer;
```

Use the while loop to play the default video.

```
while ~isDone(hbfr)
y = hbfr();
hvp(y);
end
```



Close the input file and the video display.
release(hbfr);
release(hvp);


## See Also

vision. BinaryFileWriter|vision.VideoFileReader

Introduced in R2012a

## vision.BinaryFileWriter

Package: vision

Write binary video data to files

## Description

The BinaryFileWriter object writes binary video data to files.
To write binary data to a file:
1 Create the vision. BinaryFileWriter object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

## Creation

## Syntax

```
bFileWriter = vision.BinaryFileWriter
bFileWriter = vision.BinaryFileWriter(Name,Value)
```


## Description

bFileWriter = vision.BinaryFileWriter returns a binary writer object that writes binary video data to an output file, output. bin in the I420 Four Character Code format.
bFileWriter = vision. BinaryFileWriter(Name, Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, bFileWriter = vision. BinaryFileWriter('Filename','output.bin')

## Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

## Filename - File name

output.bin (default) | character vector
File name, specified as a character vector.

## VideoFormat - Video file format

'Four character codes' (default)|'Custom'
Video file format, specified as 'Four character codes' or 'Custom'.

## FourCharacterCode - Four Character Code video format

 binary file formatFour Character Code video format, specified as one of the available video formats. For more information on four character codes, see https://www.fourcc.org. This property applies when you set the VideoFormat property to 'Four character codes'.

## BitstreamFormat - Format of data <br> 'Planar' (default)|'Packed '

Format of data, specified as 'Planar' or 'Packed '.This property applies when you set the VideoFormat property to Custom.

## VideoComponentCount - Number of video components in video stream 3 (default) | 1 | 2 | 4

Number of video components in video stream, specified as $1,2,3$ or 4 . This number corresponds to the number of video component outputs. This property applies when you set the VideoFormat property to 'Custom'.

## VideoComponentBitsSource - Size of video components format 'Auto ' (default)|Property'

Size of video components format, specified as 'Auto' or 'Property '. If this property is set to 'Auto', each component will have a VideoComponentBits property. This property applies when you set the VideoFormat property to 'Custom'.

## VideoComponentBits - Bit size of video components

```
[8 8 8] (default)|vector
```

Bit size of video components, specified as an integer vector of length $N$, where $N$ is the value of the VideoComponentCount property. This property applies when you set the VideoFormat property to 'Custom'.

## VideoComponentOrder - Order of video components

[1 223$]$ (default) | 1-by- $N$ vector
Order of video components, specified as a 1-by- $N$ vector. This property must be set to a vector of length $N$, where $N$ is set according to how you set the BitstreamFormat property. When you set the BitStreamFormat property to 'Planar', you must set $N$ equal to the value of the VideoComponentCount property. Otherwise, you can set $N$ equal to or greater than the value of the VideoComponentCount property. This property applies when you set the VideoFormat property to 'Custom'.

## InterlacedVideo - Interlaced video status

false (default) | true
Interlaced video status, specified as true or false. Set this property to true if the video stream represents interlaced video data. This property applies when you set the VideoFormat property to 'Custom'.

## LineOrder - Fill binary file format <br> 'Top line first' (default)|'Bottom line first'

Fill binary file format, specified as 'Top line first', or 'Bottom line first'. If you set this property to 'Top line first', the first row of the video frame gets filled first. If you set this property to 'Bottom line first', the last row of the video frame gets filled first.

## SignedData - Signed data

false (default) |true

Signed data, specified as true or false. Set this property to true for signed input data. This property applies when you set the VideoFormat property to 'Custom'

## ByteOrder - Byte order

'Little endian' (default) | 'Big endian'
Byte order, specified as as 'Little endian' or 'Big endian'. This property applies when you set the VideoFormat property to 'Custom'.

## Usage

## Syntax

```
bFileWriter(Y,Cb,Cr)
bFileWriter(Y)
bFileWriter(Y,Cb)
bFileWriter(Y,Cb,Cr)
bFileWriter(Y,Cb,Cr,Alpha)
```


## Description

bFileWriter ( $\mathrm{Y}, \mathrm{Cb}, \mathrm{Cr}$ ) writes one frame of video to the specified output file. $\mathrm{Y}, \mathrm{Cb}, \mathrm{Cr}$ represent the luma ( Y ) and chroma ( Cb and Cr ) components of a video stream. This option applies when you set the VideoFormat property to 'Four character codes'.
bFileWriter ( Y ) writes video component Y to the output file when the VideoFormat property is set to 'Custom' and the VideoComponentCount property is set to 1.
bFileWriter ( $\mathrm{Y}, \mathrm{Cb}$ ) writes video components Y and Cb to the output file when the VideoFormat property is 'Custom' and the VideoComponentCount property is set to 2.
bFileWriter ( $\mathrm{Y}, \mathrm{Cb}, \mathrm{Cr}$ ) writes video components $\mathrm{Y}, \mathrm{Cb}$ and Cr to the output file when the VideoFormat property is set to 'Custom' and the VideoComponentCount property is set to 3 .
bFileWriter(Y,Cb,Cr,Alpha) writes video components $\mathrm{Y}, \mathrm{Cb}, \mathrm{Cr}$ and Alpha to the output file when the VideoFormat property is set to 'Custom', and the VideoComponentCount property is set to 4.

## Input Arguments

Y - Luminance value<br>$M$-by- $N$ matrix

Luminance value, returned as an $M$-by- $N$ matrix.

## Cb - Chrominance value <br> $M$-by- $N$ matrix

Chrominance value, returned as an $M$-by- $N$ matrix.

## Cr - Chrominance value

$M$-by- $N$ matrix
Chrominance value, returned as an $M$-by- $N$ matrix.

## Alpha - Transparency

scalar
Transparency value, returned as a scalar in the range [0,1].

## Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax: release(obj)

## Common to All System Objects

step Run System object algorithm
release Release resources and allow changes to System object property values and input characteristics
reset Reset internal states of System object

## Examples

## Write Video Data to a Binary File

Set the output file name and create binary file reader and writer objects.

```
filename = fullfile(tempdir,'output.bin');
bFileReader = vision.BinaryFileReader;
bFileWriter = vision.BinaryFileWriter(filename);
```

Write to the file.

```
while ~isDone(bFileReader)
 [y,cb,cr] = bFileReader();
 bFileWriter(y,cb,cr);
end
```

Close the files.

```
release(bFileReader);
```

release(bFileWriter);

## See Also

vision.BinaryFileReader|vision.VideoFileReader

Introduced in R2012a

## vision.BlobAnalysis

Package: vision
Properties of connected regions

## Description

To compute statistics for connected regions in a binary image
To track a set of points:
1 Create the vision. BlobAnalysis object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

## Creation

## Syntax

```
Hblob = vision.BlobAnalysis
Hblob = vision.BlobAnalysis(Name,Value)
```


## Description

Hblob = vision. BlobAnalysis returns a blob analysis object, H , used to compute statistics for connected regions in a binary image.

Hblob = vision. BlobAnalysis(Name, Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, Hblob = vision. BlobAnalysis('AreaOutputPort',true)

## Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

## AreaOutputPort - Return blob area true (default) | false

Return blob area, specified as true or false.

## CentroidOutputPort - Return coordinates of blob centroids true (default) | false

Return coordinates of blob centroids, specified as true or false.

## BoundingBoxOutputPort - Return coordinates of bounding boxes true (default) | false

Return coordinates of bounding boxes, specified as true or false.

## MajorAxisLength0utputPort - Return vector whose values represent lengths of ellipses' major axes <br> false (default)| true

Return vector whose values represent lengths of ellipses' major axes, specified as true or false. Set this property to true to output a vector whose values represent the lengths of the major axes of the ellipses that have the same normalized second central moments as the labeled regions. This property applies when you set the OutputDataType property to double or single.

## MinorAxisLength0utputPort - Return vector whose values represent lengths of ellipses' minor axes <br> false (default) |true

Return vector whose values represent lengths of ellipses' minor axes, specified as true or false. Set this property to true to output a vector whose values represent the lengths of
the minor axes of the ellipses that have the same normalized second central moments as the labeled regions. This property is available when the OutputDataType property is double or single.

Orientation0utputPort - Return vector whose values represent angles between ellipses' major axes and $x$-axis
false (default)|true
Return vector whose values represent angles between ellipses' major axes and x-axis, specified as true or false. Set this property to true to output a vector whose values represent the angles between the major axes of the ellipses and the x-axis. This property applies when you set the OutputDataType property to double or single.

## EccentricityOutputPort - Return vector whose values represent ellipses' eccentricities <br> false (default) | true

Return vector whose values represent ellipses' eccentricities, specified as true or false. Set this property to true to output a vector whose values represent the eccentricities of the ellipses that have the same second moments as the region. This property applies when you set the OutputDataType property to double or single.

## EquivalentDiameterSquaredOutputPort - Return vector whose values represent equivalent diameters squared <br> false (default)|true

Return vector whose values represent equivalent diameters squared, specified as true or false. Set this property to true to output a vector whose values represent the equivalent diameters squared.

## ExtentOutputPort - Return vector whose values represent results of dividing blob areas by bounding box areas

false (default)|true

Return vector whose values represent results of dividing blob areas by bounding box areas, specified as true or false.

Perimeter0utputPort - Return vector whose values represent estimates of blob perimeter lengths
false (default) | true

Return vector whose values represent estimates of blob perimeter lengths, specified as true or false.

## OutputDataType - Output data type of statistics double (default)|single|Fixed point

Output data type of statistics, specified as double,single, or Fixed point. Area and bounding box outputs are always an int32 data type. Major axis length, Minor axis length, Orientation and Eccentricity do not apply when you set this property to Fixed point.

## Connectivity - Connected pixels

8 (default) | 4
Connected pixels, specified as 4 or 8.

## LabelMatrix0utputPort - Maximum number of labeled regions in each input image

50 (default) | positive scalar integer.
Maximum number of labeled regions in each input image, specified as a positive scalar integer. The maximum number of blobs the object outputs depends on both the value of this property, and on the size of the input image. The number of blobs the object outputs may be limited by the input image size.

## MinimumBlobArea - Minimum blob area in pixels 0 (default) | positive scalar integer.

Minimum blob area in pixels, specified as positive scalar integer.
Tunable: Yes

```
MaximumBlobArea - Maximum blob area in pixels
intmax('uint32') (default) |integer
```

Maximum blob area in pixels, specified as an integer.
Tunable: Yes

## ExcludeBorderBlobs - Exclude blobs that contain at least one image border pixel

false (default) | true

Exclude blobs that contain at least one image border pixel, specified as true or false.

## MaximumCount - Maximum number of labeled regions in each input image 50 (default) | positive scalar integer

Maximum number of labeled regions in each input image, specified as a positive scalar integer. The maximum number of blobs the object outputs depends on both the value of this property, and on the size of the input image. The number of blobs the object outputs may be limited by the input image size

## Fixed-Point Properties

## RoundingMethod - Rounding method for fixed-point operations <br> 'Floor' (default)|'Ceiling'| 'Convergent' | 'Nearest''Round' | 'Simplest''Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling', 'Convergent', 'Nearest', 'Round', 'Simplest', or 'Zero'.

## OverflowAction - Action to take when integer input is out-of-range

 'Wrap' (default)|'Saturate'Action to take when integer input is out-of-range, specified as 'Wrap ' or 'Saturate'.

## ProductDataType - Product data type

'Same as input' (default)|'Custom'
Product data type, specified as 'Same as input' or 'Custom'.

## CustomProductDataType - Product word and fraction lengths

numerictype(true,32,30) (default) | scaled numerictype object
Product word and fraction lengths, specified as a scaled numerictype object. This property applies only when you set the AccumulatorDataType property to 'Custom'.

## AccumulatorDataType - Data type of accumulator 'Same as product' (default)|'Same as input'|'Custom'

Data type of accumulator, specified as 'Same as product','Same as input', or 'Custom'.

## CustomAccumulatorDataType - Accumulator word and fraction lengths

numerictype(true, 32,30) (default) | scaled numerictype object
Accumulator word and fraction lengths, specified as a scaled numerictype object. This property applies only when you set the AccumulatorDataType property to 'Custom'.

## Usage

## Syntax

```
[area,centroid,bbox] = Hblob(bw)
```

$\qquad$

``` ,majoraxis] = Hblob(bw)
```

$\qquad$

``` ,minoraxis] = Hblob(bw)
[bw
``` \(\qquad\)
``` ,orientation] = Hblob(bw)
[___, eccentricity] = Hblob(bw)
[__, EQDIASQ] = Hblob(bw)
[__, EXTENT] = Hblob(bw)
```

$\qquad$

``` , perimeter] = Hblob(bw)
```

$\qquad$

``` ,label] = Hblob(bw)
```


## Description

[area, centroid,bbox] = Hblob(bw)returns the area, centroid, and the bounding box of the blobs when the AreaOutputPort, CentroidOutputPort and BoundingBoxOutputPort properties are set to true. These are the only properties that are set to true by default. If you set any additional properties to true, the corresponding outputs follow the area,centroid, and bbox outputs.
[ $\qquad$ ,majoraxis] = Hblob(bw) computes the major axis length majoraxis of the blobs found in input binary image bw when you set the MajorAxisLengthOutputPort property to true.
[ $\qquad$ ,minoraxis] = Hblob(bw) computes the minor axis length minoraxis of the blobs found in input binary image BW when you set the MinorAxisLengthOutputPort property to true.
[bw $\qquad$ ,orientation] = Hblob(bw) computes the orientation of the blobs found in input binary image bw when you set the Orientation0utputPort property to true.
[ $\qquad$ ,eccentricity] = Hblob(bw) computes the eccentricity of the blobs found in input binary image bw when you set the EccentricityOutputPort property to true.
[__, EQDIASQ] = Hblob(bw) computes the equivalent diameter squared EQDIASQ of the blobs found in input binary image bw when you set the EquivalentDiameterSquaredOutputPort property to true.
$\qquad$ ,EXTENT] = Hblob(bw) computes the EXTENT of the blobs found in input binary image bw when the Extent0utputPort property is set to true.
[ $\qquad$ , perimeter] = Hblob(bw) computes the perimeter of the blobs found in input binary image bw when you set the PerimeterOutputPort property to true.
[ $\qquad$ , label] = Hblob(bw) returns a label matrix label of the blobs found in input binary image bw when you set the LabelMatrixOutputPort property to true.

## Input Arguments

## bw - Binary image

vector | matrix
Binary image, specified as a vector or matrix.

## Output Arguments

## area - Number of pixels in labeled regions

vector
Number of pixels in labeled regions, specified as a vector

## centroid - Centroid coordinates

## M-by-2 matrix.

Centroid coordinates, specified as an $M$-by- 2 matrix. $M$ is the number of blobs.

## bbox - Bounding box coordinates

$M$-by-4 matrix
$M$-by-4 matrix in the format [ $x$ y width height], where M represents the number of blobs and $[x, y]$ represents the upper-left corner of the bounding box.

## majoraxis - Lengths of major axes of ellipses <br> vector

Lengths of major axes of ellipses, specified as a vector.

## minoraxis - Lengths of minor axes of ellipses

vector
Lengths of minor axes of ellipses, specified as a vector.

## orientation - Angles between the major axes of the ellipses and the x -axis vector

Angles between the major axes of the ellipses and the x -axis, specified as a vector.

## eccentricity - Eccentricities of the ellipses <br> vector

Eccentricities of the ellipses, specified as a vector

## EQDIASQ - Equivalent diameter squared

 vectorEquivalent diameter squared, specified as a vector.

## extent - Ratio between area and bounding box <br> vector

Ratio between area and bounding box, specified as a vector. The vector contains the results of dividing the areas of the blobs by the area of their bounding boxes

## perimeter - Estimate of the perimeter length

vector
Estimate of the perimeter length, specified as a vector. The vector contains an estimate of the perimeter length, in pixels, for each blob.

## label - Label matrix

matrix
Label matrix, specified as a matrix.

## Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:
release(obj)

## Common to All System Objects

step Run System object algorithm
$\begin{array}{ll}\text { release } & \begin{array}{l}\text { Release resources and allow changes to System object property values and } \\ \text { input characteristics }\end{array} \\ \text { reset } & \text { Reset internal states of System object }\end{array}$

## Examples

## Find Centroid of Blob

Create the blob analysis object.
hBlob = vision.BlobAnalysis('Area0utputPort',false,'BoundingBox0utputPort',false);
Create the blob.
img = logical([0 0 0000 ; ...
$011110 ; \ldots$
$011110 ;.$.
$011110 ; \ldots$
$0000001) ;$
Find the coordinates for the centroid.
centroid = hBlob(img);

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- See "System Objects in MATLAB Code Generation" (MATLAB Coder).


## See Also

graythresh|multithresh

## Topics

"Cell Counting"

Introduced in R2012a

## vision.BlockMatcher

Package: vision
Estimate motion between images or video frames

## Description

To estimate motion between images or video frames.
1 Create the vision.BlockMatcher object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

## Creation

## Syntax

blkMatcher = vision.BlockMatcher
blkMatcher = vision.BlockMatcher(Name,Value)

## Description

blkMatcher = vision. BlockMatcher returns an object, blkMatcher, that estimates motion between two images or two video frames. The object performs this estimation using a block matching method by moving a block of pixels over a search region.
blkMatcher = vision. BlockMatcher(Name, Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, blkMatcher $=$ vision. BlockMatcher('ReferenceFrameSource','Input port')

## Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

## ReferenceFrameSource - Reference frame source 'Property' (default)|'Input port'

Reference frame source, specified as 'Input port' or 'Property'. When you set the ReferenceFrameSource property to 'Input port', a reference frame input must be specified to the step method of the block matcher object.

## ReferenceFrameDelay - Number of frames between reference and current frames

```
1 (default) | scalar integer
```

Number of frames between reference and current frames, specified as a scalar integer greater than or equal to zero. This property applies when you set the ReferenceFrameSource property to 'Property'.

## SearchMethod - Best match search method

'Exhaustive' (default)|'Three-step'
Best match search method, specified as 'Exhaustive' or 'Three-step'. Specify how to locate the block of pixels in frame $k+1$ that best matches the block of pixels in frame $k$. If you set this property to 'Exhaustive', the block matcher object selects the location of the block of pixels in frame $k+1$. The block matcher does so by moving the block over the search region one pixel at a time, which is computationally expensive.

If you set this property to 'Three-step', the block matcher object searches for the block of pixels in frame $k+1$ that best matches the block of pixels in frame $k$ using a steadily decreasing step size. The object begins with a step size approximately equal to half the maximum search range. In each step, the object compares the central point of the search region to eight search points located on the boundaries of the region and moves the central point to the search point whose values is the closest to that of the central
point. The object then reduces the step size by half, and begins the process again. This option is less computationally expensive, though sometimes it does not find the optimal solution.

## BlockSize - Size of block in pixels

## [17 17] (default)| two-element vector

Size of block, specified in pixels as a two-element vector.

## MaximumDisplacement - Maximum displacement search

## [7 7] (default)| two-element vector

Maximum displacement search, specified as a two-element vector. Specify the maximum number of pixels that any center pixel in a block of pixels can move, from image to image or from frame to frame. The block matcher object uses this property to determine the size of the search region.

## MatchCriteria - Match criteria between blocks

```
'Mean square error (MSE)'(default)|'Mean absolute difference (MAD')
```

Match criteria between blocks, specified as 'Mean square error (MSE)' or 'Mean absolute difference (MAD').

## OutputValue - Motion output form

'Magnitude-squared' (default)|'Horizontal and vertical components in complex form'

Motion output form, specified as 'Magnitude-squared' or 'Horizontal and vertical components in complex form'.

## Overlap - Input image subdivision overlap

[0 0] (default)| two-element vector
Input image subdivision overlap, specified in pixels as a two-element vector.

## Fixed-Point Properties

## RoundingMethod - Rounding method for fixed-point operations

```
'Floor' (default)|'Ceiling'|'Convergent' | 'Nearest''Round'
'Simplest''Zero'
```

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling', 'Convergent', 'Nearest', 'Round', 'Simplest', or 'Zero'.

## OverflowAction - Action to take when integer input is out-of-range

 'Wrap' (default)|'Saturate'Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

## ProductDataType - Product data type

'Same as input' (default)|'Custom'
Product data type, specified as 'Same as input' or 'Custom'.

## CustomProductDataType - Product word and fraction lengths

numerictype(true,32,30) (default)| scaled numerictype object
Product word and fraction lengths, specified as a scaled numerictype object. This property applies only when you set the AccumulatorDataType property to 'Custom'.

## AccumulatorDataType - Data type of accumulator 'Same as product' (default)|'Same as input'|'Custom'

Data type of accumulator, specified as 'Same as product','Same as input', or 'Custom'.

## CustomAccumulatorDataType - Accumulator word and fraction lengths

 numerictype(true, 32,30) (default) | scaled numerictype objectAccumulator word and fraction lengths, specified as a scaled numerictype object. This property applies only when you set the AccumulatorDataType property to 'Custom'.

## Usage

## Syntax

V = blkMatcher(I)
C = blkMatcher(I)
Y = blkMatcher(I,iref)

## Description

$\mathrm{V}=\mathrm{blkMatcher}(\mathrm{I})$ computes the motion of input image I from one video frame to another, and returns V as a matrix of velocity magnitudes.
$\mathrm{C}=\mathrm{blkMatcher}(\mathrm{I})$ computes the motion of input image I from one video frame to another, and returns $C$ as a complex matrix of horizontal and vertical components, when you set the OutputValue property to Horizontal and vertical components in complex form.
$Y=b l k M a t c h e r(I, i r e f)$ computes the motion between input image I and reference image iref when you set the ReferenceFrameSource property to Input port.

## Input Arguments

## I - Input data <br> scalar | vector | matrix

Input data, specified as a scalar, vector, or matrix of intensity values.

## iref - Input reference data <br> scalar | vector | matrix

Input reference data, specified as a scalar, vector, or matrix of intensity values.

## Output Arguments

## V - Velocity magnitudes

matrix
Velocity magnitudes, returned as a matrix.

## C - Horizontal and vertical components matrix

Horizontal and vertical components, returned as a complex matrix.

## Y - Motion between inputs <br> matrix

Motion between image and reference image, returned as a matrix.

## Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax: release(obj)

## Common to All System Objects

step Run System object algorithm
release Release resources and allow changes to System object property values and input characteristics
reset Reset internal states of System object

## Examples

## Estimate Motion Using BlockMatcher

Read and convert RGB image to grayscale.

```
img1 = im2double(rgb2gray(imread('onion.png')));
```

Create a block matcher and alpha blender object.

```
hbm = vision.BlockMatcher('ReferenceFrameSource',...
 'Input port','BlockSize',[35 35]);
hbm.OutputValue = 'Horizontal and vertical components in complex form';
halphablend = vision.AlphaBlender;
```

Offset the first image by [5 5] pixels to create a second image.

```
img2 = imtranslate(img1,[5,5]);
```

Compute motion for the two images.

```
motion = hbm(img1,img2);
```

Blend the two images.
img12 = halphablend(img2,img1);
Use a quiver plot to show the direction of motion on the images.

```
[X,Y] = meshgrid(1:35:size(img1,2),1:35:size(img1,1));
imshow(img12)
hold on
quiver(X(:),Y(:),real(motion(:)),imag(motion(:)),0)
hold off
```



## See Also

opticalFlow|opticalFlowFarneback|opticalFlowHS|opticalFlowLK| opticalFlowLKDoG

## Introduced in R2012a

## vision.CascadeObjectDetector

Package: vision
Detect objects using the Viola-Jones algorithm

## Description

The cascade object detector uses the Viola-Jones algorithm to detect people's faces, noses, eyes, mouth, or upper body. You can also use the Image Labeler to train a custom classifier to use with this System object. For details on how the function works, see "Train a Cascade Object Detector".

To detect facial features or upper body in an image:
1 Create the vision. CascadeObjectDetector object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

## Creation

## Syntax

```
detector = vision.CascadeObjectDetector
detector = vision.CascadeObjectDetector(model)
detector = vision.CascadeObjectDetector(XMLFILE)
detector = vision.CascadeObjectDetector(Name,Value)
```


## Description

detector $=$ vision.CascadeObjectDetector creates a detector to detect objects using the Viola-Jones algorithm.
detector $=$ vision. CascadeObjectDetector(model) creates a detector configured to detect objects defined by the input character vector, model.
detector $=$ vision.CascadeObjectDetector(XMLFILE) creates a detector and configures it to use the custom classification model specified with the XMLFILE input.
detector $=$ vision.CascadeObjectDetector(Name, Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, detector = vision. CascadeObjectDetector('ClassificationModel','UpperBody')

## Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

ClassificationModel - Trained cascade classification model 'FrontalFaceCART' (default)| character string

Trained cascade classification model, specified as a character vector. The ClassificationModel property controls the type of object to detect. By default, the detector is configured to detect faces.

You can set this character vector to an XML file containing a custom classification model, or to one of the valid model character vectors listed below. You can train a custom classification model using the trainCascadeObjectDetector function. The function can train the model using Haar-like features, histograms of oriented gradients (HOG), or local binary patterns (LBP). For details on how to use the function, see "Train a Cascade Object Detector".

Classification Model	Image Size Used to Train Model	Model Description
' FrontalFaceCART' (Default)	[20 20]	Detects faces that are upright and forward facing. This model is composed of weak classifiers, based on the classification and regression tree analysis (CART). These classifiers use Haar features to encode facial features. CART-based classifiers provide the ability to model higher-order dependencies between facial features. [1]
'FrontalFaceLBP'	[24 24]	Detects faces that are upright and forward facing. This model is composed of weak classifiers, based on a decision stump. These classifiers use local binary patterns (LBP) to encode facial features. LBP features can provide robustness against variation in illumination. [2]
'UpperBody '	[18 22]	Detects the upper-body region, which is defined as the head and shoulders area. This model uses Haar features to encode the details of the head and shoulder region. Because it uses more features around the head, this model is more robust against pose changes, e.g. head rotations/tilts. [3]
'EyePairBig'   'EyePairSmall'	$\begin{aligned} & {\left[\begin{array}{ll} 11 & 45] \\ {[5} & 22 \end{array}\right]} \end{aligned}$	Detects a pair of eyes. The 'EyePairSmall' model is trained using a smaller image. This enables the model to detect smaller eyes than the 'EyePairBig' model can detect.[4]
'LeftEye'   'RightEye'	[12 18]	Detects the left and right eye separately. These models are composed of weak classifiers, based on a decision stump. These classifiers use Haar features to encode details.[4]


Classification Model	Image Size Used   to Train Model	Model Description
'LeftEyeCART'	$\left[\begin{array}{ll}\text { 'R 20] }\end{array}\right.$	Detects the left and right eye separately. The   weak classifiers that make up these models   are CART-trees. Compared to decision   stumps, CART-tree-based classifiers are   better able to model higher-order   dependencies. [5]
'ProfileFace'	$[2020]$	Detects upright face profiles. This model is   composed of weak classifiers, based on a   decision stump. These classifiers use Haar   features to encode face details.
'Mouth'	$[15$ 25]	Detects the mouth. This model is composed of   weak classifiers, based on a decision stump,   which use Haar features to encode mouth   details.[4]
'Nose'	$\left[\begin{array}{l}\text { This model is composed of weak classifiers, } \\ \text { based on a decision stump, which use Haar } \\ \text { features to encode nose details.[4] }\end{array}\right.$	

## MinSize - Size of smallest detectable object <br> [] (default) | two-element vector

Size of smallest detectable object, specified as a two-element vector [height width]. Set this property in pixels for the minimum size region containing an object. The value must be greater than or equal to the image size used to train the model. Use this property to reduce computation time when you know the minimum object size prior to processing the image. When you do not specify a value for this property, the detector sets it to the size of the image used to train the classification model.

For details explaining the relationship between setting the size of the detectable object and the ScaleFactor property, see "Algorithms" on page 2-343 section.

Tunable: Yes
MaxSize - Size of largest detectable object
[] (default) | two-element vector
Size of largest detectable object, specified as a two-element vector [height width]. Specify the size in pixels of the largest object to detect. Use this property to reduce computation
time when you know the maximum object size prior to processing the image. When you do not specify a value for this property, the detector sets it to size(I).

For details explaining the relationship between setting the size of the detectable object and the ScaleFactor property, see the "Algorithms" on page 2-343 section.

## ScaleFactor - Scaling for multiscale object detection

## 1.1 (default) | scalar

Scaling for multiscale object detection, specified as a value greater than 1.0001. The scale factor incrementally scales the detection resolution between MinSize and MaxSize. You can set the scale factor to an ideal value using: size(I)/(size(I)-0.5)

The detector scales the search region at increments between MinSize and MaxSize using the following relationship:
search region $=\quad$ round((Training Size)*(ScaleFactor $\left.{ }^{N}\right)$ )
$N$ is the current increment, an integer greater than zero, and Training Size is the image size used to train the classification model.

Tunable: Yes

## MergeThreshold - Detection threshold

4 (default) | integer
Detection threshold, specified as an integer. The threshold defines the criteria needed to declare a final detection in an area where there are multiple detections around an object. Groups of colocated detections that meet the threshold are merged to produce one bounding box around the target object. Increasing this threshold may help suppress false detections by requiring that the target object be detected multiple times during the multiscale detection phase. When you set this property to 0 , all detections are returned without performing thresholding or merging operation. This property is tunable.

## UseROI - Use region of interest

false (default) | false
Use region of interest, specified as false or false. Set this property to true to detect objects within a rectangular region of interest within the input image.

## Usage

## Syntax

```
bbox = detector(I)
```

bbox $=$ detector(I,roi)

## Description

bbox $=$ detector (I) returns an $M$-by- 4 matrix, bbox, that defines $M$ bounding boxes containing the detected objects. The detector performs multiscale object detection on the input image, I.
bbox = detector(I, roi) detects objects within the rectangular search region specified by roi. Set the 'UseROI' property to true to use this syntax.

## Input Arguments

## I - Input image <br> grayscale | truecolor (RGB)

Input image, specified as grayscale or truecolor (RGB).

## model - Classification model

'FrontalFaceCART' (default)| character string
Classification model, specified as a character vector. The model input describes the type of object to detect. There are several valid model character vectors, such as
'FrontalFaceCART', 'UpperBody', and 'ProfileFace'. See the
ClassificationModel property description for a full list of available models.

## XMLFILE - Custom classification model

## XML file

Custom classification model, specified as an XML file. The XMLFILE can be created using the trainCascadeObjectDetector function or OpenCV (Open Source Computer Vision) training functionality. You must specify a full or relative path to the XMLFILE, if it is not on the MATLAB path.

## roi - Rectangular region of interest

four-element vector (default)
Rectangular region of interest within image I, specified as a four-element vector, [x y width height].

## Output Arguments

## bbox - Detections

M-by-4 matrix (default)
Detections, returned as an $M$-by- 4 element matrix. Each row of the output matrix contains a four-element vector, [x y width height], that specifies in pixels, the upper-left corner and size of a bounding box.

## Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:
release(obj)

## Common to All System Objects

step	Run System object algorithm
release	Release resources and allow changes to System object property values and
input characteristics	
reset	Reset internal states of System object

## Examples

## Detect Faces in an Image Using the Frontal Face Classification Model

Create a face detector object.
faceDetector = vision. CascadeObjectDetector;
Read the input image.

```
I = imread('visionteam.jpg');
```

Detect faces.

```
bboxes = faceDetector(I);
```

Annotate detected faces.
IFaces = insertObjectAnnotation(I,'rectangle',bboxes,'Face'); figure
imshow(IFaces)
title('Detected faces');

Detected faces


Detect Upper Body in Image Using Upper Body Classification Model
Create a body detector object and set properties.
bodyDetector = vision.CascadeObjectDetector('UpperBody');
bodyDetector.MinSize = [60 60];
bodyDetector.MergeThreshold = 10;

Read input image and detect upper body.

```
I2 = imread('visionteam.jpg');
bboxBody = bodyDetector(I2);
```

Annotate detected upper bodies.

```
IBody = insertObjectAnnotation(I2,'rectangle',bboxBody,'Upper Body');
figure
imshow(IBody)
title('Detected upper bodies');
```

Detected upper bodies


## Algorithms

## Classification Model Training

Each model is trained to detect a specific type of object. The classification models are trained by extracting features from a set of known images. These extracted features are
then fed into a learning algorithm to train the classification model. Computer Vision Toolbox software uses the Viola-Jones cascade object detector. This detector uses HOG[7], LBP[8], and Haar-like [6] features and a cascade of classifiers trained using boosting.

The image size used to train the classifiers defines the smallest region containing the object. Training image sizes vary according to the application, type of target object, and available positive images. You must set the MinSize property to a value greater than or equal to the image size used to train the model.

## Cascade of Classifiers

This object uses a cascade of classifiers to efficiently process image regions for the presence of a target object. Each stage in the cascade applies increasingly more complex binary classifiers, which allows the algorithm to rapidly reject regions that do not contain the target. If the desired object is not found at any stage in the cascade, the detector immediately rejects the region and processing is terminated. By terminating, the object avoids invoking computation-intensive classifiers further down the cascade.


## Multiscale Object Detection

The detector incrementally scales the input image to locate target objects. At each scale increment, a sliding window, whose size is the same as the training image size, scans the scaled image to locate objects. The ScaleFactor property determines the amount of scaling between successive increments.

The search region size is related to the ScaleFactor in the following way:
search region $=\quad$ round ((ObjectTrainingSize)*(ScaleFactor $\left.{ }^{N}\right)$ )
$N$ is the current increment, an integer greater than zero, and ObjectTrainingSize is the image size used to train the classification model.


The search window traverses the image for each scaled increment.

## Relationship Between MinSize, MaxSize, and ScaleFactor

Understanding the relationship between the size of the object to detect and the scale factor will help you set the properties accordingly. The MinSize and MaxSize properties limit the size range of the object to detect. Ideally, these properties are modified to reduce computation time when you know the approximate object size prior to processing the image. They are not designed to provide precise filtering of results, based on object size. The behavior of these properties is affected by the ScaleFactor. The scale factor determines the quantization of the search window sizes.
search region $=\quad$ round((Training Size)*(ScaleFactor $\left.{ }^{N}\right)$ )
The actual range of returned object sizes may not be exactly what you select for the MinSize and MaxSize properties. For example,
For a ScaleFactor value of 1.1 with a $24 x 24$ training size, for 5 increments, the search region calculation would be:
$\gg$ search region $=\quad$ round(24*1.1.^(1:5))

If you were to set MaxSize to 34, due to the search region quantization, the actual maximum object size used by the algorithm would be 32 .

## Merge Detection Threshold

For each increment in scale, the search window traverses over the image producing multiple detections around the target object. The multiple detections are merged into one bounding box per target object. You can use the MergeThreshold property to control the number of detections required before combining or rejecting the detections. The size of the final bounding box is an average of the sizes of the bounding boxes for the individual detections and lies between MinSize and MaxSize.


## References

[1] Lienhart R., Kuranov A., and V. Pisarevsky "Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection." Proceedings of the 25th DAGM Symposium on Pattern Recognition. Magdeburg, Germany, 2003.
[2] Ojala Timo, Pietikäinen Matti, and Mäenpää Topi, "Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns" . In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002. Volume 24, Issue 7, pp. 971-987.
[3] Kruppa H., Castrillon-Santana M., and B. Schiele. "Fast and Robust Face Finding via Local Context" . Proceedings of the Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2003, pp. 157-164.
[4] Castrillón Marco, Déniz Oscar, Guerra Cayetano, and Hernández Mario, " ENCARA2: Real-time detection of multiple faces at different resolutions in video streams" . In Journal of Visual Communication and Image Representation, 2007 (18) 2: pp. 130-140.
[5] Yu Shiqi " Eye Detection." Shiqi Yu’s Homepage. http://yushiqi.cn/research/ eyedetection.
[6] Viola, Paul and Michael J. Jones, " Rapid Object Detection using a Boosted Cascade of Simple Features", Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. Volume: 1, pp.511-518.
[7] Dalal, N., and B. Triggs, " Histograms of Oriented Gradients for Human Detection" . IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Volume 1, (2005), pp. 886-893.
[8] Ojala, T., M. Pietikainen, and T. Maenpaa, " Multiresolution Gray-scale and Rotation Invariant Texture Classification With Local Binary Patterns" . IEEE Transactions on Pattern Analysis and Machine Intelligence. Volume 24, No. 7 July 2002, pp. 971-987.

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\text {Coder }}{ }^{\mathrm{Tm}}$.
Usage notes and limitations:

- Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries. See "Portable C Code Generation for Functions That Use OpenCV Library".
- See "System Objects in MATLAB Code Generation" (MATLAB Coder).
- XMLFILE must be a compile-time constant.


## See Also

Image Labeler | insertShape | integralImage | trainCascadeObjectDetector | vision. PeopleDetector

## Topics

"Face Detection and Tracking Using CAMShift"
"Face Detection and Tracking Using the KLT Algorithm"
"Face Detection and Tracking Using Live Video Acquisition"
"Detect and Track Face"
"Get Started with the Image Labeler"
"Train a Cascade Object Detector"
"Multiple Object Tracking"

## External Websites

Detect and Track Multiple Faces in a Live Video Stream

## Introduced in R2012a

## vision.Deinterlacer

## Package: vision

Remove motion artifacts by deinterlacing input video signal

## Description

To remove motion artifacts by deinterlacing input video signal.
To track a set of points:
1 Create the vision. Deinterlacer object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

## Creation

## Syntax

Hdeinterlacer = vision.Deinterlacer
Hdeinterlacer $=$ vision. Deinterlacer(Name, Value)

## Description

Hdeinterlacer = vision. Deinterlacer returns a deinterlacing System object, Hdeinterlacer, that removes motion artifacts from images composed of weaved top and bottom fields of an interlaced signal.

Hdeinterlacer = vision.Deinterlacer(Name, Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, varObj = vision. Deinterlacer('Method','Line repetition')

## Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

## Method - Method used to deinterlace input video

```
'Line repetition'(default)|'Linear interpolation'| 'Vertical temporal
median filtering'
```

Method used to deinterlace input video, specified as 'Line repetition', 'Linear interpolation', 'Vertical temporal median filtering'.

TransposedInput - Indicate if input data is in row-major order false (default) | true

Indicate if input data is in row-major order, specified as true or false. Set this property to true if the input buffer contains data elements from the first row first, then the second row second, and so on.

## Fixed-Point Properties

RoundingMethod - Rounding method for fixed-point operations
'Floor' (default)|'Ceiling'| 'Convergent' | 'Nearest''Round' | 'Simplest''Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling', 'Convergent', 'Nearest', 'Round', 'Simplest', or 'Zero'.

## OverflowAction - Action to take when integer input is out-of-range

 'Wrap' (default)|'Saturate'Action to take when integer input is out-of-range, specified as 'Wrap ' or 'Saturate'.

## ProductDataType - Product data type

'Same as input' (default)|'Custom'

Product data type, specified as 'Same as input' or 'Custom'.

## CustomProductDataType - Product word and fraction lengths

 numerictype(true, 32,30) (default) | scaled numerictype objectProduct word and fraction lengths, specified as a scaled numerictype object. This property applies only when you set the AccumulatorDataType property to 'Custom'.

## AccumulatorDataType - Data type of accumulator

'Same as product' (default)|'Same as input'|'Custom'
Data type of accumulator, specified as 'Same as product', 'Same as input', or 'Custom'.

## CustomAccumulatorDataType - Accumulator word and fraction lengths

numerictype(true, 32,30) (default) | scaled numerictype object
Accumulator word and fraction lengths, specified as a scaled numerictype object. This property applies only when you set the AccumulatorDataType property to 'Custom'.

## Usage

## Syntax

```
value = Hdeinterlacer(input)
```


## Description

value = Hdeinterlacer(input)deinterlaces the input according to the algorithm set in the Method property

## Input Arguments

## input - Input data

top and bottom fields of interlaced video
Input data, specified as a combination of top and bottom fields of interlaced video.

## Output Arguments

value - Frames of deinterlaced video

top and bottom fields of interlaced video
Frames of deinterlaced video, returned as the same data type as the input

## Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:

```
release(obj)
```


## Common to All System Objects

step Run System object algorithm
release Release resources and allow changes to System object property values and input characteristics
reset Reset internal states of System object

## Examples

## Remove Motion Artifacts From Image

Create a deinterlacer object.
hdinterlacer = vision.Deinterlacer;
Read an image with motion artifacts.
I = imread('vipinterlace.png');
Apply the deinterlacer to the image.
clearimage = hdinterlacer(I);
Display the results.

```
imshow(I);
title('Original Image');
```

Original Image

figure, imshow(clearimage);
title('Image after deinterlacing');

Image after deinterlacing


## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathrm{Coder}^{\mathrm{TM}}$.
Usage notes and limitations:

- See "System Objects in MATLAB Code Generation" (MATLAB Coder).


## See Also

Deinterlacing

Introduced in R2012a

## vision.ForegroundDetector

Package: vision
Foreground detection using Gaussian mixture models

## Description

The ForegroundDetector compares a color or grayscale video frame to a background model to determine whether individual pixels are part of the background or the foreground. It then computes a foreground mask. By using background subtraction, you can detect foreground objects in an image taken from a stationary camera.

To detect foreground in an image :
1 Create the vision. ForegroundDetector object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

## Creation

## Syntax

```
detector = vision.ForegroundDetector
detector = vision.ForegroundDetector(Name,Value)
```


## Description

detector $=$ vision.ForegroundDetector computes and returns a foreground mask using the Gaussian mixture model (GMM).
detector $=$ vision.ForegroundDetector(Name, Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, detector = vision.ForegroundDetector('LearningRate',0.005)

## Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

## AdaptLearningRate - Adapt learning rate <br> 'true' (default)|'false'

Adapt learning rate, specified as 'true' or 'false'. This property enables the object to adapt the learning rate during the period specified by the NumTrainingFrames property. When you set this property to true, the object sets the LearningRate property to 1 / (current frame number). When you set this property to false, the LearningRate property must be set at each time step.

## NumTrainingFrames - Number of initial video frames for training background model

150 (default) | integer
Number of initial video frames for training background model, specified as an integer. When you set the AdaptLearningRate to false, this property will not be available.

## LearningRate - Learning rate for parameter updates

0.005 (default) | numeric scalar

Learning rate for parameter updates, specified as a numeric scalar. Specify the learning rate to adapt model parameters. This property controls how quickly the model adapts to changing conditions. Set this property appropriately to ensure algorithm stability.

The learning rate specified by this property can only be implemented when you set the AdaptLearningRate to true and after the training period specified by NumTrainingFrames is over.

Tunable: Yes
MinimumBackgroundRatio - Threshold to determine background model
0.7 (default) | numeric scalar

Threshold to determine background model, specified as a numeric scalar. Set this property to represent the minimum possibility for pixels to be considered background values. Multimodal backgrounds cannot be handled if this value is too small.

## NumGaussians - Number of Gaussian modes in the mixture model

## 5 (default) | positive integer

Number of Gaussian modes in the mixture model, specified as a positive integer. Typically, you would set this value to 3,4 or 5 . Set the value to 3 or greater to be able to model multiple background modes.

## InitialVariance - Initial mixture model variance

'Auto ' (default)| numeric scalar
Initial mixture model variance, specified as a numeric scalar or the 'Auto ' character vector.

Image Data Type	Initial Variance
double/single	$(30 / 255)^{\wedge} 2$
uint8	$30^{\wedge} 2$

This property applies to all color channels for color inputs.

## Usage

## Syntax

foregroundMask = detector(I)
foregroundMask = detector(I,learningRate)

## Description

foregroundMask = detector(I) computes the foreground mask for input image I, and returns a logical mask. Values of 1 in the mask correspond to foreground pixels.
foregroundMask = detector(I,learningRate) computes the foreground mask using the LearningRate.

## Input Arguments

I - Input image<br>grayscale | truecolor (RGB)

Input image, specified as grayscale or truecolor (RGB).

## learningRate - Learning rate for parameter updates <br> 0.005 (default) | numeric scalar

Learning rate for parameter updates, specified as a numeric scalar. Specify the learning rate to adapt model parameters. This property controls how quickly the model adapts to changing conditions. Set this property appropriately to ensure algorithm stability.

The learning rate specified by this property can only be implemented when you set the AdaptLearningRate to true and after the training period specified by NumTrainingFrames is over.

Tunable: Yes

## Output Arguments

## foregroundMask - Foreground mask

binary mask
Foreground mask computed using a Gaussian mixture model, returned as a binary mask.

## Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:
release(obj)

## Common to All System Objects

step Run System object algorithm
release Release resources and allow changes to System object property values and input characteristics
reset Reset internal states of System object

## Examples

## Detect Moving Cars In Video

Create a video source object to read file.

```
videoSource = vision.VideoFileReader('viptraffic.avi',...
 'ImageColorSpace','Intensity','VideoOutputDataType','uint8');
```

Create a detector object and set the number of training frames to 5 (because it is a short video.) Set initial standard deviation.

```
detector = vision.ForegroundDetector(...
 'NumTrainingFrames', 5, ...
 'InitialVariance', 30*30);
```

Perform blob analysis.

```
blob = vision.BlobAnalysis(...
 'CentroidOutputPort', false, 'AreaOutputPort', false, ...
 'BoundingBoxOutputPort', true, ...
 'MinimumBlobAreaSource', 'Property', 'MinimumBlobArea', 250);
```

Insert a border.

```
shapeInserter = vision.ShapeInserter('BorderColor','White');
```

Play results. Draw bounding boxes around cars.

```
videoPlayer = vision.VideoPlayer();
while ~isDone(videoSource)
 frame = videoSource();
 fgMask = detector(frame);
 bbox = blob(fgMask);
 out = shapeInserter(frame,bbox);
 videoPlayer(out);
end
```



Release objects.
release(videoPlayer);
release(videoSource);


## References

[1] Kaewtrakulpong, P. and R. Bowden. An Improved Adaptive Background Mixture Model for Realtime Tracking with Shadow Detection. In Proc. 2nd European Workshop on Advanced Video Based Surveillance Systems, AVBS01, VIDEO BASED SURVEILLANCE SYSTEMS: Computer Vision and Distributed Processing (September 2001)
[2] Stauffer, C. and W.E.L. Grimson. Adaptive Background Mixture Models for Real-Time Tracking, Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, Vol. 2 (06 August 1999), pp. 2246-252 Vol. 2.

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Generates platform-dependent library for MATLAB host target.
- Generates portable C code for non MATLAB host target.
- See "System Objects in MATLAB Code Generation" (MATLAB Coder).


## See Also

Topics<br>"Multiple Object Tracking"<br>Introduced in R2011a

## vision.GammaCorrector

Package: vision

Apply or remove gamma correction from images or video streams

## Description

To apply gamma correction to input images or a video stream:
1 Create the vision. GammaCorrector object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

## Creation

## Syntax

```
gammaCorr = vision.GammaCorrector
gammaCorr = vision.GammaCorrector(Name,Value)
gammaCorr = vision.GammaCorrector(gamma,Name,Value)
```


## Description

gammaCorr = vision.GammaCorrector returns a gamma corrector object, gammaCorr. You can use the gamma corrector to apply or remove gamma correction from images or video streams.
gammaCorr = vision.GammaCorrector(Name, Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, gammaCorr = vision.GammaCorrector('Correction','Gamma')
gammaCorr = vision.GammaCorrector(gamma, Name, Value) additionally sets the Gamma property.

## Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

## Correction - Specify gamma correction or linearization

'Gamma' (default)|'De-gamma'
Specify gamma correction or linearization, specified as 'Gamma' or 'De-gamma'.

## Gamma - Gamma value of output or input

## 2.2 (default) | numeric scalar

Gamma value of output or input, specified as numeric scalar greater than or equal to 1. When you set the Correction property to Gamma, this property gives the desired gamma value of the output video stream. When you set the Correction property to De-gamma, this property indicates the gamma value of the input video stream.

## LinearSegment - Enable gamma curve to have linear portion near origin true (default) | false

Enable gamma curve to have linear portion near origin, specified as true or false.

## BreakPoint - I-axis value of the end of gamma correction linear segment 0.018 (default) | numeric scalar

I-axis value of the end of gamma correction linear segment, specified as a numeric scalar value in the range ( 0,1 ). This property applies when you set the LinearSegment property to true.

## Usage

## Syntax

```
y = gammaCorr(input)
```


## Description

$\mathrm{y}=$ gammaCorr(input) applies or removes gamma correction from input I , and returns the gamma corrected or linearized output $y$.

## Input Arguments

## input - Input

$M$-by- $N$ matrix of intensity values $\mid M$-by- $N$ - $P$ color video
Input, specified as an $M$-by- $N$ matrix of intensity values or $M$-by- $N$ - $P$ color video, where $P$ is the number of color planes.

## Output Arguments

## y - Corrected input

same as input (default)
Output, returned as an $M$-by- $N$ matrix of intensity values or $M$-by- $N$ - $P$ color video, where $P$ is the number of color planes.

## Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:
release(obj)

## Common to All System Objects

step Run System object algorithm
release Release resources and allow changes to System object property values and input characteristics
reset Reset internal states of System object

## Examples

## Improve Image Contrast Using Gamma Correction

Create a gamma corrector object with the gamma property set to 2.0.
hgamma = vision.GammaCorrector(2.0,'Correction','De-gamma');
Read an image.
img = imread('pears.png');
Apply gamma correction.
imgCor = hgamma(img);
Show the original and corrected images.
imshow(img); title('Original Image');

Original Image

figure,
imshow(imgCor);
title('Enhanced Image after De-gamma Correction');


## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- See "System Objects in MATLAB Code Generation" (MATLAB Coder).


## See Also

gamma

Introduced in R2012a

# vision.HistogramBasedTracker 

Package: vision

Histogram-based object tracking

## Description

The histogram-based tracker incorporates the continuously adaptive mean shift (CAMShift) algorithm for object tracking. It uses the histogram of pixel values to identify the tracked object.

To track an object:
1 Create the vision. HistogramBasedTracker object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

## Creation

## Syntax

hbtracker = vision. HistogramBasedTracker hbtracker = vision. HistogramBasedTracker(Name, Value)

## Description

hbtracker $=$ vision. HistogramBasedTracker returns a tracker that tracks an object by using the CAMShift algorithm. It uses the histogram of pixel values to identify the tracked object. To initialize the tracking process, you must use the initialize0bject function to specify an exemplar image of the object.
hbtracker = vision.HistogramBasedTracker(Name, Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, hbtracker = vision.HistogramBasedTracker('ObjectHistogram',[])

## Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

## ObjectHistogram - Normalized pixel value histogram

[] (default) $\mid N$-element vector.
Normalized pixel value histogram, specified as an $N$-element vector. This vector specifies the normalized histogram of the object's pixel values. Histogram values must be normalized to a value between 0 and 1 . You can use the initializeObject method to set the property.

Tunable: Yes

## Usage

## Syntax

```
bbox = hbtracker(I)
[bbox,orientation] = hbtracker(I)
[bbox,orientation,score] = hbtracker(I)
```


## Description

bbox $=$ hbtracker(I) returns a bounding box, of the tracked object. Before using the tracker, you must identify the object to track, and set the initial search window. Use the initialize0bject function to do this.
[bbox,orientation] = hbtracker(I) additionally returns the angle between the $x$ axis and the major axis of the ellipse that has the same second-order moments as the object. The returned angle is between -pi/2 and pi/2.
[bbox,orientation, score] = hbtracker(I) additionally returns the confidence score for the returned bounding box that contains the tracked object.

## Input Arguments

## I - Video frame <br> grayscale | truecolor (RGB)

Video frame, specified as grayscale or truecolor (RGB).

## Output Arguments

## bbox - Bounding box

[ $x$ y width height]
Bounding box, returned as a four-element vector in the format, [ $x$ y width height].

## orientation - Orientation

angle
Orientation, returned as an angle between -pi/2 and pi/2. The angle is measured from the $x$-axis and the major axis of the ellipse that has the same second-order moments as the object.

## score - Score

scalar
Score, returned as a scalar in the range [01]. A value of 1 corresponds to the maximum confidence. 1.

## Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:
release(obj)

## Specific to vision.HistogramBasedTracker

initializeObject
initializeSearchWindow

Set object to track
Set initial search window

## Common to All System Objects

step Run System object algorithm
release Release resources and allow changes to System object property values and input characteristics
reset Reset internal states of System object

## Examples

## Track a Face

Track and display a face in each frame of an input video.
Create System objects for reading and displaying video and for drawing a bounding box of the object.

```
videoFileReader = vision.VideoFileReader('vipcolorsegmentation.avi');
videoPlayer = vision.VideoPlayer();
shapeInserter = vision.ShapeInserter('BorderColor','Custom', ...
 'CustomBorderColor',[1 0 0]);
```

Read the first video frame, which contains the object. Convert the image to HSV color space. Then define and display the object region.

```
objectFrame = videoFileReader();
objectHSV = rgb2hsv(objectFrame);
objectRegion = [40, 45, 25, 25];
objectImage = shapeInserter(objectFrame, objectRegion);
```

```
figure
imshow(objectImage)
title('Red box shows object region')
```

Red box shows object region

(Optionally, you can select the object region using your mouse. The object must occupy the majority of the region. Use the following command.)
figure; imshow(objectFrame); objectRegion=round(getPosition(imrect))
Set the object, based on the hue channel of the first video frame.

```
tracker = vision.HistogramBasedTracker;
initializeObject(tracker, objectHSV(:,:,1) , objectRegion);
```

Track and display the object in each video frame. The while loop reads each image frame, converts the image to HSV color space, then tracks the object in the hue channel where it is distinct from the background. Finally, the example draws a box around the object and displays the results.

```
while ~isDone(videoFileReader)
 frame = videoFileReader();
 hsv = rgb2hsv(frame);
 bbox = tracker(hsv(:,:,1));
 out = shapeInserter(frame,bbox);
 videoPlayer(out);
end
```



Release the video reader and player.
release(videoPlayer);
release(videoFileReader);


## References

[1] Bradsky, G.R. "Computer Vision Face Tracking For Use in a Perceptual User Interface." Intel Technology Journal. January 1998.

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- See "System Objects in MATLAB Code Generation" (MATLAB Coder).


## See Also

## Functions

imrect|rgb2hsv|size
Introduced in R2012a

## integralKernel class

Define filter for use with integral images

## Description

This object describes box filters for use with integral images.

## Construction

intKernel = integralKernel(bbox,weights) defines an upright box filter using an $M$-by-4 matrix of bounding boxes and their corresponding weights.
intKernel = integralKernel(bbox, weights,orientation) the specified orientation.

## Input Arguments

## bbox - Bounding boxes

4-element vector | $M$-by-4 matrix
Bounding boxes, specified as either a 4 -element [ $x, y$,width, height] vector or an $M$-by- 4 matrix of individual bounding boxes. The bounding box defines the filter. The ( $x, y$ ) coordinates represent the top-most corner of the kernel. The (width, height) elements represent the width and height accordingly. Specifying the bounding boxes as an $M$-by- 4 matrix is particularly useful for constructing Haar-like features composed of multiple rectangles.

Sums are computed over regions defined by bbox. The bounding boxes can overlap. See "Define an 11-by-11 Average Filter" on page 2-383 for an example of how to specify a box filter.

## weights - Weights

$M$-length vector
Weights, specified as an $M$-length vector of weights corresponding to the bounding boxes.

For example, a conventional filter with the coefficients:

```
h = [lllll
\begin{tabular}{rrrr}
1 & 1 & 1 & \(1 ;\) \\
1 & 1 & 1 & \(1 ;\) \\
-1 & -1 & -1 & \(-1 ;\) \\
-1 & -1 & -1 & \(-1]\)
\end{tabular}
```

and two regions:
region 1: $x=1, y=1$, width $=4$, height $=2$
region 2: $x=1, y=3$, width $=4$, height $=2$
can be specified as
boxH = integralKernel([11 $142 ; 1342],[1,-1])$

## orientation - Filter orientation

'upright'|'rotated'
Filter orientation, specified as either 'upright' or 'rotated '. When you set the orientation to 'rotated ' , the ( $x, y$ ) components refer to the location of the top-left corner of the bounding box. The (width,height) components refer to a 45 -degree line from the top-left corner of the bounding box.

## Properties

These properties are read-only.

## BoundingBoxes - Bounding boxes

## 4-element vector | $M$-by-4 matrix

Bounding boxes, stored as either a 4 -element [ $x, y$,width, height] vector or an $M$-by- 4 matrix of individual bounding boxes.

## Weights - Weights

vector
Weights, stored as a vector containing a weight for each bounding box. The weights are used to define the coefficients of the filter.

## Coefficients - Filter coefficients

numeric

Filter coefficients, stored as a numeric value.

## Center - Filter center <br> $[x, y]$ coordinates

Filter center, stored as $[x, y]$ coordinates. The filter center represents the center of the bounding rectangle. It is calculated by halving the dimensions of the rectangle. For even dimensional rectangles, the center is placed at subpixel locations. Hence, it is rounded up to the next integer.

For example, for this filter, the center is at [3,3].


These coordinates are in the kernel space, where the top-left corner is $(1,1)$. To place the center in a different location, provide the appropriate bounding box specification. For this filter, the best workflow would be to construct the upright kernel and then call the rot45 method to provide the rotated version.

## Size - Filter size

## 2-element vector

Filter size, stored as a 2-element vector. The size of the kernel is computed to be the dimensions of the rectangle that bounds the kernel. For a single bounding box vector
[ $x, y$, width, height], the kernel is bounded within a rectangle of dimensions [(width +height) (width+height)-1].

For cascaded rectangles, the lowest corner of the bottom-most rectangle defines the size. For example, a filter with a bounding box specification of [3 103 3], with weights set to 1 , produces a 6-by-5 filter with this kernel:


## Orientation - Filter orientation

'upright' (default)|'rotated'
Filter orientation, stored as either 'upright' or 'rotated '.

## Methods

transpose Transpose filter
rot45 Rotates upright kernel clockwise by 45 degrees

## Examples

## Define an 11-by-11 Average Filter

```
avgH = integralKernel([1 1 11 11], 1/11^2);
```


## Define a Filter to Approximate a Gaussian Second Order Partial Derivative in $\mathbf{Y}$ Direction

```
ydH = integralKernel([1,1,5,9;1,4,5,3], [1, -3]);
```

You can also define this filter as integralKernel([1,1,5,3;1,4,5,3;1,7,5,3], [1, -2, 1]);|. This filter definition is less efficient because it requires three bounding boxes.

Visualize the filter.
ydH.Coefficients
ans $=9 \times 5$

1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
-2	-2	-2	-2	-2
-2	-2	-2	-2	-2
-2	-2	-2	-2	-2
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

## Create a Haar-like Wavelet to Detect 45-Degree Edges

Create the filter.
K = integralKernel([3,1,3,3;6 4 3 3], [1 -1], 'rotated');
Visualize the filter and mark the center.

```
imshow(K.Coefficients, [], 'InitialMagnification', 'fit');
```

hold on;
plot(K.Center(2),K.Center(1), 'r*');
impixelregion;


Pixel info: $(X, Y)$ Pixel Value


## Blur an Image Using an Average Filter

Read and display the input image.

```
I = imread('pout.tif');
imshow(I);
```



Compute the integral image.

```
intImage = integralImage(I);
```

Apply a 7-by-7 average filter.
avgH = integralKernel([1 1 7 7], 1/49); J = integralFilter(intImage, avgH);

Cast the result back to the same class as the input image.
J = uint8(J);
figure
imshow(J);


## More About

## Computing an Integral Image and Using it for Filtering with Box Filters

The integralImage function together with the integralKernel object and integralFilter function complete the workflow for box filtering based on integral images. You can use this workflow for filtering with box filters.

- Use the integralImage function to compute the integral images
- Use the integralFilter function for filtering
- Use the integralKernel object to define box filters

The integralKernel object allows you to transpose the filter. You can use this to aim a directional filter. For example, you can turn a horizontal edge detector into vertical edge detector.

## References

Viola, Paul, and Michael J. Jones. "Rapid Object Detection using a Boosted Cascade of Simple Features". Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Vol. 1, 2001, pp. 511-518.

## See Also <br> SURFPoints | detectMSERFeatures | detectSURFFeatures|integralFilter| integralImage <br> Introduced in R2012a

## transpose

Class: integralKernel
Transpose filter

## Syntax

transposedKernel = transpose(intKernel)

## Description

transposedKernel = transpose(intKernel) transposes the integral kernel. You can use this operation to change the direction of an oriented filter.

## Example

## Construct Haar-like Wavelet Filters

Horizontal filter
horiH = integralKernel([1 1 4 3; 1443$],[-1,1])$;
Using the dot and apostrophe create a vertical filter.
verth = horiH.';
Using the transpose method.

```
verticalH = transpose(horiH);
```


## rot45

Rotates upright kernel clockwise by 45 degrees

## Syntax

```
rotKernel = rot45(intKernel)
```


## Description

rotKernel $=$ rot $45($ intKernel $)$ rotates upright kernel clockwise by 45 degrees.

## Example

## Construct and Rotate a Haar-like Wavelet Filter

Create a horizontal filter.
H = integralKernel([1 1 4 3; 144 3], [-1, 1]);
Rotate the filter 45 degrees.
rotH $=\operatorname{rot} 45(H) ;$

## vision.KalmanFilter

Correction of measurement, state, and state estimation error covariance

## Description

The Kalman filter object is designed for tracking. You can use it to predict a physical object's future location, to reduce noise in the detected location, or to help associate multiple physical objects with their corresponding tracks. A Kalman filter object can be configured for each physical object for multiple object tracking. To use the Kalman filter, the object must be moving at constant velocity or constant acceleration.

## Creation

The Kalman filter algorithm involves two steps, prediction and correction (also known as the update step). The first step uses previous states to predict the current state. The second step uses the current measurement, such as object location, to correct the state. The Kalman filter implements a discrete time, linear State-Space System.

Note To make configuring a Kalman filter easier, you can use the configureKalmanFilter object to configure a Kalman filter. It sets up the filter for tracking a physical object in a Cartesian coordinate system, moving with constant velocity or constant acceleration. The statistics are the same along all dimensions. If you need to configure a Kalman filter with different assumptions, do not use the function, use this object directly.

In the state space system, the state transition model, $A$, and the measurement model, $H$, are set as follows:
$\left.\begin{array}{|l|lllllllllllllllll|}\hline \text { Variable } & \text { Value } \\ \hline A & {\left[\begin{array}{lllllllllllll|}1 & 1 & 0 & 0 ; & 0 & 1 & 0 & 0 ; & 0 & 0 & 1 & 1 ; & 0\end{array} 0\right.} & 0 & 1\end{array}\right]$

## Syntax

kalmanFilter = vision.KalmanFilter kalmanFilter = vision. KalmanFilter(StateTransitionModel, MeasurementModel)
kalmanFilter = vision.KalmanFilter(StateTransitionModel, MeasurementModel, ControlModel, Name, Value)

## Description

kalmanFilter = vision.KalmanFilter returns a kalman filter for a discrete time, constant velocity system.
kalmanFilter = vision.KalmanFilter(StateTransitionModel, MeasurementModel) additionally configures the control model, $B$.
kalmanFilter = vision.KalmanFilter(StateTransitionModel, MeasurementModel, ControlModel, Name, Value) configures the Kalman filter object properties, specified as one or more Name, Value pair arguments. Unspecified properties have default values.

## Properties

StateTransitionModel - Model describing state transition between time steps (A)

```
[1 1 0 0; 0 1 0 0; 0 0 1 1; 0 0 0 1] (default)| M-by-M matrix
```

Model describing state transition between time steps ( $A$ ), specified as an $M$-by- $M$ matrix. After the object is constructed, this property cannot be changed. This property relates to the $A$ variable in the state-space model.

## MeasurementModel - Model describing state to measurement transformation (H)

 [1 0 0 0; 00100 (default) | $N$-by-M matrixModel describing state to measurement transformation (H) , specified as an $N$-by- $M$ matrix. After the object is constructed, this property cannot be changed. This property relates to the $H$ variable in the state-space model.

## ControlModel - Model describing control input to state transformation (B) [ ] (default) | M-by-L matrix

Model describing control input to state transformation ( $B$ ) , specified as an $M$-by- $L$ matrix. After the object is constructed, this property cannot be changed. This property relates to the $B$ variable in thestate-space model.

## State - State (x)

[0] (default) | scalar | $M$-element vector.
State ( $x$ ), specified as a scalar or an $M$-element vector. If you specify State as a scalar, it will be extended to an $M$-element vector. This property relates to the $x$ variable in the state-space model.

## StateCovariance - State estimation error covariance ( $P$ )

[1] (default) | scalar | $M$-by- $M$ matrix
State estimation error covariance ( $P$ ), specified as a scalar or an $M$-by- $M$ matrix. If you specify StateCovariance as a scalar it will be extended to an $M$-by- $M$ diagonal matrix. This property relates to the $P$ variable in the state-space system.

## ProcessNoise - Process noise covariance (Q)

[1] (default) | scalar | $M$-by- $M$ matrix
Process noise covariance ( $Q$ ), specified as a scalar or an $M$-by- $M$ matrix. If you specify ProcessNoise as a scalar it will be extended to an $M$-by- $M$ diagonal matrix. This property relates to the $Q$ variable in the state-space model.

MeasurementNoise - Measurement noise covariance ( $R$ )
[1] (default) | scalar | $N$-by- $N$ matrix
Measurement noise covariance $(R)$, specified as a scalar or an $N$-by- $N$ matrix. If you specify MeasurementNoise as a scalar it will be extended to an $N$-by- $N$ diagonal matrix. This property relates to the $R$ variable in the state-space model.

## Object Functions

Use the predict and correct functions based on detection results. Use the distance function to find the best matches.

- When the tracked object is detected, use the predict and correct functions with the Kalman filter object and the detection measurement. Call the functions in the following order:
[...] = predict(kalmanFilter);
[...] = correct(kalmanFilter,measurement);
- When the tracked object is not detected, call the predict function, but not the correct function. When the tracked object is missing or occluded, no measurement is available. Set the functions up with the following logic:

```
[...] = predict(kalmanFilter);
If measurement exists
 [...] = correct(kalmanFilter,measurement);
end
```

- If the tracked object becomes available after missing for the past $t-1$ contiguous time steps, you can call the predict function $t$ times. This syntax is particularly useful to process asynchronous video.. For example,

```
for i = 1:k
 [...] = predict(kalmanFilter);
end
[...] = correct(kalmanFilter,measurement)
```

correct Correction of measurement, state, and state estimation error covariance predict Prediction of measurement distance Confidence value of measurement

## Examples

## Track Location of An Object

Track the location of a physical object moving in one direction.
Generate synthetic data which mimics the 1-D location of a physical object moving at a constant speed.

```
detectedLocations = num2cell(2*randn(1,40) + (1:40));
```

Simulate missing detections by setting some elements to empty.

```
detectedLocations{1} = [];
 for idx = 16: 25
 detectedLocations{idx} = [];
 end
```

Create a figure to show the location of detections and the results of using the Kalman filter for tracking.

```
figure;
hold on;
ylabel('Location');
ylim([0,50]);
xlabel('Time');
xlim([0,length(detectedLocations)]);
```



Create a 1-D, constant speed Kalman filter when the physical object is first detected. Predict the location of the object based on previous states. If the object is detected at the current time step, use its location to correct the states.

```
kalman = [];
for idx = 1: length(detectedLocations)
 location = detectedLocations{idx};
 if isempty(kalman)
 if ~isempty(location)
 stateModel = [1 1;0 1];
 measurementModel = [1 0];
 kalman = vision.KalmanFilter(stateModel,measurementModel,'ProcessNoise',1e-4,'Me
 kalman.State = [location, 0];
 end
 else
 trackedLocation = predict(kalman);
 if ~isempty(location)
 plot(idx, location,'k+');
 d = distance(kalman,location);
 title(sprintf('Distance:%f', d));
 trackedLocation = correct(kalman,location);
 else
 title('Missing detection');
 end
 pause(0.2);
 plot(idx,trackedLocation,'ro');
 end
end
legend('Detected locations','Predicted/corrected locations');
```



## Remove Noise From a Signal

Use Kalman filter to remove noise from a random signal corrupted by a zero-mean Gaussian noise.

Synthesize a random signal that has value of 1 and is corrupted by a zero-mean Gaussian noise with standard deviation of 0.1 .
$\mathrm{x}=1$;
len $=100$;
z = $x+0.1$ * randn(1,len);

Remove noise from the signal by using a Kalman filter. The state is expected to be constant, and the measurement is the same as state.

```
stateTransitionModel = 1;
```

measurementModel = 1;
obj = vision.KalmanFilter(stateTransitionModel,measurementModel,'StateCovariance',1,'P
z_corr = zeros(1,len);
for idx = 1: len
predict(obj);
z_corr(idx) = correct(obj,z(idx));
end

Plot results.

```
figure, plot(x * ones(1,len),'g-');
hold on;
plot(1:len,z,'b+',1:len,z_corr,'r-');
legend('Original signal','Noisy signal','Filtered signal');
```



## Algorithms

## State Space Model

This object implements a discrete time, linear state-space system, described by the following equations.

$$
\begin{array}{l|l}
\hline \text { State equation: } & x(k)=A x(k-1)+B u(k-1)+w(k-1)
\end{array}
$$

Measurement	$z(k)=H x(k)+v(k)$
equation:	

## Variable Definition

Variabl   $\mathbf{e}$	Description	Dimension
$k$	Time.	Scalar
$x$	State. Gaussian vector with covariance $P$.   $[x \sim N(\bar{x}, P)]$	$M$-element vector
$P$	State estimation error covariance.	$M$-by- $M$ matrix
$A$	State transition model.	$M$-by- $M$ matrix
$B$	Control model.	$M$-by- $L$ matrix
$u$	Control input.	$L$-element vector
$w$	Process noise; Gaussian vector with zero mean and   covariance $Q .[w \sim N(0, Q)]$	$M$-element vector
$Q$	Process noise covariance.	$M$-by- $M$ matrix
$z$	Measurement. For example, location of detected   object.	$N$-element vector
$H$	Measurement model.	$N$-by- $M$ matrix
$v$	Measurement noise; Gaussian vector with zero   mean and covariance $R .[~$   $\sim N(0, R)]$	$N$-element vector
$R$	Measurement noise covariance.	$N$-by- $N$ matrix

## References

[1] Welch, Greg, and Gary Bishop, An Introduction to the Kalman Filter, TR 95-041. University of North Carolina at Chapel Hill, Department of Computer Science.
[2] Blackman, S. Multiple-Target Tracking with Radar Applications. Artech House, Inc., pp. 93, 1986.

## Extended Capabilities

## C/C++ Code Generation

Generate $C$ and $C++$ code using MATLAB® $\operatorname{Coder}^{\text {™ }}$.
Usage notes and limitations:

- See "System Objects in MATLAB Code Generation" (MATLAB Coder).


## See Also

## Functions

assignDetectionsToTracks|configureKalmanFilter

## Introduced in R2012b

# vision.LocalMaximaFinder 

Package: vision

Find local maxima in matrices

## Description

To find local maxima in matrices.
1 Create the vision. LocalMaximaFinder object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

## Creation

## Syntax

LMaxFinder = vision.LocalMaximaFinder
LMaxFinder = vision.LocalMaximaFinder(maxnum,neighborsize)
LMaxFinder = vision.LocalMaximaFinder(Name,Value)

## Description

LMaxFinder = vision.LocalMaximaFinder returns a local maxima finder System object, H , that finds local maxima in input matrices.

LMaxFinder = vision.LocalMaximaFinder(maxnum, neighborsize) returns a local maxima finder object with the MaximumNumLocalMaxima property set to maxnum, NeighborhoodSize property set to neighborsize, and other specified properties set to the specified values.

LMaxFinder = vision.LocalMaximaFinder(Name, Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, LMaxFinder = vision.LocalMaximaFinder('ThresholdSource','Property')

## Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

## MaximumNumLocalMaxima - Maximum number of maxima

2 (default) | positive scalar integer
Maximum number of maxima to find, specified as a positive scalar integer.

## NeighborhoodSize - Neighborhood size for zero-ing out values

[5 7] (default) | two-element vector
Neighborhood size for zero-ing out values, specified as a two-element vector

## ThresholdSource - Source of threshold <br> 'Property' (default)|'Input port'

Source of threshold, specified as 'Property' or 'Input port'.

## Threshold - Value that all maxima should match or exceed 10 (default) | build-in numeric data type

Value that all maxima should match or exceed, specified as a scalar of MATLAB built-in numeric data type. This property applies when you set the ThresholdSource property to 'Property'.

Tunable: Yes
HoughMatrixInput - Indicator of Hough transform matrix input
false (default) |true

Indicator of Hough transform matrix input, specified as true or false. The block applies additional processing, specific to Hough transform on the right and left boundaries of the input matrix. Set this property to true if the input is antisymmetric about the rho axis and the theta value ranges from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$ radians, which correspond to a Hough matrix.

## IndexDataType - Data type of index values

uint32 (default) | double | single | uint8|uint16
Data type of index values, specified as double, single, uint8, uint16, or uint32.

## Usage

## Syntax

```
idx = LMaxFinder(I)
idx = LMaxFinder(I,threshold)
```


## Description

idx $=$ LMaxFinder (I) returns [ $x y$ ] coordinates of the local maxima in an M-by-2 matrix, idx. $M$ represents the number of local maximas found. The maximum value of $M$ may not exceed the value set in the MaximumNumLocalMaxima property.
idx = LMaxFinder(I, threshold) finds the local maxima in the input image I, using the threshold value threshold, when you set the ThresholdSource property to 'Input port'.

## Input Arguments

## I - Video frame <br> grayscale | truecolor (RGB)

Video frame, specified as grayscale or truecolor (RGB).

## threshold - Threshold

scalar

Value that all maxima should match or exceed, specified as a scalar of MATLAB built-in numeric data type.

## Output Arguments

## idx - Local maxima

M-by-2 matrix
Local maxima, returned as an M-by-2 matrix of one-based [x $x$ ] coordinates, where $M$ represents the number of local maximas found.

## Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:

```
release(obj)
```


## Specific to vision.LocalMaximaFinder

initialize Initialize video frame and points to track

## Common to All System Objects

step Run System object algorithm
release Release resources and allow changes to System object property values and input characteristics
reset Reset internal states of System object

## Examples

## Find Local Maxima of an Input

Create an example input.

```
I = [0 0 0 0 0 0 0 0 0 0 0 0;
 0 0 0 1 1 2 3 2 1 1 0 0
 0 0 0 1 2 3 4 3 2 1 0 0; ...
```

```
0 0 0 1 3 5 7 5 3 1 0 0
0 0 0 1 2 3 4 3 2 1 0 0,
0 0 0 1 1 2 3 2 1 1 0 0; ...
0 0 0 0 0 0 0 0 0 0 0 0];
```

Create a local maxima finder object.

```
hLocalMax = vision.LocalMaximaFinder('MaximumNumLocalMaxima',1, ...
 'NeighborhoodSize',[3,3], ...
 'Threshold',1);
```

Find local maxima.

```
location = hLocalMax(I)
location = 1x2 uint32 row vector
```

    \(7 \quad 4\)
    
## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries. See "Portable C Code Generation for Functions That Use OpenCV Library".
- See "System Objects in MATLAB Code Generation" (MATLAB Coder).


## See Also

hough | vision.Maximum

Introduced in R2012b

## vision.Maximum

## Package: vision

Find maximum values in input or sequence of inputs

## Description

Find maximum values in an input or sequence of inputs.
To track a set of points:
1 Create the vision.Maximum object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

## Creation

## Syntax

```
maxObj = vision.Maximum
maxObj = vision.Maximum(Name,Value)
```


## Description

max0bj $=$ vision.Maximum returns an object, max0bj, that computes the value and index of the maximum elements in an input or a sequence of inputs.
max0bj = vision.Maximum(Name, Value) sets properties using one or more namevalue pairs. Enclose each property name in quotes. For example, max0bj = vision. Maximum('RunningMaximum',false)

## Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

## ValueOutputPort - Output maximum value true (default) | false

Output maximum value, specified as true or false. Set this property to true to output the maximum value of the input. This property applies when you set the RunningMaximum property to false.

## RunningMaximum - Calculate over single input or multiple inputs false (default) |true

Calculate over single input or multiple inputs, specified as true or false. When you set this property to true, the object computes the maximum value over a sequence of inputs. When you set this property to false, the object computes the maximum value over the current input.

## Index0utputPort - Output the index of the maximum value true (default) | false

Output the index of the maximum value, specified as true or false. This property applies only when you set the RunningMaximum property to false.

## ResetInputPort - Additional input to enable resetting of running maximum

 false (default) | trueAdditional input to enable resetting of running maximum, specified as true or false. When you set this property to true, a reset input must be specified to reset the running maximum. This property applies only when you set the RunningMaximum property to true.

ResetCondition - Condition that triggers resetting of running maximum<br>'Non-zero' (default)|'Rising edge'|'Falling edge'|'Either edge'

Condition that triggers resetting of running maximum, specified as as 'Rising edge', 'Falling edge','Either edge', or 'Non-zero'. This property applies only when you set the ResetInputPort property to true.

## IndexBase - Numbering base for index of maximum value 'One' (default)|'Zero'

Numbering base for index of maximum value, specified as 'One' or 'Zero'. This property applies only when you set the Index0utputPort property to true.

## Dimension - Dimension to operate along

'Column' (default)|\{'All'\}|'Row'|'Custom'
Dimension to operate along, specified as \{'All'\}, 'Row', 'Column', or 'Custom'. This property applies only when you set the RunningMaximum property to false.

## CustomDimension - Numerical dimension to calculate over <br> 1 (default) | numerical scalar

Numerical dimension to calculate over, specified as a numerical scalar. This property only applies when you set the Dimension property to 'Custom'.

## ROIProcessing - Enable region-of-interest processing

 false (default) | trueEnable region-of-interest processing, specified as true or false. This property applies when you set the Dimension property to ' All ' and the RunningMaximum property to false.

## ROIForm - Type of ROI

```
'Rectangles' (default)| Lines' | 'Label matrix''Binary mask'
```

Type of ROI, specified as 'Rectangles','Lines', 'Label matrix', or 'Binary mask'. This property applies only when you set the ROIProcessing property to true.

## ROIPortion - ROI or perimeter calculation

'Entire ROI' (default)|'ROI perimeter'
ROI or perimeter calculation, specified as 'Entire ROI' or 'ROI perimeter'. This property applies only when you set the ROIForm property to 'Rectangles '.

## ROIStatistics - Calculate statistics for each ROI or one for all ROIs 'Individual statistics for each ROI' (default)|'Single statistic for all ROIs'

Calculate statistics for each ROI or one for all ROIs, specified as 'Individual statistics for each ROI' or 'Single statistic for all ROIs'. This property applies only when you set the 'ROIForm' property to 'Rectangles','Lines', or 'Label matrix'.

## ValidityOutputPort - Flag to indicate if any part of ROI is outside input image false (default) | true

Flag to indicate if any part of ROI is outside input image, specified as true or false.
This applies when you set the ROIForm property to 'Lines' or 'Rectangles'.
Set this property to true to return the validity of the specified label numbers. This applies when you set the ROIForm property to 'Label matrix'.

## Fixed-Point Properties

```
RoundingMethod - Rounding method for fixed-point operations
'Floor' (default)|'Ceiling'|'Convergent'| 'Nearest''Round ' |
'Simplest''Zero'
```

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling', 'Convergent', 'Nearest', 'Round', 'Simplest', or 'Zero'.

## OverflowAction - Action to take when integer input is out-of-range 'Wrap' (default)|'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

## ProductDataType - Product data type

'Same as input' (default)|'Custom'
Product data type, specified as 'Same as input' or 'Custom'.
CustomProductDataType - Product word and fraction lengths
numerictype(true,32,30) (default)| scaled numerictype object

Product word and fraction lengths, specified as a scaled numerictype object. This property applies only when you set the AccumulatorDataType property to 'Custom'.

## AccumulatorDataType - Data type of accumulator

'Same as product' (default)|'Same as input'|'Custom'
Data type of accumulator, specified as 'Same as product','Same as input', or 'Custom'.

## CustomAccumulatorDataType - Accumulator word and fraction lengths

numerictype(true, 32,30) (default) | scaled numerictype object
Accumulator word and fraction lengths, specified as a scaled numerictype object. This property applies only when you set the AccumulatorDataType property to 'Custom'.

## Usage

## Syntax

```
[value,index] = maxObj(input)
index = max0bj(input)
[___] = maxObj(I,ROI)
[___,flag] = maxObj(I,ROI)
[___]
] = maxObj(I,label,labelNumbers)
```

```,flag] = max0bj(I, label,labelNumbers)
```


## Description

[value,index] = max0bj(input) returns the maximum value and index of the input.
index = max0bj (input) returns the one-based index of the maximum value when you set the IndexOutputPort property to true and the ValueOutputPort property to false. The RunningMaximum property must be set to false.
[___] $=\max 0 b j(I, R O I)$ returns the maximum value in the input image within the given region of interest.

## [

$\qquad$ $, \mathrm{flag}]=\operatorname{maxObj}(\mathrm{I}, \mathrm{ROI})$ additionally returns a flag to indicate whether the given ROI is within the bounds of the image.
$\qquad$ ] = max0bj(I,label,labelNumbers) returns the maximum of the input image for a region the labels specified in the labelNumbers vector. The regions are defined and labeled in the label matrix.
$\qquad$ , flag$]=\max 0 \mathrm{bj}(\mathrm{I}$, label, labelNumbers $)$ additionally returns a flag to indicate whether the input label numbers are valid.

## Input Arguments

## input - Input data <br> vector | matrix | multidimensional array

Input data, specified as a vector, matrix, or multidimensional array.

## ROI - Region of interest

## four-element vector

Region of interest, specified as a four-element vector, [x y width height]. This option is available when you set the the ROIProcessing property to true and the ROIForm property to 'Lines', 'Rectangles', or 'Binary Mask'.

## label - Label numbers

matrix
Label numbers, specified as a matrix. This option is available when you set the ROIProcessing property to true and the ROIForm property to 'Label matrix'.

## labelNumbers - Label numbers

vector
Label numbers, specified as a vector. This option is available when you set the ROIProcessing property to true and the ROIForm property to 'Label matrix'.

## Output Arguments

value - Maximum value

same as input

Maximum value, returned as the same data type as the input

## index - Index to maximum value

one-based index
Index to maximum value, returned as a one-based index.

## flag - Flag for valid data <br> true | false

Flag for valid data, returned as true or false.

## Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:
release(obj)

## Common to All System Objects

step Run System object algorithm
release Release resources and allow changes to System object property values and input characteristics
reset Reset internal states of System object

## Examples

## Find Index to Maximum Value in Grayscale Image

Read a color image.

```
img = imread('peppers.png');
```

Convert the image to grayscale.
img = im2single(rgb2gray(img));
Find the maximum.

```
hMax = vision.Maximum
hMax =
 vision.Maximum with properties:
 ValueOutputPort: true
 RunningMaximum: false
 IndexOutputPort: true
 Dimension: 'All'
 ROIProcessing: false
 Show all properties
[m, ind] = hMax(img);
```


## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- See "System Objects in MATLAB Code Generation" (MATLAB Coder).

See Also<br>vision.Mean |vision.Minimum<br>Introduced in R2012a

## vision. Mean

Package: vision
Find mean values in input or sequence of inputs

## Description

Find the mean values in an input or sequence of inputs.
To track a set of points:
1 Create the vision. Mean object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

## Creation

## Syntax

```
minObj = vision.Mean
minObj = vision.Mean(Name,Value)
```


## Description

minObj $=$ vision. Mean returns an object, minObj, that computes the value and index of the maximum elements in an input or a sequence of inputs.
minObj = vision.Mean(Name, Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, minObj = vision.Maximum('RunningMean',false)

## Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

## RunningMean - Calculate over single input or multiple inputs false (default) | true

Calculate over single input or multiple inputs, specified as true or false. When you set this property to true, the object computes the mean value over a sequence of inputs. When you set this property to false, the object computes the mean value over the current input.

## ResetInputPort - Additional input to enable resetting of running mean false (default) |true

Additional input to enable resetting of running mean, specified as true or false. When you set this property to true, a reset input must be specified to reset the running mean. This property applies only when you set the RunningMean property to true.

## ResetCondition - Condition that triggers resetting of running mean 'Non-zero' (default) |'Rising edge'|'Falling edge'|'Either edge'

Condition that triggers resetting of running mean, specified as as 'Rising edge', 'Falling edge','Either edge', or 'Non-zero'. This property applies only when you set the ResetInputPort property to true.

## Dimension - Dimension to operate along <br> 'Column' (default)|\{'All'\}|'Row'|'Custom'

Dimension to operate along, specified as \{'All'\}, 'Row', 'Column', or 'Custom'. This property applies only when you set the RunningMean property to false.

## CustomDimension - Numerical dimension to calculate over 1 (default) | numerical scalar

Numerical dimension to calculate over, specified as a numerical scalar. This property only applies when you set the Dimension property to 'Custom'.

## ROIProcessing - Enable region-of-interest processing

## false (default)|true

Enable region-of-interest processing, specified as true or false. This property applies when you set the Dimension property to 'All' and the RunningMean property to false.

## ROIForm - Type of ROI

'Rectangles' (default)|Lines' | 'Label matrix' 'Binary mask'
Type of ROI, specified as 'Rectangles','Lines', 'Label matrix', or 'Binary mask'. This property applies only when you set the ROIProcessing property to true.

## ROIPortion - ROI or perimeter calculation

'Entire ROI' (default)|'ROI perimeter'
ROI or perimeter calculation, specified as 'Entire ROI' or 'ROI perimeter'. This property applies only when you set the ROIForm property to 'Rectangles'.

ROIStatistics - Calculate statistics for each ROI or one for all ROIs 'Individual statistics for each ROI' (default)|'Single statistic for all ROIs'

Calculate statistics for each ROI or one for all ROIs, specified as 'Individual statistics for each ROI' or 'Single statistic for all ROIs'. This property applies only when you set the 'ROIForm' property to 'Rectangles', 'Lines', or 'Label matrix'.

## ValidityOutputPort - Flag to indicate if any part of ROI is outside input image false (default) | true

Flag to indicate if any part of ROI is outside input image, specified as true or false.
This applies when you set the ROIForm property to 'Lines' or 'Rectangles '.
Set this property to true to return the validity of the specified label numbers. This applies when you set the ROIForm property to 'Label matrix'.

## Fixed-Point Properties

## RoundingMethod - Rounding method for fixed-point operations <br> 'Floor' (default)|'Ceiling'| 'Convergent' | 'Nearest''Round' | 'Simplest''Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling', 'Convergent', 'Nearest', 'Round', 'Simplest', or 'Zero'.

## OverflowAction - Action to take when integer input is out-of-range 'Wrap' (default)|'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

## ProductDataType - Product data type <br> 'Same as input' (default)|'Custom'

Product data type, specified as 'Same as input' or 'Custom'.
CustomProductDataType - Product word and fraction lengths
numerictype(true,32,30) (default)| scaled numerictype object
Product word and fraction lengths, specified as a scaled numerictype object. This property applies only when you set the AccumulatorDataType property to 'Custom'.

## AccumulatorDataType - Data type of accumulator

'Same as product' (default)|'Same as input'|'Custom'
Data type of accumulator, specified as 'Same as product','Same as input', or 'Custom'.

CustomAccumulatorDataType - Accumulator word and fraction lengths numerictype(true, 32,30) (default) | scaled numerictype object

Accumulator word and fraction lengths, specified as a scaled numerictype object. This property applies only when you set the AccumulatorDataType property to 'Custom'.

## Usage

## Syntax

```
[value,index] = minObj(input)
index = minObj(input)
[___] = minObj(I,ROI)
[___,flag] = minObj(I,ROI)
[___] = minObj(I,label,labelNumbers)
[___,flag] = minObj(I,label,labelNumbers)
```


## Description

[value,index] = min0bj(input) returns the mean value and index of the input.
index = min0bj(input) returns the one-based index of the mean value when you set the Index0utputPort property to true and the Value0utputPort property to false. The RunningMean property must be set to false.
[___] $=\operatorname{minObj}(I, R O I)$ returns the mean value in the input image within the given region of interest.
[ $\qquad$ $, f l a g]=\operatorname{minObj}(I, R O I)$ additionally returns a flag to indicate whether the given ROI is within the bounds of the image.
$\qquad$ ] = minObj(I,label, labelNumbers) returns the mean of the input image for a region the labels specified in the labelNumbers vector. The regions are defined and labeled in the label matrix.
$\qquad$ , flag] = minObj(I,label, labelNumbers) additionally returns a flag to indicate whether the input label numbers are valid.

## Input Arguments

## input - Input data

vector | matrix | multidimensional array

Input data, specified as a vector, matrix, or multidimensional array.

## ROI - Region of interest

four-element vector
Region of interest, specified as a four-element vector, [x y width height]. This option is available when you set the the ROIProcessing property to true and the ROIForm property to 'Lines', 'Rectangles', or 'Binary Mask'.

## label - Label numbers <br> matrix

Label numbers, specified as a matrix. This option is available when you set the ROIProcessing property to true and the ROIForm property to 'Label matrix'.

## labelNumbers - Label numbers <br> vector

Label numbers, specified as a vector. This option is available when you set the ROIProcessing property to true and the ROIForm property to 'Label matrix'.

## Output Arguments

## value - Mean value

same as input
Mean value, returned as the same data type as the input

## index - Index to mean value

one-based index
Index to mean value, returned as a one-based index.

## flag - Flag for valid data <br> true | false

Flag for valid data, returned as true or false.

## Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:
release(obj)

## Common to All System Objects

step Run System object algorithm
release Release resources and allow changes to System object property values and input characteristics
reset Reset internal states of System object

## Examples

Determine the Mean in Grayscale Image
Read a color image.

```
img = imread('peppers.png');
```

Convert the image to grayscale.
img = im2single(rgb2gray(img));
Find the mean.

```
hMean = vision.Mean;
mean = hMean(img);
```


## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

Usage notes and limitations:

- See "System Objects in MATLAB Code Generation" (MATLAB Coder).


## See Also

vision.Maximum|vision.Minimum
Introduced in R2012a

## vision.Median

## Package: vision

Find median values in input or sequence of inputs

## Description

Find the median values in an input or sequence of inputs.
To track a set of points:
1 Create the vision. Median object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

## Creation

## Syntax

```
medObj = vision.Median
medObj = vision.Median(Name,Value)
```


## Description

medObj = vision.Median returns an object, medObj, that computes the value and index of the maximum elements in an input or a sequence of inputs.
medObj = vision.Median(Name, Value) sets properties using one or more namevalue pairs. Enclose each property name in quotes. For example, medObj = vision.Median('Dimension','Column')

## Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

## SortMethod - Sort method

```
'Quick sort'|'Insertion sort'
```

Sort method for calculating the median value, specified as 'Quick sort ' or 'Insertion sort'.

## Dimension - Dimension to operate along 'Column' (default)|\{'All'\}|'Row'|'Custom'

Dimension to operate along, specified as \{'All'\}, 'Row', 'Column', or 'Custom'. This property applies only when you set the RunningMean property to false.

## CustomDimension - Numerical dimension to calculate over 1 (default) | numerical scalar

Numerical dimension to calculate over, specified as a numerical scalar. This property only applies when you set the Dimension property to 'Custom'.

## Fixed-Point Properties

## RoundingMethod - Rounding method for fixed-point operations 'Floor' (default)|'Ceiling ' | 'Convergent ' | 'Nearest''Round ' | 'Simplest''Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling', 'Convergent', 'Nearest', 'Round', 'Simplest', or 'Zero'.

## OverflowAction - Action to take when integer input is out-of-range 'Wrap' (default)|'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap ' or 'Saturate'.

## ProductDataType - Product data type

'Same as input' (default)|'Custom'
Product data type, specified as 'Same as input' or 'Custom'.
CustomProductDataType - Product word and fraction lengths
numerictype(true,32,30) (default)| scaled numerictype object
Product word and fraction lengths, specified as a scaled numerictype object. This property applies only when you set the AccumulatorDataType property to 'Custom'.

## AccumulatorDataType - Data type of accumulator

'Same as product' (default)|'Same as input'|'Custom'
Data type of accumulator, specified as 'Same as product','Same as input', or 'Custom'.

## CustomAccumulatorDataType - Accumulator word and fraction lengths

numerictype(true, 32,30) (default) | scaled numerictype object
Accumulator word and fraction lengths, specified as a scaled numerictype object. This property applies only when you set the AccumulatorDataType property to 'Custom'.

## Usage

## Syntax

[value,index] = medObj(input)

## Description

[value,index] = medObj(input) returns the median value and index of the input.

## Input Arguments

## input - Input data

vector | matrix | multidimensional array

Input data, specified as a vector, matrix, or multidimensional array.

## Output Arguments

## value - Median value

## same as input

Median value, returned as the same data type as the input

## Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:
release(obj)

## Common to All System Objects

step Run System object algorithm
$\begin{array}{ll}\text { release } & \begin{array}{l}\text { Release resources and allow changes to System object property values and } \\ \text { input characteristics }\end{array} \\ \text { reset } & \text { Reset internal states of System object }\end{array}$

## Examples

## Determine Median Value in Grayscale Image

Read a color image.

```
img = imread('peppers.png');
```

Convert the image to grayscale.

```
img = im2single(rgb2gray(img));
```

Find the median.
hmed $=$ vision.Median;
medValue = hmed(img);

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- See "System Objects in MATLAB Code Generation" (MATLAB Coder).


## See Also

vision. Maximum | vision. Minimum
Introduced in R2012a

## vision. Minimum

## Package: vision

Find minimum values in input or sequence of inputs

## Description

Find the minimum values in an input or sequence of inputs.
To track a set of points:
1 Create the vision. Minimum object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

## Creation

## Syntax

```
minObj = vision.Minimum
minObj = vision.Minimum(Name,Value)
```


## Description

minObj $=$ vision.Minimum returns an object, minObj, that computes the value and index of the maximum elements in an input or a sequence of inputs.
minObj = vision.Minimum(Name, Value) sets properties using one or more namevalue pairs. Enclose each property name in quotes. For example, min0bj = vision. Maximum('RunningMinimum',false)

## Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

## ValueOutputPort - Output Minimum value true (default) | false

Output minimum value, specified as true or false. Set this property to true to output the Minimum value of the input. This property applies when you set the RunningMinimum property to false.

## RunningMinimum - Calculate over single input or multiple inputs false (default) | true

Calculate over single input or multiple inputs, specified as true or false. When you set this property to true, the object computes the minimum value over a sequence of inputs. When you set this property to false, the object computes the minimum value over the current input.

## IndexOutputPort - Output the index of the minimum value true (default) | false

Output the index of the minimum value, specified as true or false. This property applies only when you set the RunningMinimum property to false.

## ResetInputPort - Additional input to enable resetting of running minimum

 false (default) | trueAdditional input to enable resetting of running minimum, specified as true or false. When you set this property to true, a reset input must be specified to reset the running minimum. This property applies only when you set the RunningMinimum property to true.

ResetCondition - Condition that triggers resetting of running minimum
'Non-zero' (default)|'Rising edge'|'Falling edge'|'Either edge'

Condition that triggers resetting of running minimum, specified as as 'Rising edge', 'Falling edge','Either edge', or 'Non-zero'. This property applies only when you set the ResetInputPort property to true.

## IndexBase - Numbering base for index of minimum value 'One' (default)|'Zero'

Numbering base for index of minimum value, specified as 'One' or 'Zero'. This property applies only when you set the Index0utputPort property to true.

## Dimension - Dimension to operate along

```
'Column' (default)|{'All'} | 'Row'|'Custom'
```

Dimension to operate along, specified as \{'All'\}, 'Row', 'Column', or 'Custom'. This property applies only when you set the RunningMinimum property to false.

## CustomDimension - Numerical dimension to calculate over <br> 1 (default) | numerical scalar

Numerical dimension to calculate over, specified as a numerical scalar. This property only applies when you set the Dimension property to 'Custom'.

## ROIProcessing - Enable region-of-interest processing

```
false (default)|true
```

Enable region-of-interest processing, specified as true or false. This property applies when you set the Dimension property to 'All' and the RunningMinimum property to false.

## ROIForm - Type of ROI

```
'Rectangles' (default)| Lines' | 'Label matrix''Binary mask'
```

Type of ROI, specified as 'Rectangles','Lines', 'Label matrix', or 'Binary mask'. This property applies only when you set the ROIProcessing property to true.

## ROIPortion - ROI or perimeter calculation

'Entire ROI' (default)|'ROI perimeter'
ROI or perimeter calculation, specified as 'Entire ROI' or 'ROI perimeter'. This property applies only when you set the ROIForm property to 'Rectangles'.

## ROIStatistics - Calculate statistics for each ROI or one for all ROIs 'Individual statistics for each ROI' (default)|'Single statistic for all ROIs'

Calculate statistics for each ROI or one for all ROIs, specified as 'Individual statistics for each ROI' or 'Single statistic for all ROIs'. This property applies only when you set the 'ROIForm' property to 'Rectangles', 'Lines', or 'Label matrix'.

## ValidityOutputPort - Flag to indicate if any part of ROI is outside input image false (default)|true

Flag to indicate if any part of ROI is outside input image, specified as true or false.
This applies when you set the ROIForm property to 'Lines' or 'Rectangles'.
Set this property to true to return the validity of the specified label numbers. This applies when you set the ROIForm property to 'Label matrix'.

## Fixed-Point Properties

RoundingMethod - Rounding method for fixed-point operations 'Floor' (default)|'Ceiling' | 'Convergent' | 'Nearest''Round' | 'Simplest''Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling', 'Convergent', 'Nearest', 'Round', 'Simplest', or 'Zero'.

## OverflowAction - Action to take when integer input is out-of-range 'Wrap' (default)|'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap' or 'Saturate'.

## ProductDataType - Product data type

'Same as input' (default)|'Custom'
Product data type, specified as 'Same as input' or 'Custom'.
CustomProductDataType - Product word and fraction lengths
numerictype(true,32,30) (default)| scaled numerictype object

Product word and fraction lengths, specified as a scaled numerictype object. This property applies only when you set the AccumulatorDataType property to 'Custom'.

## AccumulatorDataType - Data type of accumulator

'Same as product' (default)|'Same as input'|'Custom'
Data type of accumulator, specified as 'Same as product','Same as input', or 'Custom'.

## CustomAccumulatorDataType - Accumulator word and fraction lengths

numerictype(true, 32,30) (default) | scaled numerictype object
Accumulator word and fraction lengths, specified as a scaled numerictype object. This property applies only when you set the AccumulatorDataType property to 'Custom'.

## Usage

## Syntax

```
[value,index] = minObj(input)
index = minObj(input)
[___] = minObj(I,ROI)
[___,flag] = minObj(I,ROI)
[___] = minObj(I,label,labelNumbers)
[___,flag] = minObj(I,label,labelNumbers)
```


## Description

[value,index] = minObj(input) returns the minimum value and index of the input.
index = minObj(input) returns the one-based index of the minimum value when you set the IndexOutputPort property to true and the ValueOutputPort property to false. The RunningMinimum property must be set to false.
[___] = minObj(I,ROI) returns the minimum value in the input image within the given region of interest.

## [

$\qquad$ $, f l a g]=\operatorname{minObj}(I, R O I)$ additionally returns a flag to indicate whether the given ROI is within the bounds of the image.
$\qquad$ ] = min0bj (I, label, labelNumbers) returns the minimum of the input image for a region the labels specified in the labelNumbers vector. The regions are defined and labeled in the label matrix.
$\qquad$ , flag] = minObj(I,label,labelNumbers) additionally returns a flag to indicate whether the input label numbers are valid.

## Input Arguments

## input - Input data <br> vector | matrix | multidimensional array

Input data, specified as a vector, matrix, or multidimensional array.

## ROI - Region of interest

four-element vector
Region of interest, specified as a four-element vector, [x y width height]. This option is available when you set the the ROIProcessing property to true and the ROIForm property to 'Lines', 'Rectangles', or 'Binary Mask'.

## label - Label numbers

matrix
Label numbers, specified as a matrix. This option is available when you set the ROIProcessing property to true and the ROIForm property to 'Label matrix'.

## labelNumbers - Label numbers

vector
Label numbers, specified as a vector. This option is available when you set the ROIProcessing property to true and the ROIForm property to 'Label matrix'.

## Output Arguments

value - Minimum value

same as input

Minimum value, returned as the same data type as the input

## index - Index to minimum value

one-based index
Index to minimum value, returned as a one-based index.

## flag - Flag for valid data <br> true | false

Flag for valid data, returned as true or false.

## Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:
release(obj)

## Common to All System Objects

step Run System object algorithm
release Release resources and allow changes to System object property values and input characteristics
reset Reset internal states of System object

## Examples

## Find Index to Minimum Value in Grayscale Image

Read a color image.

```
img = imread('peppers.png');
```

Convert the image to grayscale.
img = im2single(rgb2gray(img));
Find the maximum.

```
hMin = vision.Minimum
hMin =
 vision.Minimum with properties:
 ValueOutputPort: true
 RunningMinimum: false
 IndexOutputPort: true
 Dimension: 'All'
 ROIProcessing: false
 Show all properties
[m, ind] = hMin(img);
```


## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- See "System Objects in MATLAB Code Generation" (MATLAB Coder).


## See Also

vision.Maximum| vision.Mean

Introduced in R2012a

## vision.VideoFileReader

## Package: vision

Read video frames and audio samples from video file

## Description

The VideoFileReader object reads video frames, images, and audio samples from a video file. The object can also read image files.

Platforms	File Formats
All Platforms	AVI, including uncompressed, indexed,   grayscale, and Motion JPEG-encoded video   (.avi)   Motion JPEG 2000 (.mj 2)
All Windows	MPEG-1 (.mpg)   Windows Media Video (.wmv, .asf, .asx)   Any format supported by Microsoft   DirectShow
Windows 7 or later	MPEG-4, including H.264 encoded video   (.mp4, .m4v)   Apple QuickTime Movie (.mov)   Any format supported by Microsoft Media   Foundation


Platforms	File Formats
Macintosh	Most formats supported by QuickTime   Player, including:   MPEG-1 (.mpg)   MPEG-4, including H. 264 encoded video   (.mp4, .m4v)   Apple QuickTime Movie (.mov)   3GPP   3GPP2   AVCHD   DV   Note: For OS X Yosemite (Version 10.10) and later, MPEG-4/H. 264 files written using VideoWriter, play correctly, but display an inexact frame rate.
Linux	Any format supported by your installed plug-ins for GStreamer 1.0 or higher, as listed on https://gstreamer.freedesktop.org/ documentation/plugins_doc.html, including Ogg Theora (.ogg).

To read a file:
1 Create the vision.VideoFileReader object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

## Creation

## Syntax

```
videoFReader = vision.VideoFileReader(Filename)
videoFReader = vision.VideoFileReader(
```

$\qquad$

``` ,Name, Value)
```


## Description

videoFReader = vision.VideoFileReader(Filename) returns a video file reader System object, videoFReader, that sequentially reads video frames or audio samples from an input file, Filename.
videoFReader = vision.VideoFileReader( __ ,Name, Value) additionally sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, videoFReader = vision.VideoFileReader('PlayCount',1)

## Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

## Filename - File name

vipmen. avi (default) | character vector
File name, specified as a character vector. The full path for the file needs to be specified only if the file is not on the MATLAB path.

## PlayCount - Number of times to play file <br> 1 (default) | positive integer | inf

Number of times to play file, specified as a positive integer.

## AudioOutputPort - Output audio data

false (default)|true
Output audio data, specified as true or false. Use this property to control the audio output only when the input file contains audio and video streams.

ImageColorSpace - Image format<br>RGB (default)|YCbCr 4:2:2| intensity video

Image format, specified as RGB, YCbCr 4:2:2, or intensity video frames when the input file contains video.

## VideoOutputDataType - Output video data type single (default)

Output video data type, specified as one of the data types listed and inherit. This property applies when the input file contains video.

Data Types: double |int8|int16|int32|uint8|uint16

## AudioOutputDataType - Output audio samples data type int16 (default)

Output audio samples data type, specified as one of the data types listed and inherit. This property applies when the input file contains audio.
Data Types: double | single | int16 | uint8

## Usage

## Syntax

I = videoFReader()
[ $\mathrm{Y}, \mathrm{Cb}, \mathrm{Cr}$ ] = videoFReader()
[ __, ,audio] = videoFReader()
$\qquad$ ,EOF] = videoFReader()

## Description

$\mathrm{I}=\mathrm{videoFReader}()$ returns the next video frame.
$[\mathrm{Y}, \mathrm{Cb}, \mathrm{Cr}]=$ videoFReader() returns the next frame of $\mathrm{YCbCr} 4: 2: 2$ format video in the color components $\mathrm{Y}, \mathrm{Cb}$, and Cr . This syntax requires that you set the 'ImageColorSpace' property to 'YCbCr 4:2:2'
[ $\qquad$ , audio] = videoFReader() also returns one frame of audio samples, audio. This syntax requires that you set the AudioOutputPort property to true.
[ ,EOF] = videoFReader() also returns the end-of-file indicator, EOF. The object sets EOF to true each time the output contains the last audio sample and/or video frame.

## Output Arguments

## I - Video frame

truecolor | 2-D grayscale image
Video frame, returned as a truecolor or 2-D grayscale image.

## $\mathrm{Y}, \mathrm{Cb}, \mathrm{Cr}$ - YCbCr color channels

numeric matrices
YCbCr color channels of a YCbCr 4:2:2 format image, returned as numeric matrices.

## audio - One frame of audio samples

```
.wav|.mp3|.mp3|.mp4|.ogg|.flac|.au|.aiff|.aif|.aifc
```

One frame of audio samples, returned in one of the following formats.

Platform	Supported File Name Extensions
All Platforms	AVI (.avi)
Windows	Image:
. .jpg, .bmp	
	Video:   MPEG (.mpeg)   MPEG-2 (.mp2)   MPEG-1.mpg   MPEG-4, including H.264 encoded video (.mp4, .m4v)   Motion JPEG 2000 (.mj 2)   Windows Media Video (.wmv, .asf, .asx, .asx)   and any format supported by Microsoft DirectShow $® 9.0$ or higher.


Platform	Supported File Name Extensions
	Audio:   WAVE (.wav)   Windows Media Audio File (.wma)   Audio Interchange File Format (.aif, .aiff)   Compressed Audio Interchange File Format(.aifc),   MP3 (.mp3)   Sun Audio (.au)   Apple (.snd)
Macintosh	Video:   .avi   Motion JPEG 2000 (.mj 2)   MPEG-4, including H.264 encoded video (.mp4, .m4v)   Apple QuickTime Movie (.mov)   and any format supported by QuickTime as listed on http://   support.apple.com/kb/HT3775.
	Audio:   Uncompressed .avi
Linux	Motion JPEG 2000 (.mj 2)   Any format supported by your installed plug-ins for GStreamer 0.1   or higher, as listed on https://gstreamer.freedesktop.org/   documentation/plugins_doc.html?gi-language=c, including Ogg   Theora (.ogg).

Windows XP and Windows 7 x64 platform ships with a limited set of 64 -bit video and audio codecs. If a compressed multimedia file fails to play, try saving the multimedia file to a supported file format listed in the table above.

If you use Windows, use Windows Media player Version 11 or later.

Note MJ2 files with bit depth higher than 8-bits are not supported by vision.VideoFileReader. Use VideoReader and VideoWriter for higher bit depths.

Reading audio from compressed MP4 files with video and audio is not supported by vision. VideoFileReader.

## EOF - End-of-file

## true | false

End-of-file indicator, returned as true or false.

## Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:
release(obj)

## Specific to vision.VideoFileReader

info Information about specified video file
isDone End-of-file status (logical)

## Common to All System Objects

step Run System object algorithm
release Release resources and allow changes to System object property values and input characteristics
reset Reset internal states of System object

## Examples

## Read and Play a Video File

Load the video using a video reader object.

```
videoFReader = vision.VideoFileReader('ecolicells.avi');
```

Create a video player object to play the video file.

```
videoPlayer = vision.VideoPlayer;
```

Use a while loop to read and play the video frames. Pause for 0.1 seconds after displaying each frame.

```
while ~isDone(videoFReader)
 videoFrame = videoFReader();
 videoPlayer(videoFrame);
 pause(0.1)
end
```



Release the objects.
release(videoPlayer);
release(videoFReader);


## Tips

- Video Reading Performance on Windows Systems:To achieve better video reader performance on Windows for MP4 and MOV files, MATLAB uses the system's graphics hardware for decoding. However, in some cases using the graphics card for decoding can result in poorer performance depending on the specific graphics hardware on the system. If you notice slower video reader performance on your system, turn off the hardware acceleration by typing:

```
matlab.video.read.UseHardwareAcceleration('off')
```

Hardware acceleration can be reenabled by typing:

```
matlab.video.read.UseHardwareAcceleration('on')
```


## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Generated code for this function uses a precompiled platform-specific shared library.
- See "System Objects in MATLAB Code Generation" (MATLAB Coder).


## See Also

VideoReader | VideoWriter | implay | vision.VideoFileWriter | vision.VideoPlayer

## Topics

"Video Display in a Custom User Interface"

Introduced in R2012a

## vision.VideoFileWriter

Package: vision

Write video frames and audio samples to video file

## Description

The VideoFileWriter object writes video frames and audio samples to a video file. The video and audio can be compressed. The available compression types depend on the encoders installed on the platform.

Note This block supports code generation for platforms that have file I/O available. You cannot use this block with Simulink Desktop Real-Time software, because that product does not support file I/O.

This object performs best on platforms with Version 11 or later of Windows Media Player software. This object supports only uncompressed RGB24 AVI files on Linux and Mac platforms.

The generated code for this object relies on prebuilt library files. You can run this code outside the MATLAB environment, or redeploy it, but be sure to account for these extra library files when doing so. The packNGo function creates a single zip file containing all of the pieces required to run or rebuild this code. See packNGo for more information.

To run an executable file that was generated from an object, you may need to add precompiled shared library files to your system path. See "MATLAB Coder" and "Simulink Shared Library Dependencies" for details.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the System object, you can call the object with arguments, as if it were a function. For example, $y=\operatorname{step}(o b j, x)$ and $y=o b j(x)$ perform equivalent operations.

## Creation

## Syntax

videoFWriter = vision.VideoFileWriter videoFWriter = vision.VideoFileWriter(Filename) videoFWriter = vision.VideoFileWriter( $\qquad$ ,Name, Value)

## Description

videoFWriter = vision.VideoFileWriter returns a video file writer System object, videoFWriter. It writes video frames to an uncompressed 'output. avi' video file. Every call to the step method writes a video frame.
videoFWriter $=$ vision.VideoFileWriter(Filename) returns a video file writer object, videoFWriter that writes video to a file, Filename. The file type can be .avi, .mj2, .mp4, and .m4v specified by the FileFormat property.
videoFWriter = vision.VideoFileWriter( $\qquad$ , Name, Value) configures the video file writer properties, specified as one or more name-value pair arguments. Unspecified properties have default values.

Name is a property name and Value is the corresponding value. Name must appear inside single quotes (' ' ). You can specify several name-value pair arguments in any order as Name1,Value1, ... , NameN, ValueN.

Example: videoFWriter = vision.VideoFileWriter('myFile.avi','FrameRate',... videoFReader.info.VideoFrameRate);

## Properties

## Filename - Video output file name

output. avi (default) | character vector
Video output file name, specified as a character vector. The file extension you give for Filename must match the FileFormat.

## FileFormat - Output file format

'AVI' (default) | 'MJ2000' | 'MPEG4'
Output file format, specified as one of the supported file formats shown in the table.

File Format	Description	File Extension	Supported   Platform
'AVI '	Audio-Video   Interleave file	. .avi	All platforms
'MJ2000'	Motion JPEG 2000   file	. mj 2	All platforms
'MPEG4 '	MPEG-4/H.264 Video	. $\mathrm{mp4}$, .m4v	Windows and Mac

## AudioInputPort - Write audio data

false (default) | true
Write audio data, specified as false or true. Use this property to control whether the object writes audio samples to the video file. Set this value to true to write audio data. To write audio and video to a file, you must use the .avi format .

## FrameRate - Video frame rate

30 (default) | positive numeric scalar
Video frame rate in frames per second, specified as a positive numeric scalar. For videos which also contain audio data, the rate of the audio data will be determined as the rate of the video multiplied by the number of audio samples passed in. For example, if you use a frame rate of 30 , and pass 1470 audio samples, the object sets the audio sample to 44100, $(1470 \times 30=44100)$.

## AudioCompressor - Audio compression encoder

None (uncompressed) (default)| system compressors
Specify the type of compression algorithm to implement for audio data. This compression reduces the size of the video file. Choose None (uncompressed) to save uncompressed audio data to the video file. The other options reflect the available audio compression algorithms installed on your system. This property applies only when writing AVI files on Windows platforms.

VideoCompressor - Video compression encoder<br>None (uncompressed) (default)| system compressors

Specify the type of compression algorithm to use to compress the video data. This compression reduces the size of the video file. Choose None (uncompressed) to save uncompressed video data to the video file. The VideoCompressor property can also be set to one of the compressors available on your system. To obtain a list of available video compressors, you can use tab completion. Follow these steps:

1 Instantiate the object:

```
y = vision.VideoFileWriter
```

2 To launch the tab completion functionality, type the following up to the open quote.

```
y.VideoCompressor='
```

A list of compressors available on your system will appear after you press the Tab key. For example:


This property applies only when writing AVI files on Windows platforms.

## AudioDataType - Uncompressed audio data type

 WAV (default)Specify the compressed output audio data type. This property only applies when you write uncompressed WAV files.

## FileColorSpace - Color space for output file RGB (default)| YCbCr 4:2:2

Color space for output AVI file, specified as RGB or $\mathrm{YCbCr} 4: 2: 2$. This property applies when you set the FileFormat property to AVI and only on Windows platforms.

## Quality - Control size of output video file

75 (default) | integer

Control size of output video file, specified as an integer in the range [0,100]. Increase this value for greater video quality. However, doing so increases the file size. Decrease the value to lower video quality with a smaller file size.

The Quality property only applies when you are writing MPEG4 video files (on Windows or Mac) or when you are writing MJPEG-AVI video only files on a Mac or Linux.

## CompressionFactor - Target ratio between number of bytes in input image and compressed image <br> 10 (default) | integer

Target ratio between number of bytes in input image and compressed image, specified as an integer greater than 1. The CompressionFactor indicates the target ratio between the number of bytes in the input image and the compressed image. The data is compressed as much as possible, up to the specified target. This property applies only when writing Lossy MJ2000 files.

## Usage

## Syntax

Filename = videoFWriter(videoFrame)
Filename = videoFWriter(videoFrame,audio)
Filename = videoFWriter(videoFrame, Y, Cb,Cr,audio)

## Description

Filename = videoFWriter(videoFrame) writes one frame of video, videoFrame, to the output file. The input video can be an $M$-by- $N$-by-3 truecolor RGB video frame, or an $M$-by- $N$ grayscale video frame..

Filename = videoFWriter(videoFrame, audio) writes one frame of the input video, videoFrame, and one frame of audio samples, audio, to the output file. This applies when you set the AudioInputPort property to true.

Filename = videoFWriter(videoFrame, $\mathrm{Y}, \mathrm{Cb}, \mathrm{Cr}$, audio) writes one frame of YCbCr 4:2:2 video, and one frame of audio samples, audio, to the output file. This applies
when you set the AudioInputPort to true and the FileColorSpace property to 'YCbCr 4:2:2'. The width of Cb and Cr color components must be half of the width of Y .

## Input Arguments

videoFrame - Video frame

truecolor | 2-D grayscale image
Video frame, returned as a truecolor or 2-D grayscale image.

## Y, Cb, Cr - YCbCr color format

'YCbCr 4:2:2'
YCbCr color format, returned in the $\mathrm{YCbCr} 4: 2: 2$ format.

## audio - One frame of audio samples

```
.wav|.mp3|.mp3|.mp4|.ogg|.flac|.au|.aiff|.aif|.aifc
```

One frame of audio samples, returned in one of the following formats.

Platform	Supported File Name Extensions
All Platforms	AVI (.avi)
Windows	Image:
. .jpg, .bmp	
	Video:   MPEG (.mpeg)   MPEG-2 (.mp2)   MPEG-1.mpg   MPEG-4, including H.264 encoded video (.mp4, .m4v)   Motion JPEG 2000 (.mj 2)   Windows Media Video (.wmv, .asf, .asx, .asx)   and any format supported by Microsoft DirectShow $® 9.0$ or higher.


Platform	Supported File Name Extensions
	Audio:   WAVE (.wav)   Windows Media Audio File (.wma)   Audio Interchange File Format (.aif, .aiff)   Compressed Audio Interchange File Format(.aifc),   MP3 (.mp3)   Sun Audio (.au)   Apple (.snd)
Macintosh	Video:   .avi   Motion JPEG 2000 (.mj 2)   MPEG-4, including H.264 encoded video (.mp4, .m4v)   Apple QuickTime Movie (.mov)   and any format supported by QuickTime as listed on http://   support.apple.com/kb/HT3775.
	Audio:   Uncompressed .avi
Linux	Motion JPEG 2000 (.mj2)   Any format supported by your installed plug-ins for GStreamer 0.1   or higher, as listed on http://gstreamer.freedesktop.org/   documentation/plugins.html, including Ogg Theora (.ogg).

Windows XP and Windows 7 x64 platform ships with a limited set of 64 -bit video and audio codecs. If a compressed multimedia file fails to play, try saving the multimedia file to a supported file format listed in the table above.

If you use Windows, use Windows Media player Version 11 or later.

Note MJ2 files with bit depth higher than 8-bits is not supported by vision.VideoFileReader. Use VideoReader and VideoWriter for higher bit depths.

Reading audio from compressed MP4 files with video and audio is not supported by vision. VideoFileReader.

## Output Arguments

Filename - Video output file name<br>'.avi' (default)|'.mj2'|'.mp4'|'.m4v'

Video output file name, specified as '. avi', '.mj2', '.mp4', and '.m4v'. The file extension you give for Filename must match the FileFormat.

## Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:

```
release(obj)
```


## Specific to vision.VideoFileWriter

info Information about specified video file
isDone End-of-file status (logical)

## Common to All System Objects

step Run System object algorithm
$\begin{array}{ll}\text { release } & \begin{array}{l}\text { Release resources and allow changes to System object property values and } \\ \text { input characteristics }\end{array} \\ \text { reset } & \text { Reset internal states of System object }\end{array}$

## Examples

## Write a Video to an AVI File

Load a video file and write the file to a writer object.

```
videoFReader = vision.VideoFileReader('viplanedeparture.mp4');
videoFWriter = vision.VideoFileWriter('myFile.avi', ...
 'FrameRate',videoFReader.info.VideoFrameRate);
```

Write the first 50 frames from original file into a newly created myFile. avi file.

```
for i=1:50
 videoFrame = videoFReader();
 videoFWriter(videoFrame);
end
```

Close the input and output files.
release(videoFReader); release(videoFWriter);

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Generated code for this function uses a precompiled platform-specific shared library.
- See "System Objects in MATLAB Code Generation" (MATLAB Coder).


## See Also

VideoReader|VideoWriter|vision.VideoFileReader|vision.VideoPlayer Introduced in R2012a

## ocrText class

Object for storing OCR results

## Description

ocrText contains recognized text and metadata collected during optical character recognition (OCR). The ocr function returns the ocrText object. You can access the information contained in the object with the ocrText properties. You can also locate text that matches a specific pattern with the object's locateText method.

## Properties

## Text - Text recognized by OCR

array of characters
Text recognized by OCR, specified as an array of characters. The text includes white space and new line characters.

## CharacterBoundingBoxes - Bounding box locations <br> M-by-4 matrix

Bounding box locations, stored as an $M$-by- 4 matrix. Each row of the matrix contains a four-element vector, $[x y$ width height]. The $[x y]$ elements correspond to the upper-left corner of the bounding box. The [width height] elements correspond to the size of the rectangular region in pixels. The bounding boxes enclose text found in an image using the ocr function. Bounding boxes width and height that correspond to new line characters are set to zero. Character modifiers found in languages, such as Hindi, Tamil, and Bangalese, are also contained in a zero width and height bounding box.

## CharacterConfidences - Character recognition confidence array

Character recognition confidence, specified as an array. The confidence values are in the range [0, 1]. A confidence value, set by the ocr function, should be interpreted as a probability. The ocr function sets confidence values for spaces between words and sets
new line characters to NaN . Spaces and new line characters are not explicitly recognized during OCR. You can use the confidence values to identify the location of misclassified text within the image by eliminating characters with low confidence.

## Words - Recognized words

cell array
Recognized words, specified as a cell array.

## WordBoundingBoxes - Bounding box location and size <br> M-by-4 matrix

Bounding box location and size, stored as an $M$-by- 4 matrix. Each row of the matrix contains a four-element vector, [x y width height], that specifies the upper left corner and size of a rectangular region in pixels.

## WordConfidences - Recognition confidence array

Recognition confidence, specified as an array. The confidence values are in the range [0, 1]. A confidence value, set by the ocr function, should be interpreted as a probability. The ocr function sets confidence values for spaces between words and sets new line characters to NaN. Spaces and new line characters are not explicitly recognized during OCR. You can use the confidence values to identify the location of misclassified text within the image by eliminating words with low confidence.

## Methods

locateText
Locate text pattern

## Examples

## Find and Highlight Text in an Image

```
businessCard = imread('businessCard.png');
ocrResults = ocr(businessCard);
bboxes = locateText(ocrResults, 'MathWorks', 'IgnoreCase', true);
```

Iocr = insertShape(businessCard, 'FilledRectangle', bboxes); figure; imshow(Iocr);


## Find Text Using Regular Expressions

```
businessCard = imread('businessCard.png');
ocrResults = ocr(businessCard);
bboxes = locateText(ocrResults, 'www.*com','UseRegexp', true);
img = insertShape(businessCard, 'FilledRectangle', bboxes);
figure; imshow(img);
```


## MathWorks

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
USA
www.mathworks.com

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Use in a MATLAB Function block is not supported.
- The Words property cannot be accessed in code generation. Use the Text property in place of the Words property to access the OCR results.

See Also<br>insertShape |ocr|regexp|strfind<br>Introduced in R2014a

## locateText

Class: ocrText
Locate text pattern

## Syntax

```
bboxes = locateText(ocrText,pattern)
bboxes = locateText(ocrText,pattern,Name, Value)
```


## Description

bboxes $=$ locateText(ocrText,pattern) returns the location and size of bounding boxes stored in the ocrText object. The locateText method returns only the locations of bounding boxes which correspond to text within an image that exactly match the input pattern.
bboxes = locateText(ocrText,pattern,Name, Value) uses additional options specified by one or more Name, Value arguments.

## Input Arguments

## ocrText - Object containing OCR results ocrText object

Recognized text and metrics, returned as an ocrText object. The object contains the recognized text, the location of the recognized text within the input image, and the metrics indicating the confidence of the results. The confidence values range between 0 and 100 and represent a percent probability. When you specify an $M$-by- 4 roi, the function returns ocrText as an $M$-by- 1 array of ocrText objects. Confidence values range between 0 and 1. Interpret the confidence values as probabilities.

```
pattern - OCR character vector pattern
single character vector | cell array of character vectors | string scalar | string array
```

OCR character vector pattern, specified as a single character vector, string scalar, cell array of character vectors, or a string array. The method returns onlythe locations of bounding boxes which correspond to text within an image that exactly match the input pattern.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## UseRegexp - Regular expression

false (default) | logical scalar
Regular expression, specified as a logical scalar. When you set this property to true, the method treats the pattern as a regular expression. For more information about regular expressions, see regexp.

## IgnoreCase - Case sensitivity

false (default) | logical scalar
Case sensitivity, specified as a logical scalar. When you set this property to true, the method performs case-insensitive text location.

## Output Arguments

## bbox - Text bounding boxes

method | M-by-4 matrix
Text bounding boxes, specified as an $M$-by- 4 matrix. Each row of the matrix contains a four-element vector, $[x y$ width height]. The $[x y]$ elements correspond to the upper-left corner of the bounding box. The [width height] elements correspond to the size of the rectangular region in pixels. The bounding boxes enclose text found in an image using the ocr function. The ocr function stores OCR results in the ocrText object.

## Examples

## Find and Highlight Text in an Image

```
businessCard = imread('businessCard.png');
ocrResults = ocr(businessCard);
bboxes = locateText(ocrResults, 'MathWorks', 'IgnoreCase', true);
Iocr = insertShape(businessCard, 'FilledRectangle', bboxes);
figure; imshow(Iocr);
```



Find Text Using Regular Expressions

```
businessCard = imread('businessCard.png');
ocrResults = ocr(businessCard);
bboxes = locateText(ocrResults, 'www.*com','UseRegexp', true);
img = insertShape(businessCard, 'FilledRectangle', bboxes);
figure; imshow(img);
```


## MathWorks

The MathWorks, Inc.<br>3 Apple Hill Drive<br>Natick, MA 01760-2098<br>USA<br>www.mathworks.com

## pointCloud

Object for storing 3-D point cloud

## Description

The pointCloud object creates point cloud data from a set of points in 3-D coordinate system. The point cloud data is stored as an object with the properties listed in "Properties" on page 2-466. Use "Object Functions" on page 2-468 to retrieve, select, and remove desired points from the point cloud data.

## Creation

## Syntax

ptCloud $=$ pointCloud (xyzPoints)
ptCloud $=$ pointCloud(xyzPoints,Name,Value)

## Description

ptCloud $=$ pointCloud(xyzPoints) returns a point cloud object with coordinates specified by xyzPoints.
ptCloud = pointCloud(xyzPoints,Name,Value) creates a pointCloud object with properties specified as one or more Name, Value pair arguments. For example, pointCloud(xyzPoints,'Color',[0 0 0]) sets the Color property of the point xyzPoints as [000]. Enclose each property name in quotes. Any unspecified properties have default values.

## Input Arguments

## xyzPoints - 3-D coordinate points

M-by-3 array | M-by-N-by-3 array

3-D coordinate points, specified as a $M$-by-3 or $M$-by- $N$-by-3 array. The 3-D coordinate points specify the $x, y$, and $z$ positions of a point in the 3-D coordinate space. This argument sets the Location property.
Data Types: single | double

## Output Arguments

ptCloud - Point cloud
pointCloud object
Point cloud, returned as a pointCloud object with the properties listed in "Properties" on page 2-466.

## Properties

## Location - Position of the points in 3-D coordinate space

$M$-by-3 array | $M$-by- $N$-by-3 array
This property is read-only.
Position of the points in 3-D coordinate space, specified as an $M$-by-3 or $M$-by- $N$-by-3 array. Each entry specifies the $x, y$, and $z$ coordinates of a point in the 3-D coordinate space. You cannot set this property as a name-value pair. Use the xyzPoints input argument.

## Data Types: single

## Color - Point cloud color

[ ] (default) $\mid M$-by-3 array $\mid M$-by- $N$-by-3 array
Point cloud color, specified as an $M$-by- 3 or $M$-by- $N$-by-3 array. Use this property to set the color of points in point cloud. Each entry specifies the RGB color of a point in the point cloud data. Therefore, you can specify the same color for all points or a different color for each point.

- The specified RGB values must lie within the range [ 0,1 ], when you specify the data type for Color as single or double.
- The specified RGB values must lie within the range [0,255], when you specify the data type for Color as uint8.

Coordinates	Valid assignment of Color	
M-by-3 array	M-by-3 array containing RGB values for each point	
M-by- N -by-3 array	$M$-by- $N$-by-3 array containing RGB values for each point	M-by-N-by-3

## Data Types: uint8

## Normal - Surface normals

## [ ] (default) $\mid M$-by-3 array $\mid M$-by- $N$-by-3 array

Surface normals, specified as a $M$-by- 3 or $M$-by- $N$-by- 3 array. Use this property to specify the normal vector with respect to each point in the point cloud. Each entry in the surface normals specifies the $x, y$, and $z$ component of a normal vector.

Coordinates	Surface Normals
$M$-by-3 array	$M$-by-3 array, where each row contains a corresponding normal   vector.
$M$-by- $N$-by-3 array	$M$-by- $N$-by-3 array containing a 1-by-1-by-3 normal vector for each   point.

Data Types: single | double

## Intensity - Grayscale intensities <br> [ ] (default) | $M$-by-1 vector | $M$-by- $N$ matrix

Grayscale intensities at each point, specified as a $M$-by- 1 vector or $M$-by- $N$ matrix. The function maps each intensity value to a color value in the current colormap.

Coordinates	Intensity
$M$-by-3 array	$M$-by-1 vector, where each row contains a corresponding intensity   value.
$M$-by- $N$-by-3 array	$M$-by- $N$ matrix containing intensity value for each point.

Data Types: single | double | uint8

## Count - Number of points

## positive integer

This property is read-only.
Number of points in the point cloud, stored as a positive integer.

## XLimits - Range of $\boldsymbol{x}$ coordinates

1-by-2 vector
This property is read-only.
Range of coordinates along $x$-axis, stored as a 1-by-2 vector.

## YLimits - Range of $\boldsymbol{y}$ coordinates

## 1-by-2 vector

This property is read-only.
Range of coordinates along $y$-axis, stored as a 1 -by- 2 vector.

## ZLimits - Range of $\boldsymbol{z}$ coordinates

1-by-2 vector
This property is read-only.
Range of coordinates along $z$-axis, stored as a 1 -by- 2 vector.

## Object Functions

findNearestNeighbors Find nearest neighbors of a point in point cloud findNeighborsInRadius Find neighbors within a radius of a point in the point cloud findPointsInROI Find points within a region of interest in the point cloud

```
removeInvalidPoints Remove invalid points from point cloud
select

\section*{Examples}

\section*{Create a Point Cloud Object and Modify its Properties}

Read the 3-D coordinate points into the workspace.
```

load('xyzPoints');

```

Create a point cloud object from the input point coordinates.
```

ptCloud = pointCloud(xyzPoints);

```
Inspect the properties of the point cloud object.
ptCloud
ptCloud =
 pointCloud with properties:
 Location: [5184×3 single]
 Color: []
 Normal: []
 Intensity: []
 Count: 5184
 XLimits: [-3 3.4338]
 YLimits: [-2 2]
 ZLimits: [0.0016 3.1437]

Display the point cloud by using pcshow.
pcshow(ptCloud)

\section*{Modify Color of Point Cloud Data}

Create an RGB color array of size same as the size of the point cloud data. Set the point colors to Red.
cmatrix \(=\) ones(size(ptCloud.Location)).*[1 0 0];
Create the point cloud object with the color property set to the RGB color array.
ptCloud = pointCloud(xyzPoints,'Color',cmatrix);
pcshow(ptCloud)

\section*{Add Surface Normals to Point Cloud Data}

Compute surface normals corresponding to the point cloud data using penormals. normals = pcnormals(ptCloud);

Create point cloud object from input point coordinates. Add the computed surface normals to point cloud object.
ptCloud \(=\) pointCloud(xyzPoints,'Normal', normals);
Display the point cloud and plot the surface normals.
```

pcshow(ptCloud)
x = ptCloud.Location(:,1);

```
```

y = ptCloud.Location(:,2);
z = ptCloud.Location(:,3);
u = normals(:,1);
v = normals(:,2);
w = normals(:,3);
hold on
quiver3(x,y,z,u,v,w);
hold off

```


\section*{Tips}

The pointCloud object is a handle object. If you want to create a separate copy of a point cloud, you can use the MATLAB copy method.
ptCloudB \(=\operatorname{copy}(p t C l o u d A)\)
If you want to preserve a single copy of a point cloud, which can be modified by point cloud functions, use the same point cloud variable name for the input and output. ptCloud \(=p c\) Function(ptCloud)

\section*{Extended Capabilities}

\author{
C/C++ Code Generation \\ Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).
}

\author{
See Also \\ pcdenoise | pcmerge | pcnormals | pcplayer | pcread | pcshow| pcwrite \\ Topics \\ "3-D Point Cloud Registration and Stitching" \\ "Coordinate Systems" \\ Introduced in R2015a
}

\section*{findNearestNeighbors}

Find nearest neighbors of a point in point cloud

\section*{Syntax}
```

[indices,dists] = findNearestNeighbors(ptCloud,point,K)
[indices,dists] = findNearestNeighbors(ptCloud,point,K,camMatrix)
[indices,dists] = findNearestNeighbors(

```
\(\qquad\)
``` ,Name, Value)
```


Description

[indices,dists] = findNearestNeighbors(ptCloud, point,K) returns the Knearest neighbors of a query point in the input point cloud. The input point cloud can be an unorganized or organized point cloud data. The K-nearest neighbors of the query point are computed by using the Kd-tree based search algorithm.
[indices,dists] = findNearestNeighbors(ptCloud,point,K,camMatrix) returns the K-nearest neighbors of a query point in the input point cloud. The input point cloud is an organized point cloud data generated by a depth camera. The K-nearest neighbors of the query point are determined using fast approximate K-nearest neighbor search algorithm. The function uses the camera projection matrix camMatrix to know the relationship between adjacent points and hence, speeds up the nearest neighbor search. However, the results have lower accuracy as compared to the Kd-tree based approach.

Note

- This function only supports organized point cloud data produced by RGB-D sensors.
- You can use estimateCameraMatrix to estimate camera projection matrix for the given point cloud data.
[indices,dists] = findNearestNeighbors(\qquad , Name, Value) specifies options using one or more name-value arguments in addition to the input arguments in the preceding syntaxes.

Examples

Find K-Nearest Neighbors in a Point Cloud

Load a set of 3-D coordinate points into the workspace.
load('xyzPoints.mat');
Create a point cloud object.

```
ptCloud = pointCloud(xyzPoints);
```

Specify a query point and the number of nearest neighbors to be identified.

```
point = [0,0,0];
```

$\mathrm{K}=220$;

Get the indices and the distances of K nearest neighboring points.
[indices,dists] = findNearestNeighbors(ptCloud,point,K);
Display the point cloud. Plot the query point and their nearest neighbors.

```
figure
pcshow(ptCloud)
hold on
plot3(point(1),point(2),point(3),'*r')
plot3(ptCloud.Location(indices,1),ptCloud.Location(indices,2),ptCloud.Location(indices
legend('Point Cloud','Query Point','Nearest Neighbors','Location','southoutside','Colo
hold off
```


Find K-Nearest Neighbors in Organized Point Cloud
Find the K-nearest neighbors of a query point in the organized point cloud data by using the camera projection matrix. Compute the camera projection matrix from sampled point cloud data points and their corresponding image point coordinates.

Load an organized point cloud data into the workspace. The point cloud is generated by using the Kinect depth sensor.
ld = load('object3d.mat'); ptCloud = ld.ptCloud;

Specify the step size for sampling the point cloud data.

```
stepSize = 100;
```

Sample the input point cloud and store the sampled 3-D point coordinates as a point cloud object.

```
indices = 1:stepSize:ptCloud.Count;
tempPtCloud = select(ptCloud,indices);
```

Remove invalid points from the sampled point cloud.

```
[tempPtCloud,validIndices] = removeInvalidPoints(tempPtCloud);
```

Define the 3-D world point coordinates of input point cloud.

```
worldPoints = tempPtCloud.Location;
```

Find the 2-D image coordinates corresponding to the 3-D point coordinates of input point cloud.

```
[Y,X] = ind2sub([size(ptCloud.Location,1),size(ptCloud.Location,2)],indices);
imagePoints = [X(validIndices)' Y(validIndices)'];
```

Estimate camera projection matrix from the image and the world point coordinates.

```
camMatrix = estimateCameraMatrix(imagePoints,worldPoints);
```

Specify a query point and the number of nearest neighbors to be identified.

```
point = [0.4 0.3 0.2];
K = 20;
```

Find the indices and distances of K nearest neighboring points by using the camera projection matrix. Use the point cloud method select to get the point cloud data of nearest neighbors.

```
[indices,dists] = findNearestNeighbors(ptCloud,point,K,camMatrix);
ptCloudB = select(ptCloud,indices);
```

Display the point cloud and the nearest neighbors of the query point.
figure
pcshow(ptCloud)
hold on
pcshow(ptCloudB. Location, 'ob')
legend('Point Cloud','Nearest Neighbors','Location','southoutside','Color',[111]) hold off

Input Arguments

ptCloud - Point cloud

pointCloud object
Point cloud, specified as a pointCloud object.

Note The function supports organized point cloud data generated only from RGB-D sensors.

point - Query point

three-element vector of form $[x, y, z$]
Query point, specified as a three-element vector of form $[x, y, z]$.

K - Number of nearest neighbors
 positive integer

Number of nearest neighbors, specified as a positive integer.

camMatrix - Camera projection matrix

4-by-3 matrix
Camera projection matrix, specified as a 4-by-3 matrix that maps 3-D world points to 2-D image points. You can compute the camMatrix by using the estimateCameraMatrix function.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: findNearestNeighbors(ptCloud, point, k, 'Sort', true)

Sort - Sort indices

false (default) | true
Sort indices, specified as a comma-separated pair of 'Sort' and a logical scalar. When you set Sort to true, the returned indices are sorted in the ascending order based on the distance from a query point. To turn off sorting, set Sort to false.

MaxLeafChecks - Number of leaf nodes to check
 Inf (default) | integer

Number of leaf nodes to check, specified as a comma-separated pair consisting of 'MaxLeafChecks ' and an integer. When you set this value to Inf, the entire tree is
searched. When the entire tree is searched, it produces exact search results. Increasing the number of leaf nodes to check increases accuracy, but reduces efficiency.

Note The name-value argument 'MaxLeafChecks ' is valid only with Kd-tree based search method.

Output Arguments

indices - Indices of stored points

column vector
Indices of stored points, returned as a column vector. The vector contains K linear indices of the nearest neighbors stored in the point cloud.

dists - Distances to query point

column vector
Distances to query point, returned as a column vector. The vector contains the Euclidean distances between the query point and its nearest neighbors.

References

[1] Muja, M. and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration". In VISAPP International Conference on Computer Vision Theory and Applications. 2009. pp. 331-340.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- For code generation in non-host platforms, the value for 'MaxLeafChecks ' must be set to the default value Inf. If you specify values other than Inf, the function
generates a warning and automatically assigns the default value for 'MaxLeafChecks'.

See Also
cameraMatrix|estimateCameraMatrix|pointCloud
Introduced in R2015a

findNeighborsInRadius

Find neighbors within a radius of a point in the point cloud

Syntax

```
[indices,dists] = findNeighborsInRadius(ptCloud,point,radius)
[indices,dists] = findNeighborsInRadius(ptCloud,point,radius,
camMatrix)
[indices,dists] = findNeighborsInRadius( __ ,Name,Value)
```


Description

[indices,dists] = findNeighborsInRadius(ptCloud,point,radius) returns the neighbors within a radius of a query point in the input point cloud. The input point cloud can be an unorganized or organized point cloud data. The neighbors within a radius of the query point are computed by using the Kd-tree based search algorithm.
[indices,dists] = findNeighborsInRadius(ptCloud,point,radius, camMatrix) returns the neighbors within a radius of a query point in the input point cloud. The input point cloud is an organized point cloud data generated by a depth camera. The neighbors within a radius of the query point are determined using fast approximate neighbor search algorithm. The function uses the camera projection matrix camMatrix to know the relationship between adjacent points and hence, speeds up the search. However, the results have lower accuracy as compared to the Kd-tree based approach.

Note

- This function only supports organized point cloud data produced by RGB-D sensors.
- You can use estimateCameraMatrix to estimate camera projection matrix for the given point cloud data.
[indices,dists] = findNeighborsInRadius(\qquad , Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in the preceding syntaxes.

Examples

Find Radial Neighbors in Point Cloud

Load a set of 3-D coordinate points into the workspace.

```
load('xyzPoints.mat');
```

Create a point cloud object.

```
ptCloud = pointCloud(xyzPoints);
```

Specify a query point and the radius within which the neighbors are to be identified.

```
point = [0,0,3];
radius = 0.5;
```

Get the indices and the distances of points that lie within the specified radius.
[indices,dists] = findNeighborsInRadius(ptCloud,point,radius);
Get the point cloud data of radial neighbors.
ptCloudB = select(ptCloud,indices);
Display the point cloud. Plot the query point and the corresponding radial neighbors.

```
figure
pcshow(ptCloud)
hold on
plot3(point(1),point(2),point(3),'*')
pcshow(ptCloudB.Location,'r')
legend('Point Cloud','Query Point','Radial Neighbors','Location','southoutside','Color
hold off
```


Find Radial Neighbors in Organized Point Cloud
Find radial neighbors of a query point in the organized point cloud data by using the camera projection matrix. Compute the camera projection matrix from sampled point cloud data points and their corresponding image point coordinates.

Load an organized point cloud data into the workspace. The point cloud is generated by using the Kinect depth sensor.
ld = load('object3d.mat'); ptCloud = ld.ptCloud;

Specify the step size for sampling the point cloud data.

```
stepSize = 100;
```

Sample the input point cloud and store the sampled 3-D point coordinates as a point cloud object.

```
indices = 1:stepSize:ptCloud.Count;
tempPtCloud = select(ptCloud,indices);
```

Remove invalid points from the sampled point cloud.

```
[tempPtCloud,validIndices] = removeInvalidPoints(tempPtCloud);
```

Define the 3-D world point coordinates of input point cloud.

```
worldPoints = tempPtCloud.Location;
```

Find the 2-D image coordinates corresponding to the 3-D point coordinates of input point cloud.

```
[Y,X] = ind2sub([size(ptCloud.Location,1),size(ptCloud.Location,2)],indices);
imagePoints = [X(validIndices)' Y(validIndices)'];
```

Estimate camera projection matrix from the image and the world point coordinates.
camMatrix = estimateCameraMatrix(imagePoints,worldPoints);
Specify a query point and the radius within which the neighbors are to be identified.

```
point = [0.4 0.3 0.2];
```

radius $=0.05$;

Get the indices and the distances of radial neighbors. Use the point cloud method select to get the point cloud data of neighboring points.

```
[indices,dists] = findNeighborsInRadius(ptCloud,point,radius,camMatrix);
ptCloudB = select(ptCloud,indices);
```

Display the point cloud and the radial neighbors found around a query point.

```
figure
pcshow(ptCloud);
hold on;
pcshow(ptCloudB.Location, 'b');
```

legend('Point Cloud','Radial Neighbors','Location','southoutside','Color',[1111]) hold off;

Input Arguments

ptCloud - Point cloud

pointCloud object
Point cloud, specified as a pointCloud object.

point - Query point

three-element vector of form [x, y, z]

Query point, specified as a three-element vector of form $[x, y, z]$.

radius - Search radius

scalar
Search radius, specified as a scalar. The function finds the neighbors within the specified radius around a query point in the input point cloud.

camMatrix - Camera projection matrix

4-by-3 matrix
Camera projection matrix, specified as a 4-by-3 matrix that maps 3-D world points to 2-D image points. You can find camMatrix by using the estimateCameraMatrix function.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Example: findNeighborsInRadius(ptCloud, point, radius, 'Sort', true)

Sort - Sort indices

false (default) |true
Sort indices, specified as a comma-separated pair of 'Sort' and a logical scalar. When you set Sort to true, the returned indices are sorted in the ascending order based on the distance from a query point. To turn off sorting, set Sort to false.

MaxLeafChecks - Number of leaf nodes

Inf (default) | integer
Number of leaf nodes, specified as a comma-separated pair consisting of 'MaxLeafChecks ' and an integer. When you set this value to Inf, the entire tree is searched. When the entire tree is searched, it produces exact search results. Increasing the number of leaf nodes to check increases accuracy, but reduces efficiency.

Output Arguments

indices - Indices of stored points
 column vector

Indices of stored points, returned as a column vector. The vector contains the linear indices of the radial neighbors stored in the point cloud.

dists - Distances to query point

column vector
Distances to query point, returned as a column vector. The vector contains the Euclidean distances between the query point and its radial neighbors.

References

[1] Muja, M. and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration". In VISAPP International Conference on Computer Vision Theory and Applications. 2009. pp. 331-340.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathrm{Coder}^{\mathrm{TM}}$.
Usage notes and limitations:

- For code generation in non-host platforms, the value for 'MaxLeafChecks ' must be set to the default value Inf. If you specify values other than Inf, the function generates a warning and automatically assigns the default value for 'MaxLeafChecks'.

See Also
cameraMatrix|estimateCameraMatrix|pointCloud

Introduced in R2015a

findPointsInROI

Find points within a region of interest in the point cloud

Syntax

```
indices = findPointsInROI(ptCloud,roi)
indices = findpointsInROI(ptCloud,roi,camMatrix)
```


Description

indices = findPointsInROI(ptCloud, roi) returns the points within a region of interest (ROI) in the input point cloud. The points within the specified ROI are obtained using Kd-tree based search algorithm.
indices = findpointsInROI(ptCloud,roi,camMatrix) returns the points within a ROI in the input point cloud. The input point cloud is an organized point cloud data generated by a depth camera. The points within the specified ROI are obtained using fast approximate neighbor search algorithm. The function uses the camera projection matrix camMatrix to know the relationship between adjacent points and hence, speeds up the search. However, the results have lower accuracy as compared to the Kd-tree based approach.

Note

- This function only supports organized point cloud data produced by RGB-D sensors.
- You can use estimateCameraMatrix to estimate camera projection matrix for the given point cloud data.

Examples

Find Points Within a Cuboid ROI in Point Cloud

Read a point cloud data into the workspace.
ptCloud = pcread('teapot.ply');
Define a cuboid ROI within the range of the x, y and z coordinates of the input point cloud.
roi $=\left[\begin{array}{lllll}-2 & 2 & -2 & 2 & 2.4 \\ 3.5\end{array}\right]$
Find the indices of the points that lie within the cuboid ROI.
indices = findPointsInROI(ptCloud,roi);
Select the points that lie within the cuboid ROI and store as a point cloud object.
ptCloudB = select(ptCloud,indices);
Display the input point cloud and the point cloud within the specified ROI.
figure
pcshow(ptCloud.Location,[0.5 0.5 0.5])
hold on
pcshow(ptCloudB.Location,'r');
legend('Point Cloud','Points within ROI','Location','southoutside','Color',[1111]) hold off

Find Points Within a Cuboid ROI in Organized Point Cloud
Find points within a cuboid ROI in the organized point cloud data by using the camera projection matrix. Compute the camera projection matrix from sampled point cloud data points and their corresponding image point coordinates.

Load an organized point cloud data into the workspace. The point cloud is generated by using the Kinect depth sensor.
ld = load('object3d.mat'); ptCloud = ld.ptCloud;

Specify the step size for sampling the point cloud data.

```
stepSize = 100;
```

Sample the input point cloud and store the sampled 3-D point coordinates as a point cloud object.

```
indices = 1:stepSize:ptCloud.Count;
tempPtCloud = select(ptCloud,indices);
```

Remove invalid points from the sampled point cloud.
[tempPtCloud, validIndices] = removeInvalidPoints(tempPtCloud);
Get the 3-D world point coordinates from input point cloud.
worldPoints $=$ tempPtCloud.Location;
Find the 2-D image coordinates corresponding to the 3-D point coordinates of input point cloud.

```
[Y,X] = ind2sub([size(ptCloud.Location,1),size(ptCloud.Location,2)],indices);
imagePoints = [X(validIndices)' Y(validIndices)'];
```

Estimate camera projection matrix from the image and the world point coordinates.
camMatrix = estimateCameraMatrix(imagePoints,worldPoints);
Specify a cuboid ROI within the range of the x, y and z coordinates of the input point cloud.

```
roi = [0.3 0.7 0 0.4 0.1 0.3];
```

Find the indices of the point cloud data that lie within the cuboid ROI.
indices = findPointsInROI(ptCloud,roi);
Use the point cloud method select to get the point cloud data of points within the ROI. ptCloudB $=$ select(ptCloud,indices);

Display the input point cloud and the points within the cuboid ROI.
figure
pcshow(ptCloud)
hold on
pcshow(ptCloudB. Location, 'r');
legend('Point Cloud','Points within the ROI','Location','southoutside','Color',[1 11$]$ hold off

Input Arguments

ptCloud - Point cloud

pointCloud object
Point cloud, specified as a pointCloud object.

roi - Region of interest

six-element vector
Region of interest, specified as a six-element vector of form [xmin, xmax, ymin, ymax, zmin, zmax], where:

- xmin and xmax are the minimum and the maximum limits along the x-axis respectively.
- ymin and ymax are the minimum and the maximum limits along the y-axis respectively.
- zmin and zmax are the minimum and the maximum limits along the z-axis respectively.

camMatrix - Camera projection matrix

4-by-3 matrix
Camera projection matrix, specified as a 4-by-3 matrix that maps 3-D world points to 2-D image points. You can find camMatrix by using the estimateCameraMatrix function.

Output Arguments

indices - Indices of stored points

column vector
Indices of stored points, returned as a column vector. The vector contains the linear indices of the ROI points stored in the point cloud.

References

[1] Muja, M. and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration". In VISAPP International Conference on Computer Vision Theory and Applications. 2009. pp. 331-340.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also
cameraMatrix|estimateCameraMatrix|pointCloud Introduced in R2015a

removelnvalidPoints

Remove invalid points from point cloud

Syntax

```
[ptCloudOut,indices] = removeInvalidPoints(ptCloud)
```


Description

[ptCloudOut,indices] = removeInvalidPoints(ptCloud) removes points with Inf or NaN coordinate values from point cloud and returns the indices of valid points.

Examples

Remove Invalid Points from Point Cloud

Create a point cloud object with NaN and Inf values.
xyzpoints = abs(randn(10,3)).*100;
xyzpoints(1:2:4,:) = nan('single');
xyzpoints(6:2:10,:) = inf('single');
ptCloud = pointCloud(xyzpoints);
Inspect the Location property of point cloud data to verify the occurrence of NaN and Inf values.
ptCloud.Location
ans $=10 \times 3$
$\mathrm{NaN} \quad \mathrm{NaN} \quad \mathrm{NaN}$
$183.3885 \quad 303.4923 \quad 120.7487$
$\mathrm{NaN} \quad \mathrm{NaN} \quad \mathrm{NaN}$
$86.2173 \quad 6.3055 \quad 163.0235$
$31.8765 \quad 71.4743 \quad 48.8894$

Inf	Inf	Inf
43.3592	12.4144	72.6885
Inf	Inf	Inf
357.8397	140.9034	29.3871
Inf	Inf	Inf

Remove points with NaN and Inf values from the point cloud.
ptCloudOut = removeInvalidPoints(ptCloud);
Inspect the Location property of point cloud data to verify that the invalid points are removed.

```
ptCloudOut.Location
ans = 5×3
183.3885 303.4923 120.7487
    86.2173 6.3055 163.0235
    31.8765 71.4743 48.8894
    43.3592 12.4144 72.6885
    357.8397 140.9034 29.3871
```


Input Arguments

ptCloud - Point cloud

pointCloud object
Point cloud, specified as a pointCloud object.

Output Arguments

ptCloudOut - Point cloud with points removed
pointCloud object

Point cloud, returned as a pointCloud object with Inf or NaN coordinates removed.

Note The output is always an unorganized (X-by- 3) point cloud. If the input ptCloud is an organized point cloud (M-by- N-by- 3), the function returns the output as an unorganized point cloud.
indices - Indices of valid points
vector
Indices of valid points in the point cloud, specified as a vector.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

pcread | pointCloud

Introduced in R2015a

select

Select points in point cloud

Syntax

```
ptCloudOut = select(ptCloud,indices)
ptCloudOut = select(ptCloud,row,column)
ptCloudOut = select(
```

\qquad

``` , 'OutputSize',outputSize)
```


Description

ptCloudOut $=$ select(ptCloud,indices) returns a pointCloud object containing only the points that are selected using linear indices.
ptCloudOut $=$ select (ptCloud, row, column) returns a pointCloud object containing only the points that are selected using row and column subscripts. This syntax applies only if the input is an organized point cloud data of size M-by- N-by-3.
ptCloudOut $=$ select (\qquad ,'OutputSize', outputSize) returns the selected points as a pointCloud object of size specified by outputSize.

Examples

Select Points from Point Cloud

Read a point cloud data into the workspace.
ptCloud = pcread('teapot.ply');
Read the number of points in the point cloud data.
Length = ptCloud.Count;
Select indices within the range [1, Length].

```
stepSize = 10;
indices = 1:stepSize:Length;
```

Select points specified by the indices from input point cloud. This selection of points downsamples the input point cloud by a factor of stepSize.

```
ptCloudB = select(ptCloud,indices);
```

Display the input and the selected point cloud data.

```
figure
subplot(1,2,1)
pcshow(ptCloud)
title('Input Point Cloud','Color',[1 1 1]);
subplot(1,2,2)
pcshow(ptCloudB)
title('Selected Points','Color',[1 1 1]);
```


Input Arguments

ptCloud - Point cloud

pointCloud object
Point cloud, specified as a pointCloud object.
indices - Indices of selected points
vector
Indices of selected points, specified as a vector.

row - Row indices

vector

Row indices, specified as a vector. This argument applies only if the input is an organized point cloud data of size M-by- N-by-3.

column - Column indices

vector
Column indices, specified as a vector. This argument applies only if the input is an organized point cloud data of size M-by- N-by-3.

outputSize - Size of output point cloud
 'selected' (default)|'full'

Size of the output point cloud, ptCloud0ut, specified as 'selected' or 'full'.

- If the size is 'selected' ', then the output contains only the selected points from the input point cloud, ptCloud.
- If the size is ' full', then the output is same size as the input point cloud ptCloud. Cleared points are filled with NaN and the color is set to [000].

Output Arguments

ptCloudOut - Selected point cloud

pointCloud object
Point cloud, returned as a pointCloud object.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

pcread | pointCloud
Introduced in R2015a

cylinderModel class

Object for storing a parametric cylinder model

Syntax

```
model = cylinderModel(params)
```


Description

Object for storing a parametric cylinder model.

Construction

model = cylinderModel(params) constructs a parametric cylinder model from the 1-by-7 params input vector that describes a cylinder.

Input Arguments

params - cylinder parameters

1-by-7 scalar vector
Cylinder parameters, specified as a 1-by-7 scalar vector containing seven parameters [$x 1, y 1, z 1, x 2, y 2, z 2, r]$ that desribe a cylinder.

- [$x 1, y 1, z 1]$ and $[x 2, y 2, z 2]$ are the centers of each end-cap surface of the cylinder.
- r is the radius of the cylinder.

Properties

These properties are read-only.

Parameters - Cylinder model parameters

1-by-7 scalar vector

Cylinder model parameters, stored as a 1-by-7 scalar vector that describes a cylinder [$x 1, y 1, z 1, x 2, y 2, z 2, r]$ that describe a cylinder.

- $[x 1, y 1, z 1]$ and $[x 2, y 2, z 2]$ are the centers of each end-cap surface of the cylinder.
- r is the radius of the cylinder.

Center - Center of cylinder

1-by-3 vector
Center of cylinder, stored as a 1-by-3 vector.

Height - Height of cylinder

scalar
Height of cylinder, stored as a scalar.

Radius - Radius of cylinder

scalar
Radius of cylinder, stored as a scalar.

Methods

plot Plot cylinder in a figure window

Examples

Detect Cylinder in Point Cloud

Load the point cloud.
load('object3d.mat');
Display point cloud.
figure
pcshow(ptCloud)
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')
title('Detect a Cylinder in a Point Cloud')

Set the maximum point-to-cylinder distance (5 mm) for the cylinder fitting. maxDistance $=0.005$;

Set the region of interest to constrain the search.

```
roi = [0.4,0.6;-inf,0.2;0.1,inf];
sampleIndices = findPointsInROI(ptCloud,roi);
```

Set the orientation constraint.
referenceVector $=[0,0,1]$;
Detect the cylinder in the point cloud and extract it.

```
model = pcfitcylinder(ptCloud,maxDistance,referenceVector,...
    'SampleIndices',sampleIndices);
```

Plot the cylinder.
hold on
plot(model)

See Also
 affine3d | pcdenoise | pcdownsample|pcfitcylinder|pcfitplane| pcfitsphere | pcmerge | pcplayer | pcread | pcregistericp | pcshow | pctransform|pcwrite|planeModel|pointCloud|sphereModel

Topics

"3-D Point Cloud Registration and Stitching"

Introduced in R2015b

plot

Class: cylinderModel
Plot cylinder in a figure window

Syntax

```
plot(model)
plot(model,'Parent',ax)
```


Description

$\mathrm{H}=\mathrm{plot}($ model $)$ plots a cylinder within the axis limits of the current figure. H is the handle to surf, a 3-D shaded surface plot.
$H=p l o t(m o d e l, ' P a r e n t ', a x)$ additionally specifies an output axes.

Input Arguments

model - Parametric cylinder model

cylinder model
Parametric cylinder model returned by cylinderModel.
'ax' - Output axes
gca (default) | axes
Output axes, specified as the current axes for displaying the cylinder.

Examples

Detect Cylinder in Point Cloud

Load the point cloud.
load('object3d.mat');
Display point cloud.

```
figure
pcshow(ptCloud)
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')
title('Detect a Cylinder in a Point Cloud')
```

Detect a Cylinder in a Point Cloud

Set the maximum point-to-cylinder distance (5 mm) for the cylinder fitting. maxDistance = 0.005;

Set the region of interest to constrain the search.
roi $=[0.4,0.6 ;-i n f, 0.2 ; 0.1, i n f] ;$
sampleIndices $=$ findPointsInROI(ptCloud,roi);
Set the orientation constraint.
referenceVector $=[0,0,1]$;
Detect the cylinder in the point cloud and extract it.
model $=$ pcfitcylinder(ptCloud, maxDistance, referenceVector,...
'SampleIndices',sampleIndices);
Plot the cylinder.
hold on
plot(model)

See Also

cylinderModel|pcfitcylinder

Introduced in R2015b

planeModel

Object for storing a parametric plane model

Description

Construct and store a parametric plane model based on parameters that describe a plane.

Creation

Syntax

```
model = planeModel(Parameters)
```


Description

model = planeModel(Parameters) constructs a parametric plane model from the 1-by-4 params input vector that describes a plane.

Input Arguments

Parameters - Plane parameters

1-by-4 scalar vector

Plane parameters, specified as a 1-by-4 vector. This input specifies the Parameters property. The four parameters $[a, b, c, d]$ describe the equation for a plane:

$$
a x+b y+c z+d=0
$$

Properties

These properties are read-only.

Parameters - Plane model parameters

1-by-4 vector
Plane model parameters, stored as a 1-by-4 vector. These parameters are specified by the params input argument.

Normal - Normal vector of the plane

1-by-3 vector
Normal vector of the plane, stored as a 1-by-3 vector. The $[a, b, c]$ vector specifies the unnormalized normal vector of the plane.

Object Functions

planeModel.plot Plot plane in a figure window

Examples

Detect Multiple Planes from Point Cloud

Load the point cloud.
load('object3d.mat')
Display and label the point cloud.

```
figure
pcshow(ptCloud)
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')
title('Original Point Cloud')
```


Set the maximum point-to-plane distance $(2 \mathrm{~cm})$ for plane fitting.
maxDistance $=0.02$;
Set the normal vector of the plane.
referenceVector $=[0,0,1]$;
Set the maximum angular distance to 5 degrees.
maxAngularDistance $=5$;
Detect the first plane, the table, and extract it from the point cloud.
[model1,inlierIndices,outlierIndices] = pcfitplane(ptCloud,...
maxDistance, referenceVector, maxAngularDistance);

```
plane1 = select(ptCloud,inlierIndices);
remainPtCloud = select(ptCloud,outlierIndices);
```

Set the region of interest to constrain the search for the second plane, left wall.

```
roi = [-inf,inf;0.4,inf;-inf,inf];
sampleIndices = findPointsInROI(remainPtCloud,roi);
```

Detect the left wall and extract it from the remaining point cloud.

```
[model2,inlierIndices,outlierIndices] = pcfitplane(remainPtCloud,...
    maxDistance,'SampleIndices',sampleIndices);
plane2 = select(remainPtCloud,inlierIndices);
remainPtCloud = select(remainPtCloud,outlierIndices);
```

Plot the two planes and the remaining points.

```
figure
pcshow(planel)
title('First Plane')
```


First Plane

figure
pcshow(plane2)
title('Second Plane')

figure
pcshow(remainPtCloud)
title('Remaining Point Cloud')

See Also

affine3d | cylinderModel | pcdenoise | pcdownsample | pcfitcylinder | pcfitplane|pcfitsphere|pcmerge|pcplayer|pcread|pcregistericp| pcshow|pctransform|pcwrite|pointCloud|sphereModel

Topics

"3-D Point Cloud Registration and Stitching"
Introduced in R2015b

planeModel.plot

Plot plane in a figure window

Syntax

```
plot(model)
plot(model,Name,Value)
```


Description

$\mathrm{H}=\mathrm{plot}($ model $)$ plots a plane within the axis limits of the current figure. H is the handle to the patch.
$\mathrm{H}=\mathrm{plot}($ model, Name, Value) includes additional options specified by one or more Name, Value pair arguments.

Examples

Detect Plane in Point Cloud

Load point cloud.
load('object3d.mat');
Display the point cloud.
figure
pcshow(ptCloud)
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')
title('Detect a plane in a point cloud')

Set the maximum point-to-plane distance $(2 \mathrm{~cm})$ for plane fitting.
maxDistance $=0.02$;
Set the normal vector of a plane.
referenceVector $=[0,0,1]$;
Set the maximum angular distance (5 degrees).
maxAngularDistance $=5$;
Detect the table in the point cloud and extract it.
model $=$ pcfitplane(ptCloud, maxDistance,referenceVector,maxAngularDistance);

Plot the plane.
hold on
plot(model)

Input Arguments

model - Parametric plane model

plane model
Parametric plane model returned by planeModel.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'Color', 'r'.

Parent - Output axes

gca (default) | axes
Output axes, specified as the comma-separated pair of 'Parent' and the current axes for displaying the visualization.

Color - Color of the plane

'red ' (default) | 1-by-3 RGB vector | short name of color | long name of color
Color of the plane, specified as the comma-separated pair of 'Color' and one of:

- 1-by-3 RGB vector with values in the range of [01 $\left.\begin{array}{ll}0 & 1\end{array}\right]$
- short name of a MATLAB ColorSpec color, such as 'b'
- long name of a MATLAB ColorSpec color, such as 'blue'

Introduced in R2015b

sphereModel class

Object for storing a parametric sphere model

Syntax

model = sphereModel(params)

Description

Object for storing a parametric sphere model

Construction

model = sphereModel (params) constructs a parametric sphere model from the 1-by-4 params input vector that describes a sphere.

Input Arguments

params - Sphere parameters

1-by-4 scalar vector

Sphere parameters, specified as a 1-by-4 scalar vector. This input specifies the Parameters property. The four parameters [a, b, c, d] satisfy the equation for a sphere:

$$
(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=d^{2}
$$

Properties

These properties are read-only.

Parameters - Sphere model parameters

1-by-4 vector

Sphere model parameters, stored as a 1-by-4 vector. These parameters are specified by the params input argument. The four parameters $[a, b, c, d]$ satisfy the equation for a sphere:

$$
(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=d^{2}
$$

Center - Center of the sphere

1-by-3 vector
Center of the sphere, stored as a 1-by-3 vector $[x c, y c, z c]$ that specifies the center coordinates of the sphere.

Radius - Radius of sphere

scalar
Radius of sphere, stored as a scalar value.

Methods

plot Plot sphere in a figure window

Examples

Detect Sphere in Point Cloud

Load point cloud.

```
load('object3d.mat');
```

Display point cloud.

```
figure
pcshow(ptCloud)
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')
title('Detect a sphere in a point cloud')
```


Set the maximum point-to-sphere distance $(1 \mathrm{~cm})$, for sphere fitting.
maxDistance = 0.01;
Set the region of interest to constrain the search.
roi $=$ [-inf, 0.5; 0.2, 0.4; 0.1, inf];
sampleIndices = findPointsInROI(ptCloud, roi);
Detect the globe in the point cloud and extract it.
model = pcfitsphere(ptCloud, maxDistance, 'SampleIndices', sampleIndices);
Plot the sphere.
hold on
plot(model)

See Also

affine3d | cylinderModel | pcdenoise | pcdownsample | pcfitcylinder| pcfitplane|pcfitsphere|pcmerge|pcplayer|pcread|pcregistericp| pcshow | pctransform | pcwrite | planeModel | pointCloud

Topics

"3-D Point Cloud Registration and Stitching"

Introduced in R2015b

plot

Class: sphereModel
Plot sphere in a figure window

Syntax

plot(model)
plot(model,'Parent',ax)

Description

$\mathrm{H}=\mathrm{plot}($ model $)$ plots a sphere in the current figure. H is the handle to surf, a 3-D shaded surface plot.
$H=p l o t(m o d e l, ' P a r e n t ', a x)$ additionally allows you to specify an output axes.

Input Arguments

model - Parametric sphere model

sphere model
Parametric sphere model returned by sphereModel.

'Parent' - Output axes

gca (default) | axes
Output axes, specified as the comma-separated pair of 'Parent' and the current axes for displaying the visualization.

Examples

Detect Sphere in Point Cloud

Load point cloud.
load('object3d.mat');
Display point cloud.

```
figure
pcshow(ptCloud)
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')
title('Detect a sphere in a point cloud')
```


Detect a sphere in a point cloud

Set the maximum point-to-sphere distance (1 cm), for sphere fitting.
maxDistance = 0.01;
Set the region of interest to constrain the search.
roi = [-inf, 0.5; 0.2, 0.4; 0.1, inf];
sampleIndices = findPointsInROI(ptCloud, roi);
Detect the globe in the point cloud and extract it.
model = pcfitsphere(ptCloud, maxDistance, 'SampleIndices', sampleIndices);
Plot the sphere.
hold on
plot(model)

See Also

pcfitsphere|sphereModel

Introduced in R2015b

opticalFlow

Object for storing optical flow matrices

Description

The opticalFlow object stores the direction and speed of a moving object from one image or video frame to another. Use the object function plot to plot the optical flow vectors.

Creation

Syntax

flow = opticalflow
flow = opticalFlow(Vx,Vy)

Description

flow = opticalFlow creates an optical flow object with default property values.
flow $=$ opticalFlow($V x, V y$) creates an optical flow object from two equal-sized matrices $V x$ and $V y$. The matrices $V x$ and $V y$ are the x and y components of velocity respectively. The input velocity components set the "Properties" on page 2-536 of optical flow object.

Input Arguments

Vx $-x$ component of velocity

M-by- N matrix
x component of velocity, specified as an M-by- N matrix.
Data Types: single|double

```
Vy - y component of velocity
M-by-N matrix
```

y component of velocity, specified as an M-by- N matrix.
Data Types: single | double
Note Vx and Vy must be of the same size and data type.

Properties

Vx - x component of velocity

0 -by-1 empty matrix (default) | M-by- N matrix
x component of velocity, specified as an M-by- N matrix. If the input Vx is not specified, the default value of this property is set to 0-by-1 empty matrix.

Data Types: single | double

Vy - y component of velocity

0 -by-1 empty matrix (default) | M-by- N matrix
y component of velocity, specified as an M-by- N matrix. If the input $V y$ is not specified, the default value of this property is set to 0 -by- 1 empty matrix.

Data Types: single | double

Orientation - Phase angles of optical flow
0 -by-1 empty matrix (default) | M-by- N matrix
This property is read-only.
Phase angles of optical flow in radians, specified as an M-by- N matrix of the same size and data type as the components of velocity. The phase angles of optical flow is calculated from the x and y components of velocity. If the inputs $V x$ and $V y$ are not specified, the default value of this property is set to 0-by-1 empty matrix.

Data Types: single| double

Magnitude - Magnitude of optical flow

0 -by-1 empty matrix (default) | M-by- N matrix

This property is read-only.
Magnitude of optical flow, specified as an M-by- N matrix of the same size and data type as the components of velocity. The magnitude of optical flow is calculated from the x and y components of velocity. If the inputs $V x$ and $V y$ are not specified, the default value of this property is set to 0-by-1 empty matrix.

Data Types: single | double

Object Functions

plot Plot optical flow vectors

Examples

Create Optical Flow Object

Create an optical flow object and view its properties.

```
flow = opticalFlow
flow =
```

 opticalFlow with properties:
 Vx: $\quad[0 \times 1$ double]
Vy: $[0 \times 1$ double $]$
Orientation: $[0 \times 1$ double $]$
Magnitude: $[0 \times 1$ double $]$

The default values of the properties are returned as an empty matrix of size 0 -by- 1 and data type double.

Create an Optical Flow Object and Plot Its Velocity

Create an optical flow object from two equal-sized velocity matrices.

```
Vx = randn(100,100);
Vy = randn(100,100);
opflow = opticalFlow(Vx,Vy);
```

Inspect the properties of the optical flow object. The orientation and the magnitude are computed from the velocity matrices.

opflow

```
opflow =
    opticalFlow with properties:
```

Vx:	$[100 \times 100$ double $]$
Vy:	$[100 \times 100$ double $]$
Orientation:	$[100 \times 100$ double $]$
Magnitude:	$[100 \times 100$ double $]$

Plot the velocity of the object as a quiver plot.

```
plot(opflow,'DecimationFactor',[10 10],'ScaleFactor',10);
```


Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathrm{Coder}^{\mathrm{TM}}$.

See Also
opticalFlowFarneback|opticalFlowHS|opticalFlowLK|opticalFlowLKDoG| quiver
Introduced in R2015a

plot

Plot optical flow vectors

Syntax

```
plot(flow)
plot(flow,Name,Value)
```


Description

plot(flow) plots the optical flow vectors.
plot(flow, Name, Value) specifies options using one or more name-value arguments in addition to the input argument in the previous syntax.

Examples

Create an Optical Flow Object and Plot Its Velocity

Create an optical flow object from two equal-sized velocity matrices.

```
Vx = randn(100,100);
Vy = randn(100,100);
opflow = opticalFlow(Vx,Vy);
```

Inspect the properties of the optical flow object. The orientation and the magnitude are computed from the velocity matrices.
opflow
opflow = opticalFlow with properties:

> Vx: [100×100 double]
> Vy: [100x100 double]

```
Orientation: [100x100 double]
    Magnitude: [100x100 double]
```

Plot the velocity of the object as a quiver plot.

```
plot(opflow,'DecimationFactor',[10 10],'ScaleFactor',10);
```


Input Arguments

flow - Object containing optical flow matrices
opticalFlow object

Object containing optical flow velocity matrices, specified as an opticalFlow object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, ... , NameN, ValueN.

Example: plot(flow,'DecimationFactor',[1 1])

DecimationFactor - Decimation factor of velocity vectors

[1 1] (default)| two-element vector
Decimation factor of velocity vectors, specified as the comma-separated pair consisting of 'DecimationFactor' and a two-element vector. The two-element vector is of form [XDecimFactor YDecimFactor] and specifies the decimation factor for velocity vectors along the x and y directions respectively. XDecimFactor and YDecimFactor are positive scalar integers. Increase the value of this property to get a less cluttered quiver plot.

ScaleFactor - Scaling factor for velocity vector display
 1 (default) | positive integer-valued scalar

Scaling factor for velocity vector display, specified as the comma-separated pair consisting of 'ScaleFactor' and a positive integer-valued scalar. Increase this value to display longer vectors.

Parent - Figure axes

gca handle
Figure axes, specified as the comma-separated pair consisting of 'Parent' and axes object. The default is set to the current axes handle, gca.

See Also

opticalFlow|quiver

Introduced in R2015a

opticalFlowHS

Object for estimating optical flow using Horn-Schunck method

Description

Create an optical flow object for estimating the direction and speed of a moving object using the Horn-Schunck method. Use the object function estimateFlow to estimate the optical flow vectors. Using the reset object function, you can reset the internal state of the optical flow object.

Creation

Syntax

opticFlow = opticalFlowHS opticFlow = opticalFlowHS(Name,Value)

Description

opticFlow = opticalFlowHS returns an optical flow object that you can use to estimate the direction and speed of the moving objects in a video. The optical flow is estimated using the Horn-Schunck method.
opticFlow $=$ opticalFlowHS(Name, Value) returns an optical flow object with properties specified as one or more Name, Value pair arguments. Any unspecified properties have default values. Enclose each property name in quotes.

For example, opticalFlowHS('Smoothness',1.5)

Properties

Smoothness - Expected smoothness

1 (default) | positive scalar

Expected smoothness of optical flow, specified as a positive scalar. Increase this value when there is increased motion between consecutive frames. A typical value for 'Smoothness' is around 1.

MaxIteration - Maximum number of iterations

10 (default) | positive integer-valued scalar

Maximum number of iterations, specified as a positive integer-valued scalar. Increase this value to estimate the optical flow of objects with low velocity.

The iterative computation stops when the number of iterations equals the value of 'MaxIteration' or when the algorithm reaches the value set for 'VelocityDifference'. To stop computation only by using 'MaxIteration', set the value of 'VelocityDifference' to 0 .

VelocityDifference - Minimum absolute velocity difference

 0 (default) | positive scalarMinimum absolute velocity difference, specified as a positive scalar. This value depends on the input data type. Decrease this value to estimate the optical flow of objects that have low velocity.

The iterative computation stops when the algorithm reaches the value set for 'VelocityDifference' or the number of iterations equals 'MaxIteration'. To use only 'VelocityDifference' to stop computation, set 'MaxIteration' to Inf.

Object Functions

estimateFlow Estimate optical flow
reset \quad Reset the internal state of the optical flow estimation object

Examples

Estimate Optical Flow Using Horn-Schunck Method

Create a VideoReader object for the input video file, visiontraffic. avi. Specify the timestamp of the frame to read as 11.

```
vidReader = VideoReader('visiontraffic.avi','CurrentTime',11);
```

Specify the optical flow estimation method as opticalFlowHS. The output is an object specifying the optical flow estimation method and its properties.

```
opticFlow = opticalFlowHS
opticFlow =
    opticalFlowHS with properties:
```

Smoothness: 1
MaxIteration: 10
VelocityDifference: 0

Create a custom figure window to visualize the optical flow vectors.

```
h = figure;
movegui(h);
hViewPanel = uipanel(h,'Position',[0 0 1 1],'Title','Plot of Optical Flow Vectors');
hPlot = axes(hViewPanel);
Read image frames from the VideoReader object and convert to grayscale images. Estimate the optical flow from consecutive image frames. Display the current image frame and plot the optical flow vectors as quiver plot.
```

```
while hasFrame(vidReader)
```

while hasFrame(vidReader)
frameRGB = readFrame(vidReader);
frameRGB = readFrame(vidReader);
frameGray = rgb2gray(frameRGB);
frameGray = rgb2gray(frameRGB);
flow = estimateFlow(opticFlow,frameGray);
flow = estimateFlow(opticFlow,frameGray);
imshow(frameRGB)
imshow(frameRGB)
hold on
hold on
plot(flow,'DecimationFactor',[5 5],'ScaleFactor',60,'Parent',hPlot);
plot(flow,'DecimationFactor',[5 5],'ScaleFactor',60,'Parent',hPlot);
hold off
hold off
pause(10^-3)
pause(10^-3)
end

```
end
```

Plot of Optical Flow Vectors

Algorithms

To compute the optical flow between two images, you must solve this optical flow constraint equation:

$$
I_{\chi} u+I_{y} v+I_{t}=0
$$

- I_{x}, I_{y}, and I_{t} are the spatiotemporal image brightness derivatives.
- u is the horizontal optical flow.
- v is the vertical optical flow.

Horn-Schunck Method

By assuming that the optical flow is smooth across the entire image, the Horn-Schunck method estimates a velocity field, $[u v]^{T}$, that minimizes this equation:

$$
E=\iint\left(I_{x} u+I_{y} v+I_{t}\right)^{2} d x d y+\alpha \iint\left\{\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}\right\} d x d y
$$

In this equation, $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ are the spatial derivatives of the optical velocity component, u, and α scales the global smoothness term. The Horn-Schunck method minimizes the previous equation to obtain the velocity field, [$u v$], for each pixel in the image. This method is given by the following equations:

$$
\begin{aligned}
& u_{x, y}^{k+1}=\bar{u}_{x, y}^{k}-\frac{I_{x}\left[I_{x} \bar{u}_{x, y}^{k}+I_{y} \bar{v}_{x, y}^{k}+I_{t}\right]}{\alpha^{2}+I_{x}^{2}+I_{y}^{2}} \\
& v_{x, y}^{k+1}=\bar{v}_{x, y}^{k}-\frac{I_{y}\left[I_{x} \bar{u}_{x, y}^{k}+I_{y} \bar{v}_{x, y}^{k}+I_{t}\right]}{\alpha^{2}+I_{x}^{2}+I_{y}^{2}}
\end{aligned}
$$

In these equations, $\left[u_{x, y}^{k} v_{x, y}^{k}\right]$ is the velocity estimate for the pixel at (x, y), and $\left[\bar{u}_{x, y}^{k} \bar{v}_{x, y}^{k}\right]$ is the neighborhood average of $\left[u_{x, y}^{k} v_{x, y}^{k}\right]$. For $k=0$, the initial velocity is 0 .

To solve u and v using the Horn-Schunck method:
 and its transposed form for each pixel in the first image.
2 Compute I_{t} between images 1 and 2 using the [$\left.\begin{array}{lll}-1 & 1\end{array}\right]$ kernel.
3 Assume the previous velocity to be 0 , and compute the average velocity for each pixel using [0 1 0; 1 0 1; 0110] as a convolution kernel.
4 Iteratively solve for u and v.

References

[1] Barron, J. L., D. J. Fleet, S. S. Beauchemin, and T. A. Burkitt. " Performance of optical flow techniques." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),236-242. Champaign, IL: CVPR, 1992.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathrm{Coder}^{\mathrm{TM}}$.

See Also
opticalFlow|opticalFlowFarneback|opticalFlowLK|opticalFlowLKDoG| quiver

Introduced in R2015a

opticalFIowLK

Object for estimating optical flow using Lucas-Kanade method

Description

Create an optical flow object for estimating the direction and speed of a moving object using the Lucas-Kanade method. Use the object function estimateFlow to estimate the optical flow vectors. Using the reset object function, you can reset the internal state of the optical flow object.

Creation

Syntax

opticFlow = opticalFlowLK
opticFlow = opticalFlowLK('NoiseThreshold',threshold)

Description

opticFlow $=$ opticalFlowLK returns an optical flow object that you can use to estimate the direction and speed of the moving objects in a video. The optical flow is estimated using the Lucas-Kanade method.
opticFlow = opticalFlowLK('NoiseThreshold',threshold) returns an optical flow object with the property 'NoiseThreshold' specified as a Name, Value pair. Enclose the property name in quotes.

For example, opticalFlowLK('NoiseThreshold',0.05)

Properties

threshold - Threshold for noise reduction

0.0039 (default) | positive scalar

Threshold for noise reduction, specified as a positive scalar. As you increase this number, the movement of the objects has less impact on optical flow calculation.

Object Functions

$\begin{array}{ll}\text { estimateFlow } & \text { Estimate optical flow } \\ \text { reset } & \text { Reset the internal state of the optical flow estimation object }\end{array}$

Examples

Compute Optical Flow Using Lucas-Kanade Algorithm

Read a video file. Specify the timestamp of the frame to be read.

```
vidReader = VideoReader('visiontraffic.avi','CurrentTime',11);
```

Create an optical flow object for estimating the optical flow using Lucas-Kanade method. Specify the threshold for noise reduction. The output is an optical flow object specifying the optical flow estimation method and its properties.

```
opticFlow = opticalFlowLK('NoiseThreshold',0.009);
```

Create a custom figure window to visualize the optical flow vectors.

```
h = figure;
movegui(h);
hViewPanel = uipanel(h,'Position',[0 0 1 1],'Title','Plot of Optical Flow Vectors');
hPlot = axes(hViewPanel);
```

Read the image frames and convert to grayscale images. Estimate the optical flow from consecutive image frames. Display the current image frame and plot the optical flow vectors as quiver plot.

```
while hasFrame(vidReader)
    frameRGB = readFrame(vidReader);
    frameGray = rgb2gray(frameRGB);
    flow = estimateFlow(opticFlow,frameGray);
    imshow(frameRGB)
    hold on
    plot(flow,'DecimationFactor',[5 5],'ScaleFactor',10,'Parent',hPlot);
```

hold off
pause(10^-3)
end

Plot of Optical Flow Vectors

Algorithms

To compute the optical flow between two images, you must solve this optical flow constraint equation:

$$
I_{x} u+I_{y} v+I_{t}=0
$$

- I_{x}, I_{y}, and I_{t} are the spatiotemporal image brightness derivatives.
- u is the horizontal optical flow.
- v is the vertical optical flow.

Lucas-Kanade Method

To solve the optical flow constraint equation for u and v, the Lucas-Kanade method divides the original image into smaller sections and assumes a constant velocity in each section. Then it performs a weighted, least-square fit of the optical flow constraint equation to a constant model for $[u v]^{T}$ in each section Ω. The method achieves this fit by minimizing this equation:

$$
\sum_{x \in \Omega} W^{2}\left[I_{\chi} u+I_{y} v+I_{t}\right]^{2}
$$

W is a window function that emphasizes the constraints at the center of each section. The solution to the minimization problem is

$$
\left[\begin{array}{cc}
\sum W^{2} I_{x}^{2} & \sum W^{2} I_{x} I_{y} \\
\sum W^{2} I_{y} I_{x} & \sum W^{2} I_{y}^{2}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=-\left[\begin{array}{l}
\sum W^{2} I_{x} I_{t} \\
\sum W^{2} I_{y} I_{t}
\end{array}\right]
$$

The Lucas-Kanade method computes I_{t} using a difference filter, [-1 1 1].
u and v are solved as follows:
1 Compute I_{x} and I_{y} using the kernel $\left[\begin{array}{cccc}-1 & 8 & 0 & -8\end{array} 1\right] / 12$ and its transposed form.
2 Compute I_{t} between images 1 and 2 using the [$\left.\begin{array}{ll}-1 & 1\end{array}\right]$ kernel.
3 Smooth the gradient components, I_{x}, I_{y}, and I_{t}, using a separable and isotropic 5-by-5 element kernel whose effective 1-D coefficients are [14 4641 1]/16.
4 Solve the 2-by-2 linear equations for each pixel using the following method:

- If $A=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]=\left[\begin{array}{cc}\sum W^{2} I_{x}^{2} & \sum W^{2} I_{x} I_{y} \\ \sum W^{2} I_{y} I_{x} & \sum W^{2} I_{y}^{2}\end{array}\right]$

Then the eigenvalues of A are $\lambda_{i}=\frac{a+c}{2} \pm \frac{\sqrt{4 b^{2}+(a-c)^{2}}}{2} ; i=1,2$

- The eigenvalues are compared to the threshold, τ, that corresponds to the value you enter for the threshold for noise reduction. The results fall into one of the following cases:

Case 1: $\lambda_{1} \geq \tau$ and $\lambda_{2} \geq \tau$
A is nonsingular, the system of equations are solved using Cramer's rule.
Case 2: $\lambda_{1} \geq \tau$ and $\lambda_{2}<\tau$
A is singular (noninvertible), the gradient flow is normalized to calculate u and v.
Case 3: $\lambda_{1}<\tau$ and $\lambda_{2}<\tau$
The optical flow, u and v, is 0 .

References

[1] Barron, J. L., D. J. Fleet, S. S. Beauchemin, and T. A. Burkitt. " Performance of optical flow techniques." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),236-242. Champaign, IL: CVPR, 1992.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathrm{Coder}^{\mathrm{TM}}$.

```
See Also
opticalFlow|opticalFlowFarneback|opticalFlowHS|opticalFlowLKDoG| quiver
```

Introduced in R2015a

opticalFlowLKDoG

Object for estimating optical flow using Lucas-Kanade derivative of Gaussian method

Description

Create an optical flow object for estimating the direction and speed of moving objects using the Lucas-Kanade derivative of Gaussian (DoG) method. Use the object function estimateFlow to estimate the optical flow vectors. Using the reset object function, you can reset the internal state of the optical flow object.

Creation

Syntax

opticFlow $=$ opticalFlowLKDoG
opticFlow = opticalFlowLKDoG(Name,Value)

Description

opticFlow $=$ opticalFlowLKDoG returns an optical flow object that you can use to estimate the direction and speed of the moving objects in a video. The optical flow is estimated using the Lucas-Kanade derivative of Gaussian (DoG) method.
opticFlow = opticalFlowLKDoG(Name, Value) returns an optical flow object with properties specified as one or more Name, Value pair arguments. Any unspecified properties have default values. Enclose each property name in quotes.

For example, opticalFlowLKDoG('NumFrames', 3)

Properties

NumFrames - Number of buffered frames

3 (default) | positive integer-valued scalar

Number of buffered frames for temporal smoothing, specified as a positive integer-valued scalar. As you increase this number, the optical flow estimation method becomes less robust to abrupt changes in the trajectory of the moving objects. The amount of delay in flow estimation depends on the value of NumFrames. The output flow corresponds to the image at $t_{\text {flow }}=t_{\text {current }}-0.5($ NumFrames- 1$)$, where $t_{\text {current }}$ is the time of the current image.

ImageFilterSigma - Standard deviation for image smoothing filter 1.5| positive scalar

Standard deviation for image smoothing filter, specified as a positive scalar.

GradientFilterSigma - Standard deviation for gradient smoothing filter 1|positive scalar

Standard deviation for gradient smoothing filter, specified as a positive scalar.

NoiseThreshold - Threshold for noise reduction

0.0039 (default) | positive scalar

Threshold for noise reduction, specified as a positive scalar. As you increase this number, the movement of the objects has less impact on optical flow calculation.

Object Functions

estimateFlow Estimate optical flow
reset \quad Reset the internal state of the optical flow estimation object

Examples

Compute Optical Flow Using Lucas-Kanade DoG Method

Read a video file. Specify the timestamp of the frame to be read.

```
vidReader = VideoReader('visiontraffic.avi','CurrentTime',11);
```

Create an optical flow object for estimating the optical flow using Lucas-Kanade DoG method. Specify the threshold for noise reduction. The output is an optical flow object specifying the optical flow estimation method and its properties.

```
opticFlow = opticalFlowLKDoG('NoiseThreshold',0.0005)
```

```
opticFlow =
    opticalFlowLKDoG with properties:
            NumFrames: 3
        ImageFilterSigma: 1.5000
        GradientFilterSigma: 1
        NoiseThreshold: 5.0000e-04
```

Create a custom figure window to visualize the optical flow vectors.

```
h = figure;
movegui(h);
hViewPanel = uipanel(h,'Position',[0 0 1 1],'Title','Plot of Optical Flow Vectors');
hPlot = axes(hViewPanel);
```

Read the image frames and convert to grayscale images. Estimate the optical flow from consecutive image frames. Display the current image frame and plot the optical flow vectors as quiver plot.

```
while hasFrame(vidReader)
    frameRGB = readFrame(vidReader);
    frameGray = rgb2gray(frameRGB);
    flow = estimateFlow(opticFlow,frameGray);
    imshow(frameRGB)
    hold on
    plot(flow,'DecimationFactor',[5 5],'ScaleFactor',35,'Parent',hPlot);
    hold off
    pause(10^-3)
end
```

Plot of Optical Flow Vectors

Algorithms

To compute the optical flow between two images, you must solve this optical flow constraint equation:

$$
I_{\chi} u+I_{y} v+I_{t}=0
$$

- I_{x}, I_{y}, and I_{t} are the spatiotemporal image brightness derivatives.
- u is the horizontal optical flow.
- v is the vertical optical flow.

Lucas-Kanade Derivative of Gaussian Method

The Lucas-Kanade method computes I_{t} using a derivative of Gaussian filter.
To solve the optical flow constraint equation for u and v :
1 Compute I_{x} and I_{y} using the following steps:
a Use a Gaussian filter to perform temporal filtering. Specify the temporal filter characteristics such as the standard deviation and number of filter coefficients using the NumFrames property.
b Use a Gaussian filter and the derivative of a Gaussian filter to smooth the image using spatial filtering. Specify the standard deviation and length of the image smoothing filter using the ImageFilterSigma property.
2 Compute I_{t} between images 1 and 2 using the following steps:
a Use the derivative of a Gaussian filter to perform temporal filtering. Specify the temporal filter characteristics such as the standard deviation and number of filter coefficients using the NumF rames property.
b Use the filter described in step 1b to perform spatial filtering on the output of the temporal filter.
3 Smooth the gradient components, I_{x}, I_{y}, and I_{t}, using a gradient smoothing filter. Use the GradientFilterSigma property to specify the standard deviation and the number of filter coefficients for the gradient smoothing filter.
4 Solve the 2-by-2 linear equations for each pixel using the following method:

- If $A=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]=\left[\begin{array}{cc}\sum W^{2} I_{x}^{2} & \sum W^{2} I_{x} I_{y} \\ \sum W^{2} I_{y} I_{x} & \sum W^{2} I_{y}^{2}\end{array}\right]$

Then the eigenvalues of A are $\lambda_{i}=\frac{a+c}{2} \pm \frac{\sqrt{4 b^{2}+(a-c)^{2}}}{2} ; i=1,2$

- When the algorithm finds the eigenvalues, it compares them to the threshold, τ, that corresponds to the value you enter for the NoiseThreshold property. The results fall into one of the following cases:

Case 1: $\lambda_{1} \geq \tau$ and $\lambda_{2} \geq \tau$

A is nonsingular, so the algorithm solves the system of equations using Cramer's rule.

Case 2: $\lambda_{1} \geq \tau$ and $\lambda_{2}<\tau$
A is singular (noninvertible), so the algorithm normalizes the gradient flow to calculate u and v.

Case 3: $\lambda_{1}<\tau$ and $\lambda_{2}<\tau$
The optical flow, u and v, is 0 .

References

[1] Barron, J. L., D. J. Fleet, S. S. Beauchemin, and T. A. Burkitt. " Performance of optical flow techniques." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),236-242. Champaign, IL: CVPR, 1992.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathrm{Coder}^{\mathrm{TM}}$.

See Also

opticalFlow|opticalFlowFarneback|opticalFlowHS|opticalFlowLK| quiver

Introduced in R2015a

opticalFlowFarneback

Object for estimating optical flow using Farneback method

Description

Create an optical flow object for estimating the direction and speed of moving objects using the Farneback method. Use the object function estimateFlow to estimate the optical flow vectors. Using the reset object function, you can reset the internal state of the optical flow object.

Creation

Syntax

opticFlow = opticalFlowFarneback opticFlow = opticalFlowFarneback(Name,Value)

Description

opticFlow = opticalFlowFarneback returns an optical flow object that you can use to estimate the direction and speed of the moving objects in a video. The optical flow is estimated using the Farneback method.
opticFlow = opticalFlowFarneback(Name, Value) returns an optical flow object with properties specified as one or more Name, Value pair arguments. Any unspecified properties have default values. Enclose each property name in quotes.

For example, opticalFlowFarneback('NumPyramidLevels',3)

Properties

NumPyramidLevels - Number of pyramid layers

3 (default) | positive scalar

Number of pyramid layers, specified as a positive scalar. The value includes the initial image as one of the layers. When you set this value to 1 , the function estimates optical flow only from the original image frame and does not perform pyramid decomposition. The recommended values are between 1 and 4 .

PyramidScale - Image scale

0.5 (default) | positive scalar in the range $(0,1)$

Image scale, specified as a positive scalar in the range $(0,1)$. The value specifies the rate of downsampling at each pyramid level. A value of 0.5 creates a classical pyramid, where the resolution of the pyramid reduces by a factor of two at each level. The lowest level in the pyramid has the highest resolution.

NumIterations - Number of search iterations per pyramid level 3 (default) | positive integer

Number of search iterations per pyramid level, specified as a positive integer. The Farneback algorithm performs an iterative search for the key points at each pyramid level, until convergence.

NeighborhoodSize - Size of the pixel neighborhood
 5 (default) | positive integer

Size of the pixel neighborhood, specified as a positive integer. Increase the neighborhood size to increase blurred motion. The blur motion yields a more robust estimation of optical flow. A typical value for NeighborhoodSize is 5 or 7.

FilterSize - Averaging filter size
 15 (default) | positive integer in the range [2, Inf)

Averaging filter size, specified as a positive integer in the range [2, Inf). After the algorithm computes the displacement (flow), the averaging over neighborhoods is done using a Gaussian filter of size (FilterSize * FilterSize). Also, the pixels close to the borders are given a reduced weight because the algorithm assumes that the polynomial expansion coefficients are less reliable there. Increasing the filter size increases the robustness of the algorithm to image noise. The larger the filter size, the greater the algorithm handles image noise and fast motion detection, making it more robust.

Object Functions

estimateFlow Estimate optical flow
reset \quad Reset the internal state of the optical flow estimation object

Examples

Estimate Optical Flow Using Farneback Method

Read a video file. Specify the timestamp of the frame to be read.

```
vidReader = VideoReader('visiontraffic.avi','CurrentTime',11);
```

Create an optical flow object for estimating the optical flow using Farneback method. The output is an object specifying the optical flow estimation method and its properties.

```
opticFlow = opticalFlowFarneback
opticFlow =
    opticalFlowFarneback with properties:
```

 NumPyramidLevels: 3
 PyramidScale: 0.5000
 NumIterations: 3
 NeighborhoodSize: 5
 FilterSize: 15
 Create a custom figure window to visualize the optical flow vectors.

```
h = figure;
movegui(h);
hViewPanel = uipanel(h,'Position',[0 0 1 1],'Title','Plot of Optical Flow Vectors');
hPlot = axes(hViewPanel);
```

Read the image frames and convert to grayscale images. Estimate the optical flow from consecutive image frames. Display the current image frame and plot the optical flow vectors as quiver plot.

```
while hasFrame(vidReader)
    frameRGB = readFrame(vidReader);
    frameGray = rgb2gray(frameRGB);
    flow = estimateFlow(opticFlow,frameGray);
    imshow(frameRGB)
```

hold on
plot(flow,'DecimationFactor',[5 5],'ScaleFactor',2,'Parent',hPlot); hold off
pause(10^-3)
end

Algorithms

The Farneback algorithm generates an image pyramid, where each level has a lower resolution compared to the previous level. When you select a pyramid level greater than 1, the algorithm can track the points at multiple levels of resolution, starting at the lowest level. Increasing the number of pyramid levels enables the algorithm to handle larger displacements of points between frames. However, the number of computations also increases. The diagram shows an image pyramid with three levels.

The tracking begins in the lowest resolution level, and continues until convergence. The point locations detected at a level are propagated as keypoints for the succeeding level. In this way, the algorithm refines the tracking with each level. The pyramid decomposition enables the algorithm to handle large pixel motions, which can be distances greater than the neighborhood size.

References

[1] Farneback, G. "Two-Frame Motion Estimation Based on Polynomial Expansion." In Proceedings of the 13th Scandinavian Conference on Image Analysis, 363-370. Halmstad, Sweden: SCIA, 2003.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries. See "Portable C Code Generation for Functions That Use OpenCV Library".

See Also
opticalFlow|opticalFlowHS|opticalFlowLK|opticalFlowLKDoG|quiver Introduced in R2015b

estimateFlow

Estimate optical flow

Syntax

```
flow = estimateFlow(opticFlow,I)
```


Description

flow = estimateFlow(opticFlow,I) estimates optical flow between two consecutive video frames.

Examples

Estimate Optical Flow Using Horn-Schunck Method

Create a VideoReader object for the input video file, visiontraffic.avi. Specify the timestamp of the frame to read as 11.

```
vidReader = VideoReader('visiontraffic.avi','CurrentTime',11);
```

Specify the optical flow estimation method as opticalFlowHS. The output is an object specifying the optical flow estimation method and its properties.

```
opticFlow = opticalFlowHS
opticFlow =
    opticalFlowHS with properties:
```

Smoothness: 1
MaxIteration: 10
VelocityDifference: 0

Create a custom figure window to visualize the optical flow vectors.

```
h = figure;
movegui(h);
hViewPanel = uipanel(h,'Position',[0 0 1 1],'Title','Plot of Optical Flow Vectors');
hPlot = axes(hViewPanel);
```

Read image frames from the VideoReader object and convert to grayscale images. Estimate the optical flow from consecutive image frames. Display the current image frame and plot the optical flow vectors as quiver plot.

```
while hasFrame(vidReader)
    frameRGB = readFrame(vidReader);
    frameGray = rgb2gray(frameRGB);
    flow = estimateFlow(opticFlow,frameGray);
    imshow(frameRGB)
    hold on
    plot(flow,'DecimationFactor',[5 5],'ScaleFactor',60,'Parent',hPlot);
    hold off
    pause(10^-3)
end
```


2-572

Input Arguments

opticFlow - Object for optical flow estimation

opticalFlowFarneback object |opticalFlowHS | object | opticalFlowLK object | opticalFlowLKDoG object

Object for optical flow estimation, specified as one of the following:

- opticalFlowFarneback object
- opticalFlowHS object
- opticalFlowLK object
- opticalFlowLKDoG object

The input opticFlow defines the optical flow estimation method and its properties used for estimating the optical flow velocity matrices.

I - Current video frame
 2-D grayscale image

Current video frame, specified as a 2-D grayscale image of size m-by- n. The input image is generated from the current video frame read using the VideoReader object. The video frames in RGB format must be converted to 2-D grayscale images for estimating the optical flow.

Output Arguments

flow - Object for storing optical flow velocity matrices
 opticalFlow object

Object for storing optical flow velocity matrices, returned as an opticalFlow object.

Algorithms

The function estimates optical flow of the input video using the method specified by the input object opticFlow. The optical flow is estimated as the motion between two consecutive video frames. The video frame T at the given instant $t_{\text {current }}$ is referred as current frame and the video frame T-1 is referred as previous frame. The initial value of the previous frame at time $t_{\text {current }}=0$ is set as a uniform image of grayscale value 0 .

Note If you specify opticFlow as opticalFlowLKDoG object, then the estimation delays by an amount relative to the number of video frames. The amount of delay depends on the value of NumFrames defined in opticalFlowLKDoG object. The optic flow estimated for a video frame at $t_{\text {current }}$ corresponds to the video frame at time $t_{\text {flow }}=\left(t_{\text {current }}-(N u m F r a m e s-1) / 2\right) . t_{\text {current }}$ is the time of the current video frame.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

reset

Introduced in R2015a

reset

Reset the internal state of the optical flow estimation object

Syntax

reset(opticFlow)

Description

reset (opticFlow) resets the internal state of the optical flow estimation object. The previous frame is reset to its initial value which is a uniform image of intensity value 0 .

Input Arguments

opticFlow - Object for optical flow estimation
opticalFlowFarneback object |opticalFlowHS | object | opticalFlowLK object| opticalFlowLKDoG object

Object for optical flow estimation, specified as one of the following:

- opticalFlowFarneback object
- opticalFlowHS object
- opticalFlowLK object
- opticalFlowLKDoG object

The input opticFlow defines the optical flow estimation method and its properties used for estimating the optical flow velocity matrices.

Extended Capabilities

C/C++ Code Generation
Generate C and $C++$ code using MATLAB® $\operatorname{Coder}^{\text {TM }}$.

See Also
estimateFlow

Introduced in R2015a

vision. PeopleDetector

Package: vision
Detect upright people using HOG features

Description

The people detector object detects people in an input image using the Histogram of Oriented Gradient (HOG) features and a trained Support Vector Machine (SVM) classifier. The object detects unoccluded people in an upright position.

To detect people in an image:
1 Create the vision. PeopleDetector object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax

peopleDetector $=$ vision. PeopleDetector
peopleDetector $=$ vision. PeopleDetector(model)
peopleDetector = vision. PeopleDetector(Name, Value)

Description

peopleDetector $=$ vision. PeopleDetector returns a people detector object, peopleDetector, that tracks a set of points in a video.
peopleDetector $=$ vision. PeopleDetector(model) creates a people detector object and sets the ClassificationModel property to model.
peopleDetector $=$ vision. PeopleDetector(Name, Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, peopleDetector = vision. PeopleDetector('ClassificationModel','UprightPeople_128x64')

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

ClassificationModel - Name of classification model
 'UprightPeople_128x64' (default)|'UprightPeople_96x48'

Name of classification model, specified as 'UprightPeople_128×64' or 'UprightPeople_96x48'. The pixel dimensions indicate the image size used for training.

The images used to train the models include background pixels around the person. Therefore, the actual size of a detected person is smaller than the training image size.

ClassificationThreshold - People classification threshold 1 (default) | nonnegative scalar value

People classification threshold, specified as a nonnegative scalar value. Use this threshold to control the classification of individual image subregions during multiscale detection. The threshold controls whether a subregion gets classified as a person. You can increase this value when there are many false detections. The higher the threshold value, the more stringent the requirements are for the classification. Vary the threshold over a range of values to find the optimum value for your data set. Typical values range from 0 to 4.

Tunable: Yes

MinSize - Smallest region containing a person

[] (default) | two-element vector

Smallest region containing a person, specified in pixels as a two-element vector, [height width]. Set this property to the minimum size region containing a person. You can reduce computation time when you set this property. To do so, set this property to a value larger than the image size used to train the classification model. When you do not specify this property, the detector sets it to the image size used to train the classification model.

Tunable: Yes

MaxSize - Largest region containing a person

[] (default) | two-element vector
Largest region that contains a person, specified in pixels as a two-element vector, [height width]. Set this property to the largest region containing a person. You can reduce computation time when you set this property. To do so, set this property to a value smaller than the size of the input image. When you do not specify this property, the detector sets it to the input image size. This property is tunable.

ScaleFactor - Multiscale object detection scaling

1.05 (default) | numeric value greater than 1.0001

Multiscale object detection scaling, specified as a value greater than 1.0001. The scale factor incrementally scales the detection resolution between MinSize and MaxSize. You can set the scale factor to an ideal value using:
size(I)/(size(I)-0.5)
The object calculates the detection resolution at each increment.

```
round(TrainingSize*(ScaleFactorN}\mp@subsup{}{}{N}
```

In this case, the TrainingSize is [128 64] for the 'UprightPeople_128x64' model and [9648] for the 'UprightPeople_96x48' model. N is the increment. Decreasing the scale factor can increase the detection accuracy. However, doing so increases the computation time. This property is tunable.

WindowStride - Detection window stride
 [8 8] (default) | scalar | two-element vector

Detection window stride in pixels, specified as a scalar or a two-element vector, [$x y$]. The detector uses the window stride to slide the detection window across the image. When you specify this value as a vector, the first and second elements are the stride size in the x and y directions. When you specify this value as a scalar, the stride is the same for both x and y. Decreasing the window stride can increase the detection accuracy. However, doing
so increases computation time. Increasing the window stride beyond [8 8] can lead to a greater number of missed detections. This property is tunable.

MergeDetections - Merge detection control true|false

Merge detection control, specified as true or false. This property controls whether similar detections are merged. Set this property to true to merge bounding boxes using a mean-shift based algorithm. Set this property to false to output the unmerged bounding boxes.

For more flexibility and control of merging parameters, you can use the selectStrongestBbox function in place of the MergeDetections algorithm. To do this, set the MergeDetections property to false. See the "Tracking Pedestrians from a Moving Car" example, which shows the use of the people detector and the selectStrongestBbox function.

UseROI - Use region of interest

false (default) | true
Use region of interest, specified as true or false. Set this property to true to detect objects within a rectangular region of interest within the input image.

Usage

Syntax

```
bboxes = peopleDetector(I)
[bboxes, scores] = peopleDetector(I)
[___] = peopleDetector(I,roi)
```


Description

bboxes = peopleDetector(I) performs multiscale object detection on the input image, I and returns an M-by- 4 matrix defining M bounding boxes. M represents the number of detected people. Each row of the output matrix, BBOXES, contains a fourelement vector, [x y width height]. This vector specifies, in pixels, the upper-left corner
and size, of a bounding box. When no people are detected, the step method returns an empty vector. The input image, I, must be a grayscale or truecolor (RGB) image.
[bboxes, scores] = peopleDetector(I) additionally returns a confidence value for the detections.
[___] = peopleDetector(I, roi) detects people within the rectangular search region, roi.

Input Arguments

I - Input image

grayscale | truecolor (RGB)
Input image, specified as grayscale or truecolor (RGB).

roi - Rectangular region of interest

four-element vector (default)
Rectangular region of interest within image I, specified as a four-element vector, [xy width height].

model - Classification model

'UprightPeople_128x64' (default)|'UprightPeople_96x48'
Classification model, specified as 'UprightPeople_128×64' or
'UprightPeople_96x48'.

Output Arguments

peopleDetector - People detector
object (default)
People detector object, returned as an object. The detector detects people in an input image using the Histogram of Oriented Gradient (HOG) features and a trained SVM classifier. The object detects unoccluded people in an upright position.

Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:
release(obj)

Common to All System Objects

step Run System object algorithm
release Release resources and allow changes to System object property values and input characteristics
reset Reset internal states of System object

Examples

Detect People

Create a people detector and load the input image.
peopleDetector = vision.PeopleDetector;
I = imread('visionteam1.jpg');
Detect people using the people detector object.
[bboxes,scores] = peopleDetector(I);
Annotate detected people.

```
I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure, imshow(I)
title('Detected people and detection scores');
```

Detected people and detection scores

References

[1] Dalal, N. and B. Triggs. "Histograms of Oriented Gradients for Human Detection,"Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, June 2005, pp. 886-893.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries. See "Portable C Code Generation for Functions That Use OpenCV Library".
- See "System Objects in MATLAB Code Generation" (MATLAB Coder).

See Also

detectPeopleACF |extractHOGFeatures |insert0bjectAnnotation| vision. CascadeObjectDetector

Topics

"Tracking Pedestrians from a Moving Car"
"Multiple Object Tracking"
Introduced in R2012b

semanticSegmentationMetrics

Semantic segmentation quality metrics

Description

A semanticSegmentationMetrics object encapsulates semantic segmentation quality metrics for a set of images.

Creation

Create a semanticSegmentationMetrics object using the evaluateSemanticSegmentation function.

Properties

ConfusionMatrix - Confusion matrix

square table
This property is read-only.
Confusion matrix, specified as a square table. Each table element (i, j) is the count of pixels known to belong to class i but predicted to belong to class j.

NormalizedConfusionMatrix - Normalized confusion matrix table

This property is read-only.
Normalized confusion matrix, specified as a square table. Each table element (i, j) is the count of pixels known to belong to class i but predicted to belong to class j, divided by the total number of pixels predicted in class j. Elements are in the range [0, 1].

DataSetMetrics - Data set metrics

table

This property is read-only.
Semantic segmentation metrics aggregated over the data set, specified as a table. DataSetMetrics contains up to five metrics, depending on the value of the 'Metrics ' name-value pair used with evaluateSemanticSegmentation:

- GlobalAccuracy - Ratio of correctly classified pixels to total pixels, regardless of class.
- MeanAccuracy - Ratio of correctly classified pixels in each class to total pixels, averaged over all classes. The value is equal to the mean of ClassMetrics.Accuracy.
- MeanIoU - Average intersection over union (IoU) of all classes. The value is equal to the mean of ClassMetrics.IoU.
- WeightedIoU - Average IoU of all classes, weighted by the number of pixels in the class.
- MeanBFScore - Average boundary F1 (BF) score of all images. The value is equal to the mean of ImageMetrics.BFScore.

ClassMetrics - Class metrics

table
This property is read-only.
Semantic segmentation metrics for each class, specified as a table. ClassMetrics contains up to three metrics for each class, depending on the value of the 'Metrics' name-value pair used with evaluateSemanticSegmentation:

- Accuracy - Ratio of correctly classified pixels in each class to the total number of pixels belonging to that class according to the ground truth. Accuracy can be expressed as:
Accuracy $=(\mathrm{TP}+\mathrm{TN}) /(\mathrm{TP}+\mathrm{TN}+\mathrm{FP}+\mathrm{FN})$

	Positive	Negative
Positive	TP: True Positive	FN: False Negative
Negative	FP: False Positive	TN: True Negative

TP: True positives and FN is the number of false negatives.

- IoU - Ratio of correctly classified pixels to the total number of pixels that are assigned that class by the ground truth and the predictor. IoU can be expressed as:
$\mathrm{IoU}=\mathrm{TP} /(\mathrm{TP}+\mathrm{FP}+\mathrm{FN})$
The image describes the true positives (TP), false positives (FP), and false negatives (FN).

Ground truth
pixels in class

- MeanBFScore - Boundary F1 score for each class, averaged over all images.

ImageMetrics - Image metrics

table
This property is read-only.
Semantic segmentation metrics for each image in the data set, specified as a table. ImageMetrics contains up to five metrics, depending on the value of the 'Metrics' name-value pair used with evaluateSemanticSegmentation:

- GlobalAccuracy - Ratio of correctly classified pixels to total pixels, regardless of class
- MeanAccuracy - Ratio of correctly classified pixels to total pixels, averaged over all classes in the image
- MeanIoU - Average IoU of all classes in the image
- WeightedIoU - Average IoU of all classes in the image, weighted by the number of pixels in each class
- MeanBFScore - Average BF score of each class in the image

Each image metric returns a vector, with one element for each image in the data set. The order of the rows matches the order of the images defined by the input PixelLabelDatastore objects representing the data set.

Examples

Evaluate Results of Semantic Segmentation

The triangleImages data set has 100 test images with ground truth labels. Define the location of the data set.

```
dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
```

Define the location of the test images.

```
testImagesDir = fullfile(dataSetDir,'testImages');
```

Define the location of the ground truth labels.

```
testLabelsDir = fullfile(dataSetDir,'testLabels');
```

Create an imageDatastore holding the test images.
imds = imageDatastore(testImagesDir);
Define the class names and their associated label IDs.

```
classNames = ["triangle","background"];
labelIDs = [255 0];
```

Create a pixelLabelDatastore holding the ground truth pixel labels for the test images.
pxdsTruth = pixelLabelDatastore(testLabelsDir,classNames,labelIDs);
Load a semantic segmentation network that has been trained on the training images of noisyShapes.

```
net = load('triangleSegmentationNetwork');
net = net.net;
```

Run the network on the test images. Predicted labels are written to disk in a temporary directory and returned as a pixelLabelDatastore.

```
pxdsResults = semanticseg(imds,net,"WriteLocation",tempdir);
Running semantic segmentation network
* Processed 100 images.
```

Evaluate the prediction results against the ground truth.

```
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth);
Evaluating semantic segmentation results
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 100 images.
* Finalizing... Done.
* Data set metrics:
```


Display the classification accuracy, the intersection over union, and the boundary F-1 score for each class.

```
metrics.ClassMetrics
```

```
ans=2\times3 table
```

Accuracy IoU MeanBFScore

triangle	1	0.33005	0.028664
background	0.9017	0.9017	0.78438

See Also

bfscore|evaluateSemanticSegmentation|jaccard|plotconfusion

Topics

"Getting Started With Semantic Segmentation Using Deep Learning"
"Deep Learning in MATLAB" (Deep Learning Toolbox)

Introduced in R2017b

vision.StandardDeviation

Package: vision

Find standard deviation values in input or sequence of inputs

Description

Find the standard deviation values in an input or sequence of inputs.
To track a set of points:
1 Create the vision. StandardDeviation object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax

```
stdDev = vision.StandardDeviation
stdDev = vision.StandardDeviation(Name,Value)
```


Description

stdDev = vision.StandardDeviation returns an object, stdDev, that computes the value and index of the maximum elements in an input or a sequence of inputs.
stdDev = vision.StandardDeviation(Name, Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, stdDev = vision. Maximum('RunningStandardDeviation', false)

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

ValueOutputPort - Output Minimum value
 true (default) | false

Output standard deviation value, specified as true or false. Set this property to true to output the Minimum value of the input. This property applies when you set the RunningStandardDeviation property to false.

RunningStandardDeviation - Calculate over single input or multiple inputs false (default) |true

Calculate over single input or multiple inputs, specified as true or false. When you set this property to true, the object computes the standard deviation value over a sequence of inputs. When you set this property to false, the object computes the standard deviation value over the current input.

```
ResetInputPort - Additional input to enable resetting of running standard
deviation
false (default)| true
```

Additional input to enable resetting of running standard deviation, specified as true or false. When you set this property to true, a reset input must be specified to reset the running standard deviation. This property applies only when you set the RunningStandardDeviation property to true.

```
ResetCondition - Condition that triggers resetting of running standard
deviation
'Non-zero' (default)|'Rising edge'|'Falling edge'|'Either edge'
```

Condition that triggers resetting of running standard deviation, specified as as 'Rising edge', 'Falling edge','Either edge', or 'Non-zero'. This property applies only when you set the ResetInputPort property to true.

Dimension - Dimension to operate along 'Column' (default)|\{'All'\}|'Row'|'Custom'

Dimension to operate along, specified as \{'All'\}, 'Row', 'Column', or 'Custom'. This property applies only when you set the RunningStandardDeviation property to false.

CustomDimension - Numerical dimension to calculate over

1 (default) | numerical scalar
Numerical dimension to calculate over, specified as a numerical scalar. This property only applies when you set the Dimension property to 'Custom'.

ROIProcessing - Enable region-of-interest processing false (default)|true

Enable region-of-interest processing, specified as true or false. This property applies when you set the Dimension property to 'All' and the RunningStandardDeviation property to false.

ROIForm - Type of ROI

```
'Rectangles' (default)| Lines' | 'Label matrix''Binary mask'
```

Type of ROI, specified as 'Rectangles', 'Lines', 'Label matrix', or 'Binary mask'. This property applies only when you set the ROIProcessing property to true.

ROIPortion - ROI or perimeter calculation
 'Entire ROI' (default)|'ROI perimeter'

ROI or perimeter calculation, specified as 'Entire ROI' or 'ROI perimeter'. This property applies only when you set the ROIForm property to 'Rectangles'.

ROIStatistics - Calculate statistics for each ROI or one for all ROIs

'Individual statistics for each ROI' (default)|'Single statistic for all ROIs'

Calculate statistics for each ROI or one for all ROIs, specified as 'Individual statistics for each ROI' or 'Single statistic for all ROIs'. This property applies only when you set the 'ROIForm' property to 'Rectangles', 'Lines', or 'Label matrix'.

ValidityOutputPort - Flag to indicate if any part of ROI is outside input image false (default)| true

Flag to indicate if any part of ROI is outside input image, specified as true or false.
This applies when you set the ROIForm property to 'Lines' or 'Rectangles '.
Set this property to true to return the validity of the specified label numbers. This applies when you set the ROIForm property to 'Label matrix'.

Usage

Syntax

```
[value,index] = stdDev(input)
index = stdDev(input)
[___] = stdDev(I,ROI)
[___,flag] = stdDev(I,ROI)
[___] = stdDev(I,label,labelNumbers)
[___,flag] = stdDev(I,label,labelNumbers)
```


Description

[value,index] = stdDev(input) returns the standard deviation value and index of the input.
index $=$ stdDev(input) returns the one-based index of the standard deviation value when you set the Index0utputPort property to true and the Value0utputPort property to false. The RunningStandardDeviation property must be set to false.
[___] = stdDev(I,ROI) returns the standard deviation value in the input image within the given region of interest.
[\qquad , flag] $=s t d \operatorname{Dev}(\mathrm{I}, \mathrm{ROI})$ additionally returns a flag to indicate whether the given ROI is within the bounds of the image.
[___] = stdDev(I, label, labelNumbers) returns the standard deviation of the input image for a region the labels specified in the labelNumbers vector. The regions are defined and labeled in the label matrix.
\qquad , flag] = stdDev(I,label,labelNumbers) additionally returns a flag to indicate whether the input label numbers are valid.

Input Arguments

```
input - Input data
vector | matrix | multidimensional array
```

Input data, specified as a vector, matrix, or multidimensional array.

ROI - Region of interest

four-element vector
Region of interest, specified as a four-element vector, [x y width height]. This option is available when you set the the ROIProcessing property to true and the ROIForm property to 'Lines', 'Rectangles', or 'Binary Mask'.

label - Label numbers

matrix
Label numbers, specified as a matrix. This option is available when you set the ROIProcessing property to true and the ROIForm property to 'Label matrix'.

labelNumbers - Label numbers

vector
Label numbers, specified as a vector. This option is available when you set the ROIProcessing property to true and the ROIForm property to 'Label matrix'.

Output Arguments

value - Minimum value

same as input
Minimum value, returned as the same data type as the input

index - Index to standard deviation value
 one-based index

Index to standard deviation value, returned as a one-based index.

flag - Flag for valid data
 true | false

Flag for valid data, returned as true or false.

Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:

```
release(obj)
```


Common to All System Objects

step Run System object algorithm
release Release resources and allow changes to System object property values and input characteristics
reset Reset internal states of System object

Examples

Determine Standard Deviation in Grayscale Image

Read a color image.

```
img = imread('peppers.png');
```

Convert the image to grayscale.

```
img = im2single(rgb2gray(img));
```

Find the standard deviation.

```
stdDev = vision.StandardDeviation;
stdDevValue = stdDev(img);
```


Extended Capabilities

C/C++ Code Generation

Generate C and $C++$ code using MATLAB® $\operatorname{Coder}^{\text {™ }}$.
Usage notes and limitations:

- See "System Objects in MATLAB Code Generation" (MATLAB Coder).

See Also

vision.Maximum | vision. Mean | vision. Median | vision. Minimum

Introduced in R2012a

stereoParameters

Object for storing stereo camera system parameters

Description

The stereoParameters object stores the intrinsic and extrinsic parameters of two cameras and their geometric relationship.

Creation

You can create a stereoParameters object using the stereoParameters function described here. You can also create a stereoParameters object by using the estimateCameraParameters with an M-by-2-by-numImages-by-2 array of input image points, where M is the number of keypoint coordinates in each pattern.

Syntax

```
stereoParams = stereoParameters(cameraParameters1,cameraParameters2,
rotationOfCamera2,translationOfCamera2)
stereoParams = stereoParameters(paramStruct)
```


Description

stereoParams = stereoParameters(cameraParameters1,cameraParameters2, rotation0fCamera2,translation0fCamera2) creates a stereoParameters object that contains the parameters of a stereo camera system, and sets the CameraParameters1 on page 2-0 , CameraParameters 2 on page 2-0 RotationOfCamera2 on page 2-0 , and TranslationOfCamera2 on page 20 properties.
stereoParams = stereoParameters(paramStruct) creates an identical stereoParameters object from an existing stereoParameters object with parameters stored in paramStruct.

Input Arguments

paramStruct - Stereo parameters
 struct

Stereo parameters, specified as a stereo parameters struct. To get a paramStruct from an existing stereoParameters object, use the toStruct function.

Properties

Intrinsic and extrinsic parameters of the two cameras

CameraParameters1 - Parameters of camera 1

cameraParameters object

Parameters of camera 1 , specified as a cameraParameters object. The object contains the intrinsic, extrinsic, and lens distortion parameters of a camera.

CameraParameters2 - Parameters of camera 2

cameraParameters object

Parameters of camera 2 , specified as a cameraParameters object. The object contains the intrinsic, extrinsic, and lens distortion parameters of a camera.

Geometric relationship between the two cameras

RotationOfCamera2 - Rotation of camera 2

3-by-3 matrix
Rotation of camera 2 relative to camera 1, specified as a 3-by-3 matrix.

Translation0fCamera2 - Translation of camera 2
 3-element vector

Translation of camera 2 relative to camera 1, specified as a 3 -element vector.

FundamentalMatrix - Fundamental matrix

3-by-3 matrix
Fundamental matrix, stored as a 3-by-3 matrix. The fundamental matrix relates the two stereo cameras, such that the following equation must be true:

```
\(\left[\begin{array}{ll}P_{2} & 1\end{array}\right] *\) FundamentalMatrix* \(\left[\begin{array}{ll}P_{1} & 1\end{array}\right]^{\prime}=0\)
```

P_{1}, the point in image 1 in pixels, corresponds to the point, P_{2}, in image 2.

EssentialMatrix - Essential matrix

3-by-3 matrix
Essential matrix, stored as a 3-by-3 matrix. The essential matrix relates the two stereo cameras, such that the following equation must be true:

```
\(\left[\begin{array}{ll}P_{2} & 1\end{array}\right]^{*}\) EssentialMatrix \(*\left[\begin{array}{ll}P_{1} & 1\end{array}\right]^{\prime}=0\)
```

P_{1}, the point in image 1, corresponds to P_{2}, the point in image 2. Both points are expressed in normalized image coordinates, where the origin is at the camera's optical center. The x and y pixel coordinates are normalized by the focal length f_{x} and f_{y}.

Accuracy of estimated parameters

MeanReprojectionError - Average Euclidean distance
number of pixels
Average Euclidean distance between reprojected points and detected points over all image pairs, specified in pixels.

Settings for camera parameter estimation

NumPatterns - Number of calibrated patterns

integer
Number of calibration patterns that estimate the extrinsics of the two cameras, stored as an integer.

WorldPoints - World coordinates

M-by-2 array
World coordinates of key points in the calibration pattern, specified as an M-by-2 array. M represents the number of key points in the pattern.

WorldUnits - World points units
 'mm' (default)| character vector

World points units, specified as a character vector. The character vector describes the units of measure.

Object Functions

toStruct Convert a stereo parameters object into a struct

Examples

Stereo Camera Calibration

Specify calibration images.

```
leftImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
    'calibration','stereo','left'));
rightImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
    'calibration','stereo','right'));
```

Detect the checkerboards.

```
[imagePoints,boardSize] = ...
    detectCheckerboardPoints(leftImages.Files,rightImages.Files);
```

Specify the world coordinates of the checkerboard keypoints. Square size is in millimeters.

```
squareSize = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);
```

Calibrate the stereo camera system. Both cameras have the same resolution.

```
I = readimage(leftImages,1);
imageSize = [size(I,1),size(I,2)];
params = estimateCameraParameters(imagePoints,worldPoints, ...
                                    'ImageSize',imageSize);
```

Visualize the calibration accuracy.
showReprojectionErrors(params);

Visualize camera extrinsics.
figure;
showExtrinsics(params);

References

[1] Zhang, Z. "A Flexible New Technique for Camera Calibration". IEEE Transactions on Pattern Analysis and Machine Intelligence.Vol. 22, No. 11, 2000, pp. 1330-1334.
[2] Heikkila, J, and O. Silven. "A Four-step Camera Calibration Procedure with Implicit Image Correction." IEEE International Conference on Computer Vision and Pattern Recognition. 1997.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Use in a MATLAB Function block is not supported.
- Use the toStruct method to pass a stereoParameters object into generated code. See the "Code Generation for Depth Estimation From Stereo Video" example.

See Also

Apps
 Camera Calibrator | Stereo Camera Calibrator

Classes

cameraParameters|extrinsicsEstimationErrors| intrinsicsEstimationErrors|stereoCalibrationErrors

Functions

detectCheckerboardPoints |estimateCameraParameters | estimateFundamentalMatrix|generateCheckerboardPoints| reconstructScene|rectifyStereoImages | showExtrinsics | showReprojectionErrors|undistortImage|undistortPoints

Topics

"Structure From Motion From Two Views"
"Structure From Motion From Multiple Views"
"Code Generation for Depth Estimation From Stereo Video"
"Single Camera Calibrator App"
"Stereo Camera Calibrator App"

Introduced in R2014a

toStruct

Convert a stereo parameters object into a struct

Syntax

```
paramStruct = toStruct(stereoParams)
```


Description

paramStruct = toStruct(stereoParams) returns a struct containing the stereo parameters in the stereoParams input object. You can use the struct to create an identical stereoParameters object. Use the struct for C code generation. You can call toStruct, and then pass the resulting structure into the generated code, which recreates the stereoParameters object.

Input Arguments

stereoParams - Stereo parameters

stereoParameters object
Stereo parameters, specified as a stereoParameters object. The object contains the parameters of the stereo camera system.

Output Arguments

paramStruct - Stereo parameters

struct

Stereo parameters, returned as a stereo parameters struct.

See Also

Topics

"Code Generation for Depth Estimation From Stereo Video"
Introduced in R2015a

vision.TemplateMatcher

Package: vision
Locate template in image

Description

To locate a template in an image.
1 Create the vision. TemplateMatcher object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax

tMatcher = vision.TemplateMatcher
tMatcher = vision.TemplateMatcher(Name,Value)

Description

tMatcher = vision.TemplateMatcher returns a template matcher object, tMatcher. This object performs template matching by shifting a template in single-pixel increments throughout the interior of an image.
tMatcher = vision.TemplateMatcher(Name, Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, tMatcher = vision. TemplateMatcher('Metric','Sum of absolute differences')

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

Metric - Metric used for template matching source
'Sum of absolute differences' (default)|'Sum of squared differences'| 'Maximum absolute difference'

Metric used for template matching, specified as 'Sum of absolute differences', 'Sum of squared differences', or 'Maximum absolute difference'.

OutputValue - Type of output

'Best match location' (default)|'Metric matrix'
Type of output, specified as 'Metric matrix' or 'Best match location'.

SearchMethod - Specify search criteria to find minimum difference between two inputs

'Exhaustive' (default)|'Three-step'

Specify search criteria to find minimum difference between two inputs, specified as 'Exhaustive' or 'Three-step'. If you set this property to 'Exhaustive', the object searches for the minimum difference pixel by pixel. If you set this property to 'Threestep ', the object searches for the minimum difference using a steadily decreasing step size. The 'Three-step ' method is computationally less expensive than the 'Exhaustive' method, but sometimes does not find the optimal solution. This property applies when you set the OutputValue property to 'Best match location'.

BestMatchNeighborhoodOutputPort - Enable metric values output

false (default)|true
Enable metric values output, specified as true or false. This property applies when you set the OutputValue property to 'Best match location'.

NeighborhoodSize - Size of the metric values 3 (default) | odd number

Size of the metric values, specified as an odd number. The size N, of the N-by- N matrix of metric values as an odd number. For example, if the matrix size is 3 -by- 3 set this property to 3 . This property applies when you set the OutputValue property to 'Best match location' and the BestMatchNeighborhoodOutputPort property to true.

ROIInputPort - Enable ROI specification through input false (default) | true

Enable ROI specification through input, specified as true or false. Set this property to true to define the Region of Interest (ROI) over which to perform the template matching. If you set this property to true, the ROI must be specified. Otherwise the entire input image is used.

ROIValidityOutputPort - Enable output of a flag indicating if any part of ROI is outside input image
 false (default) | true

Enable output of a flag indicating if any part of ROI is outside input image, specified as true or false. When you set this property to true, the object returns an ROI flag. The flag, when set to false, indicates a part of the ROI is outside of the input image. This property applies when you set the ROIInputPort property to true

Fixed-Point Properties

RoundingMethod - Rounding method for fixed-point operations

```
'Floor'(default)|'Ceiling'|'Convergent'| 'Nearest'| 'Round'|'Simplest'
|'Zero'
```

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling', 'Convergent', 'Nearest', 'Round','Simplest', or 'Zero'.

OverflowAction - Action to take when integer input is out-of-range 'Wrap' (default)|'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap ' or 'Saturate'.

ProductDataType - Product data type

'Same as input' (default)|'Custom'

Product data type, specified as 'Same as input' or 'Custom'.

CustomProductDataType - Product word and fraction lengths

numerictype(true, 32,30) (default) | scaled numerictype object
Product word and fraction lengths, specified as a scaled numerictype object. This property applies only when you set the AccumulatorDataType property to 'Custom'.

AccumulatorDataType - Data type of accumulator

```
'Same as product' (default)|'Same as input'|'Custom'
```

Data type of accumulator, specified as 'Same as product','Same as input',or 'Custom'.

CustomAccumulatorDataType - Accumulator word and fraction lengths

numerictype(true, 32,30) (default) | scaled numerictype object
Accumulator word and fraction lengths, specified as a scaled numerictype object. This property applies only when you set the AccumulatorDataType property to 'Custom'.

Usage

Syntax

```
location = tMatcher(I,T)
```

[location, numberOfValues, numValid] = tMatcher (I, T, ROI)
[location, numberOfValues,numValid,ROIvalid] = tMatcher(I,T,ROI)
[location,ROIvalid] = tMatcher(I,T,ROI)

Description

location $=$ tMatcher (I, T) returns the $[x y]$ location coordinates of the best template match relative to the top left corner of the image between the image matrix, I , and the template matrix, T . The object computes the location by shifting the template in singlepixel increments throughout the interior of the image.
[location, numberOfValues,numValid] = tMatcher(I,T,ROI)returns the location of the best template match location, the metric values around the best match
numberOfValues, and a logical flag numValid. This applies when you set the OutputValue property to 'Best match location' and the BestMatchNeighborhoodOutputPort property to true.
[location, numberOfValues, numValid,ROIvalid] = tMatcher(I,T,ROI) also returns a logical flag, ROIvalid to indicate whether the ROI is outside the bounds of the input image I. This applies when you set the OutputValue property to 'Best match location', and the BestMatchNeighborhoodOutputPort, ROIInputPort, and ROIValidityOutputPort properties to true.
[location,ROIvalid] = tMatcher(I,T,ROI) also returns a logical flag ROIvalid indicating if the specified ROI is outside the bounds of the input image I. This applies when you set the OutputValue property to 'Best match location', and both the ROIInputPort and ROIValidityOutputPort properties to true.

Input Arguments

I - Input image
 truecolor | M-by-N 2-D grayscale image

Input image, specified as either a 2-D grayscale or truecolor image.

T - Template
 binary image | truecolor | M-by-N 2-D grayscale image

Input template, specified as 2-D grayscale or truecolor image.

ROI - Input ROI

four-element vector
Input ROI, specified as a four-element vector, [x y width height], where the first two elements represent the coordinates of the upper-left corner of the rectangular ROI.

Output Arguments

location - Location of best template match
 vector

Location of best template match, returned as a vector in the format (x, y). The coordinates indicate the center of the template relative to the top-left corner of the image. For more details, see "Algorithms" on page 2-618

numberOfValues - Metric value
 matrix

Metric value matrix , returned as a matrix. A false value for numValid indicates that the neighborhood around the best match extended outside the borders of the metric value matrix number0fValues.

numValid - Valid neighborhood

true | false
Valid neighborhood, returned as true or false. A false value for numValid indicates that the neighborhood around the best match extended outside the borders of the metric value matrix number0fValues.

ROIvalid - Valid ROI

true |false
Valid ROI neighborhood, returned as true or false. A false value for ROIvalid indicates that the ROI is outside the bounds of the input image.

Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:

```
release(obj)
```


Common to All System Objects

```
step Run System object algorithm
release Release resources and allow changes to System object property values and
    input characteristics
reset Reset internal states of System object
```


Examples

Video Stabilization

This example shows how to remove the effect of camera motion from a video stream.

Introduction

In this example we first define the target to track. In this case, it is the back of a car and the license plate. We also establish a dynamic search region, whose position is determined by the last known target location. We then search for the target only within this search region, which reduces the number of computations required to find the target. In each subsequent video frame, we determine how much the target has moved relative to the previous frame. We use this information to remove unwanted translational camera motions and generate a stabilized video.

Initialization

Create a System object ${ }^{\mathrm{TM}}$ to read video from a multimedia file. We set the output to be of intensity only video.

```
% Input video file which needs to be stabilized.
filename = 'shaky_car.avi';
hVideoSource = vision.VideoFileReader(filename, ...
    'ImageColorSpace', 'Intensity',...
    'VideoOutputDataType', 'double');
```

Create a template matcher System object to compute the location of the best match of the target in the video frame. We use this location to find translation between successive video frames.

```
hTM = vision.TemplateMatcher('ROIInputPort', true, ...
    'BestMatchNeighborhoodOutputPort', true);
```

Create a System object to display the original video and the stabilized video.

```
hVideoOut = vision.VideoPlayer('Name', 'Video Stabilization');
hVideoOut.Position(1) = round(0.4*hVideoOut.Position(1));
hVideoOut.Position(2) = round(1.5*(hVideoOut.Position(2)));
hVideoOut.Position(3:4) = [650 350];
```

Here we initialize some variables used in the processing loop.

```
pos.template_orig = [109 100]; % [x y] upper left corner
pos.template_size = [22 18]; % [width height]
pos.search_börder = [15 10]; % max horizontal and vertical displacement
pos.template_center = floor((pos.template_size-1)/2);
pos.template_center_pos = (pos.template_orig + pos.template_center - 1);
fileInfo = info(hVi\overline{deoSource);}
```

```
W = fileInfo.VideoSize(1); % Width in pixels
H = fileInfo.VideoSize(2); % Height in pixels
BorderCols = [1:pos.search_border(1)+4 W-pos.search_border(1)+4:W];
BorderRows = [1:pos.search_border(2)+4 H-pos.search_border(2)+4:H];
sz = fileInfo.VideoSize;
TargetRowIndices = ...
    pos.template_orig(2)-1:pos.template_orig(2)+pos.template_size(2)-2;
TargetColIndices = ...
    pos.template_orig(1)-1:pos.template_orig(1)+pos.template_size(1)-2;
SearchRegion = pos.template_orig - pos.search_border - 1;
Offset = [0 0];
Target = zeros(18,22);
firstTime = true;
```


Stream Processing Loop

This is the main processing loop which uses the objects we instantiated above to stabilize the input video.

```
while ~isDone(hVideoSource)
    input = hVideoSource();
    % Find location of Target in the input video frame
    if firstTime
        Idx = int32(pos.template_center_pos);
        MotionVector = [0 0];
        firstTime = false;
    else
        IdxPrev = Idx;
        ROI = [SearchRegion, pos.template_size+2*pos.search_border];
        Idx = hTM(input,Target,ROI);
        MotionVector = double(Idx-IdxPrev);
    end
    [Offset, SearchRegion] = updatesearch(sz, MotionVector, ...
        SearchRegion, Offset, pos);
    % Translate video frame to offset the camera motion
    Stabilized = imtranslate(input, Offset, 'linear');
    Target = Stabilized(TargetRowIndices, TargetColIndices);
    % Add black border for display
```

```
    Stabilized(:, BorderCols) = 0;
    Stabilized(BorderRows, :) = 0;
    TargetRect = [pos.template_orig-Offset, pos.template_size];
    SearchRegionRect = [SearchRegion, pos.template_size + 2*pos.search_border];
    % Draw rectangles on input to show target and search region
    input = insertShape(input, 'Rectangle', [TargetRect; SearchRegionRect],...
    Color', 'white');
% Display the offset (displacement) values on the input image
txt = sprintf('(%+05.1f,%+05.1f)', Offset);
input = insertText(input(:,:,1),[191 215],txt,'FontSize',16, ...
    'TextColor', 'white', 'BoxOpacity', 0);
    % Display video
    hVideoOut([input(:,:,1) Stabilized]);
end
```


Release

Here you call the release method on the objects to close any open files and devices.
release(hVideoSource);

Conclusion

Using the Computer Vision Toolbox ${ }^{\text {TM }}$ functionality from MATLAB® command line it is easy to implement complex systems like video stabilization.

Appendix
The following helper function is used in this example.

- updatesearch.m

Algorithms

Typical use of the template matcher involves finding a small region within a larger image. The region is specified by the template image which can be as large as the input image, but which is typically smaller than the input image.

The object outputs the best match coordinates, relative to the top-left corner of the image. The $[x y]$ coordinates of the location correspond to the center of the template. When you use a template with an odd number of pixels, the object uses the center of the template. When you use a template with an even number of pixels, the object uses the centered upper-left pixel for the location. The following table shows how the object outputs the location (LOC), of odd and even templates:

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- See "System Objects in MATLAB Code Generation" (MATLAB Coder).

See Also

insertMarker|opticalFlowFarneback|opticalFlowHS|opticalFlowLK| opticalFlowLKDoG

Introduced in R2012a

vision.Variance

Package: vision

Find variance values in input or sequence of inputs

Description

Find the variance values in an input or sequence of inputs.
To track a set of points:
1 Create the vision. Variance object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax

```
varObj = vision.Variance
varObj = vision.Variance(Name,Value)
```


Description

varObj = vision.Variance returns an object, varObj, that computes the value and index of the maximum elements in an input or a sequence of inputs.
varObj = vision.Variance(Name, Value) sets properties using one or more namevalue pairs. Enclose each property name in quotes. For example, varObj = vision.Variance('RunningVariance',false)

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

RunningVariance - Calculate over single input or multiple inputs false (default)|true

Calculate over single input or multiple inputs, specified as true or false. When you set this property to true, the object computes the variance value over a sequence of inputs. When you set this property to false, the object computes the variance value over the current input.

ResetInputPort - Additional input to enable resetting of running variance false (default) | true

Additional input to enable resetting of running variance, specified as true or false. When you set this property to true, a reset input must be specified to reset the running variance. This property applies only when you set the RunningVariance property to true.

ResetCondition - Condition that triggers resetting of running variance

'Non-zero' (default) |'Rising edge'|'Falling edge'|'Either edge'
Condition that triggers resetting of running variance, specified as as 'Rising edge', 'Falling edge','Either edge', or 'Non-zero'. This property applies only when you set the ResetInputPort property to true.

Dimension - Dimension to operate along
'Column' (default) | \{'All'\}|'Row' | 'Custom'
Dimension to operate along, specified as \{'All'\}, 'Row', 'Column', or 'Custom'. This property applies only when you set the RunningVariance property to false.

CustomDimension - Numerical dimension to calculate over 1 (default) | numerical scalar

Numerical dimension to calculate over, specified as a numerical scalar. This property only applies when you set the Dimension property to 'Custom'.

ROIProcessing - Enable region-of-interest processing

false (default)|true

Enable region-of-interest processing, specified as true or false. This property applies when you set the Dimension property to 'All' and the RunningVariance property to false.

ROIForm - Type of ROI

'Rectangles' (default)| Lines' | 'Label matrix''Binary mask'
Type of ROI, specified as 'Rectangles','Lines', 'Label matrix', or 'Binary mask'. This property applies only when you set the ROIProcessing property to true.

ROIStatistics - Calculate statistics for each ROI or one for all ROIs
'Individual statistics for each ROI' (default)|'Single statistic for all ROIs'

Calculate statistics for each ROI or one for all ROIs, specified as 'Individual statistics for each ROI' or 'Single statistic for all ROIs'. This property applies only when you set the 'ROIForm' property to 'Rectangles', 'Lines', or 'Label matrix'.

ValidityOutputPort - Flag to indicate if any part of ROI is outside input image false (default) | true

Flag to indicate if any part of ROI is outside input image, specified as true or false.
This applies when you set the ROIForm property to 'Lines' or 'Rectangles'.
Set this property to true to return the validity of the specified label numbers. This applies when you set the ROIForm property to 'Label matrix'.

Fixed-Point Properties

RoundingMethod - Rounding method for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest''Round' | 'Simplest''Zero'

Rounding method for fixed-point operations, specified as 'Floor', 'Ceiling',
'Convergent', 'Nearest', 'Round', 'Simplest', or 'Zero'.

OverflowAction - Action to take when integer input is out-of-range 'Wrap' (default)|'Saturate'

Action to take when integer input is out-of-range, specified as 'Wrap ' or 'Saturate'.

ProductDataType - Product data type

'Same as input' (default)|'Custom'
Product data type, specified as 'Same as input' or 'Custom'.

CustomProductDataType - Product word and fraction lengths

numerictype(true,32,30) (default) | scaled numerictype object
Product word and fraction lengths, specified as a scaled numerictype object. This property applies only when you set the AccumulatorDataType property to 'Custom'.

AccumulatorDataType - Data type of accumulator

'Same as product' (default)|'Same as input'|'Custom'
Data type of accumulator, specified as 'Same as product', 'Same as input', or 'Custom'.

CustomAccumulatorDataType - Accumulator word and fraction lengths numerictype(true, 32,30) (default) | scaled numerictype object

Accumulator word and fraction lengths, specified as a scaled numerictype object. This property applies only when you set the AccumulatorDataType property to 'Custom'.

Usage

Syntax

```
[value,index] = varObj(input)
index = varObj(input)
[___] = varObj(I,ROI)
```

[
\qquad ,flag] = varObj(I,ROI)
\qquad] = varObj(I,label,labelNumbers)
[\qquad ,flag] = varObj(I,label,labelNumbers)

Description

[value,index] = varObj(input) returns the variance value and index of the input.
index = varObj(input) returns the one-based index of the variance value when you set the IndexOutputPort property to true and the ValueOutputPort property to false. The RunningVariance property must be set to false.
[__] = varObj(I,ROI) returns the variance value in the input image within the given region of interest.
\qquad ,flag] = varObj (I,ROI) additionally returns a flag to indicate whether the given ROI is within the bounds of the image.
[___] = varObj(I, label, labelNumbers) returns the variance of the input image for a region the labels specified in the labelNumbers vector. The regions are defined and labeled in the label matrix.
\qquad , flag] = varObj(I,label,labelNumbers) additionally returns a flag to indicate whether the input label numbers are valid.

Input Arguments

input - Input data

vector | matrix | multidimensional array
Input data, specified as a vector, matrix, or multidimensional array.

ROI - Region of interest

four-element vector
Region of interest, specified as a four-element vector, [x y width height]. This option is available when you set the the ROIProcessing property to true and the ROIForm property to 'Lines', 'Rectangles', or 'Binary Mask'.

label - Label numbers

matrix

Label numbers, specified as a matrix. This option is available when you set the ROIProcessing property to true and the ROIForm property to 'Label matrix'.

labelNumbers - Label numbers

vector
Label numbers, specified as a vector. This option is available when you set the ROIProcessing property to true and the ROIForm property to 'Label matrix'.

Output Arguments

value - Variance value

same as input
Variance value, returned as the same data type as the input

index - Index to variance value
 one-based index

Index to variance value, returned as a one-based index.

flag - Flag for valid data
 true | false

Flag for valid data, returned as true or false.

Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:
release(obj)

Common to All System Objects

step Run System object algorithm
release Release resources and allow changes to System object property values and input characteristics
reset Reset internal states of System object

Examples

Determine Variance in Grayscale Image

Read a color image.

```
img = imread('peppers.png');
```

Convert the image to grayscale.
img = im2single(rgb2gray(img));
Find the variance.
varObj = vision.Variance; varValue = varObj(img);

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- See "System Objects in MATLAB Code Generation" (MATLAB Coder).

See Also
vision. Maximum | vision.Mean |vision.Median | vision.Minimum |
vision.StandardDeviation
Introduced in R2012a

vision.VideoPlayer

Package: vision
Play video or display image

Description

Play a video or display image sequences.

Abstract

Note If you own the MATLAB Coder product, you can generate C or C++ code from MATLAB code in which an instance of this system object is created. When you do so, the scope system object is automatically declared as an extrinsic variable. In this manner, you are able to see the scope display in the same way that you would see a figure using the plot function, without directly generating code from it. For the full list of system objects supporting code generation, see "Code Generation Support, Usage Notes, and Limitations".

Note Starting in R2016b, instead of using the step method to perform the operation defined by the System object, you can call the object with arguments, as if it were a function. For example, $y=\operatorname{step}(o b j, x)$ and $y=o b j(x)$ perform equivalent operations.

Creation

Syntax

```
videoPlayer = vision.VideoPlayer
videoPlayer = vision.VideoPlayer(
```

\qquad

``` ,Name, Value)
```


Description

videoPlayer = vision. VideoPlayer returns a video player object, videoPlayer, for displaying video frames.

```
videoPlayer = vision.VideoPlayer(___ ,Name,Value)additionally sets
properties using one or more name-value pairs. Enclose each property name in quotes.
For example, videoPlayer = vision.VideoPlayer('Name','Caption title')
```


Properties

Name - Caption display on video player window
 Video (default) | character vector

Caption display on video player window, specified as a character vector.
Tunable: Yes

Position - Size and position of the video player window in pixels

four-element vector

Size and position of the video player window in pixels, specified as a four-element vector, [left bottom width height]. The default size depends on your screen resolution. The window is positioned in the center of the screen, 400 pixels in width by 300 pixels in height.

Tunable: Yes

Usage

Syntax

videoPlayer(videoFrame)

Description

videoPlayer(videoFrame) displays one grayscale or truecolor RGB video frame,videoFrame, in the video player.

Input Arguments

videoFrame - Video frame

truecolor | 2-D grayscale image
Video frame, specified as a truecolor or 2-D grayscale image.

Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:
release(obj)

Common to All System Objects

step Run System object algorithm
release Release resources and allow changes to System object property values and input characteristics
reset Reset internal states of System object

Examples

Play a Video File

Read video from a file and set up player object.

```
videoFReader = vision.VideoFileReader('viplanedeparture.mp4');
```

videoPlayer = vision.VideoPlayer;

Play video. Every call to the step method reads another frame.

```
while ~isDone(videoFReader)
    frame = step(videoFReader);
```

```
    step(videoPlayer,frame);
end
```


Close the file reader and video player.
release(videoFReader);
release(videoPlayer);

See Also

implay|imshow|vision.DeployableVideoPlayer|vision.VideoFileReader| vision.VideoFileWriter

Topics

"Face Detection and Tracking Using CAMShift"
"Face Detection and Tracking Using the KLT Algorithm"
"Face Detection and Tracking Using Live Video Acquisition"
"Video Display in a Custom User Interface"

Introduced in R2012a

fastRCNNObjectDetector

Detect objects using Fast R-CNN deep learning detector

Description

The fastRCNNObjectDetector object detects objects from an image, using a Fast RCNN (regions with convolution neural networks) object detector. To detect objects in an image, pass the trained detector to the detect function. To classify image regions, pass the detector to the classifyRegions function.

When using the detect or classifyRegions functions with fastRCNNObjectDetector, use of a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher is highly recommended. The GPU reduces computation time significantly. Usage of the GPU requires Parallel Computing Toolbox.

Creation

Create a fastRCNNObjectDetector object by calling the trainFastRCNNObjectDetector function with training data (requires Deep Learning Toolbox).

```
detector = trainFastRCNNObjectDetector(trainingData,...)
```


Properties

ModelName - Name of classification model

character vector | string scalar
Name of the classification model, specified as a character vector or string scalar. By default, the name is set to the heading of the second column of the trainingData table specified in the trainFastRCNNObjectDetector function. You can modify this name after creating your fastRCNNObjectDetector object.

Example: 'stopSign'

Network - Trained Fast R-CNN object detection network object

This property is read-only.
Trained Fast R-CNN detection network, specified as an object. This object stores the layers that define the convolutional neural network used within the Fast R-CNN detector. This network classifies region proposals produced by the RegionProposalFcn property.

RegionProposalFcn - Region proposal method

function handle
Region proposal method, specified as a function handle.

ClassNames - Object class names
 cell array

This property is read-only.
Names of the object classes that the Fast R-CNN detector was trained to find, specified as a cell array. This property is set by the trainingData input argument for the trainFastRCNNObjectDetector function. Specify the class names as part of the trainingData table.

MinObjectSize - Minimum object size supported
 [height width] vector

This property is read-only.
Minimum object size supported by the Fast R-CNN network, specified as a [height width] vector. The minimum size depends on the network architecture.

Object Functions

detect Detect objects using Fast R-CNN object detector classifyRegions Classify objects in image regions using Fast R-CNN object detector

Examples

Detect Vehicles Using Faster R-CNN

Detect vehicles within an image by using a Faster R-CNN object detector.
Load a Faster R-CNN object detector pretrained to detect vehicles.

```
data = load('fasterRCNNVehicleTrainingData.mat', 'detector');
detector = data.detector;
```

Read in a test image.

```
I = imread('highway.png');
imshow(I)
```


Run the detector on the image and inspect the results. The labels come from the ClassNames property of the detector.
[bboxes,scores,labels] = detect(detector,I)
bboxes $=2 \times 4$

```
    150 86 80 72
    91 89 67 48
scores = 2x1 single column vector
    1.0000
    0.9001
labels = 2x1 categorical array
    vehicle
    vehicle
```

The detector has high confidence in the detections. Annotate the image with the bounding boxes for the detections and the corresponding detection scores.
detectedI = insert0bjectAnnotation(I,'Rectangle',bboxes, cellstr(labels)); figure
imshow(detectedI)

See Also

Apps
Image Labeler | Video Labeler

Functions

selectStrongestBboxMulticlass|trainACFObjectDetector| trainFastRCNNObjectDetector|trainFasterRCNNObjectDetector| trainNetwork

Objects

SeriesNetwork| boxLabelDatastore

Topics

"Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN"
"Datastores for Deep Learning" (Deep Learning Toolbox)

Introduced in R2017a

fasterRCNNObjectDetector

Detect objects using Faster R-CNN deep learning detector

Description

The fasterRCNNObjectDetector object detects objects from an image, using a Faster R-CNN (regions with convolution neural networks) object detector. To detect objects in an image, pass the trained detector to the detect function.

When using the detect function, use of a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher is highly recommended. The GPU reduces computation time significantly. Usage of the GPU requires Parallel Computing Toolbox.

Creation

Create a fasterRCNNObjectDetector object by calling the trainFasterRCNNObjectDetector function with training data (requires Deep Learning Toolbox).

```
detector = trainFasterRCNNObjectDetector(trainingData,...)
```


Properties

ModelName - Name of classification model

character vector | string scalar
This property is read-only.
Name of the classification model, specified as a character vector or string scalar. By default, the name is set to the heading of the second column of the trainingData table specified in the trainFasterRCNNObjectDetector function. You can modify this name after creating your fasterRCNNObjectDetector object.

Network - Trained Fast R-CNN object detection network
DAGNetwork object

This property is read-only.
Trained Fast R-CNN object detection network, specified as a DAGNetwork object. This object stores the layers that define the convolutional neural network used within the Faster R-CNN detector.

AnchorBoxes - Size of anchor boxes
 M-by-2 matrix

This property is read-only.
Size of anchor boxes, specified as an M-by-2 matrix, where each row is in the format [height width]. This value is set during training.

ClassNames - Object class names

 cell arrayThis property is read-only.
Names of the object classes that the Faster R-CNN detector was trained to find, specified as a cell array. This property is set by the trainingData input argument for the trainFasterRCNNObjectDetector function. Specify the class names as part of the trainingData table.

MinObjectSize - Minimum object size supported

[height width] vector
This property is read-only.
Minimum object size supported by the Faster R-CNN network, specified as a [height width] vector. The minimum size depends on the network architecture.

Object Functions

detect Detect objects using Faster R-CNN object detector

Examples

Object Detection Using Faster R-CNN Deep Learning

This example shows how to train a Faster R-CNN (regions with convolutional neural networks) object detector.

Deep learning is a powerful machine learning technique that you can use to train robust object detectors. Several deep learning techniques for object detection exist, including Faster R-CNN and you only look once (YOLO) v2. This example trains a Faster R-CNN vehicle detector using the trainFasterRCNNObjectDetector function. For more information, see "Object Detection using Deep Learning".

Download Pretrained Detector

Download a pretrained detector to avoid having to wait for training to complete. If you want to train the detector, set the doTrainingAndEval variable to true.

```
doTrainingAndEval = false;
if ~doTrainingAndEval && ~exist('fasterRCNNResNet50EndToEndVehicleExample.mat','file')
    disp('Downloading pretrained detector (118 MB)...');
    pretrainedURL = 'https://www.mathworks.com/supportfiles/vision/data/fasterRCNNResN
    websave('fasterRCNNResNet50VehicleExample.mat',pretrainedURL);
end
```


Load Data Set

This example uses a small labeled dataset that contains 295 images. Each image contains one or two labeled instances of a vehicle. A small dataset is useful for exploring the Faster R-CNN training procedure, but in practice, more labeled images are needed to train a robust detector. Unzip the vehicle images and load the vehicle ground truth data.

```
unzip vehicleDatasetImages.zip
data = load('vehicleDatasetGroundTruth.mat');
vehicleDataset = data.vehicleDataset;
```

The vehicle data is stored in a two-column table, where the first column contains the image file paths and the second column contains the vehicle bounding boxes.

Split the data set into a training set for training the detector and a test set for evaluating the detector. Select 60% of the data for training. Use the rest for evaluation.

```
rng(0)
shuffledIdx = randperm(height(vehicleDataset));
idx = floor(0.6 * height(vehicleDataset));
```

```
trainingDataTbl = vehicleDataset(shuffledIdx(1:idx),:);
testDataTbl = vehicleDataset(shuffledIdx(idx+1:end),:);
```

Use imageDatastore and boxLabelDatastore to create datastores for loading the image and label data during training and evaluation.

```
imdsTrain = imageDatastore(trainingDataTbl{:,'imageFilename'});
bldsTrain = boxLabelDatastore(trainingDataTbl(:,'vehicle'));
imdsTest = imageDatastore(testDataTbl{:,'imageFilename'});
bldsTest = boxLabelDatastore(testDataTbl(:,'vehicle'));
```

Combine image and box label datastores.

```
trainingData = combine(imdsTrain,bldsTrain);
testData = combine(imdsTest,bldsTest);
```

Display one of the training images and box labels.

```
data = read(trainingData);
I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'Rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)
```


Create Faster R-CNN Detection Network

A Faster R-CNN object detection network is composed of a feature extraction network followed by two subnetworks. The feature extraction network is typically a pretrained CNN, such as ResNet-50 or Inception v3. The first subnetwork following the feature extraction network is a region proposal network (RPN) trained to generate object proposals - areas in the image where objects are likely to exist. The second subnetwork is trained to predict the actual class of each object proposal.

The feature extraction network is typically a pretrained CNN (for details, see "Pretrained Deep Neural Networks" (Deep Learning Toolbox)). This example uses ResNet-50 for feature extraction. You can also use other pretrained networks such as MobileNet v2 or ResNet-18, depending on your application requirements.

Use fasterRCNNLayers to create a Faster R-CNN network automatically given a pretrained feature extraction network. fasterRCNNLayers requires you to specify several inputs that parameterize a Faster R-CNN network:

- Network input size
- Anchor boxes
- Feature extraction network

First, specify the network input size. When choosing the network input size, consider the minimum size required to run the network itself, the size of the training images, and the computational cost incurred by processing data at the selected size. When feasible, choose a network input size that is close to the size of the training image and larger than the input size required for the network. To reduce the computational cost of running the example, specify a network input size of [224 224 3], which is the minimum size required to run the network.

```
inputSize = [224 224 3];
```

Note that the training images used in this example are bigger than 224 -by-224 and vary in size, so you must resize the images in a preprocessing step prior to training.

Next, use estimateAnchorBoxes to estimate anchor boxes based on the size of objects in the training data. To account for the resizing of the images prior to training, resize the training data for estimating anchor boxes. Use transform to preprocess the training data, then define the number of anchor boxes and estimate the anchor boxes.

```
preprocessedTrainingData = transform(trainingData, @(data)preprocessData(data,inputSize
numAnchors = 3;
anchorBoxes = estimateAnchorBoxes(preprocessedTrainingData,numAnchors)
anchorBoxes = 3 2 2
```

 136119
 5548
 157128
 For more information on choosing anchor boxes, see "Estimate Anchor Boxes From Training Data" (Computer Vision Toolbox ${ }^{\mathrm{TM}}$) and "Anchor Boxes for Object Detection".

Now, use resnet50 to load a pretrained ResNet-50 model.
featureExtractionNetwork = resnet50;

Select 'activation_40_relu' as the feature extraction layer. This feature extraction layer outputs feature maps that are downsampled by a factor of 16 . This amount of downsampling is a good trade-off between spatial resolution and the strength of the extracted features, as features extracted further down the network encode stronger image features at the cost of spatial resolution. Choosing the optimal feature extraction layer requires empirical analysis. You can use analyzeNetwork to find the names of other potential feature extraction layers within a network.

```
featureLayer = 'activation_40_relu';
```

Define the number of classes to detect.

```
numClasses = width(vehicleDataset)-1;
```

Create the Faster R-CNN object detection network.

```
lgraph = fasterRCNNLayers(inputSize,numClasses,anchorBoxes,featureExtractionNetwork,fea
```

You can visualize the network using analyzeNetwork or Deep Network Designer from Deep Learning Toolbox ${ }^{\mathrm{TM}}$.

If more control is required over the Faster R-CNN network architecture, use Deep Network Designer to design the Faster R-CNN detection network manually. For more information, see "Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN".

Data Augmentation

Data augmentation is used to improve network accuracy by randomly transforming the original data during training. By using data augmentation, you can add more variety to the training data without actually having to increase the number of labeled training samples.

Use transform to augment the training data by randomly flipping the image and associated box labels horizontally. Note that data augmentation is not applied to test data. Ideally, test data is representative of the original data and is left unmodified for unbiased evaluation.
augmentedTrainingData = transform(trainingData,@augmentData);
Read the same image multiple times and display the augmented training data.

```
augmentedData = cell(4,1);
for k = 1:4
    data = read(augmentedTrainingData);
```

```
    augmentedData{k} = insertShape(data{1},'Rectangle',data{2});
    reset(augmentedTrainingData);
    end
    figure
    montage(augmentedData,'BorderSize',10)
```


Preprocess Training Data

Preprocess the augmented training data to prepare for training.
trainingData = transform(augmentedTrainingData,@(data)preprocessData(data,inputSize));
Read the preprocessed data.
data $=$ read(trainingData);

Display the image and box bounding boxes.

```
I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'Rectangle',bbox);
annotatedImage = imresize(annotatedImage,2);
figure
imshow(annotatedImage)
```


Train Faster R-CNN

Use training0ptions to specify network training options. Set 'CheckpointPath ' to a temporary location. This enables the saving of partially trained detectors during the training process. If training is interrupted, such as by a power outage or system failure, you can resume training from the saved checkpoint.

```
options = trainingOptions('sgdm',...
    'MaxEpochs',10,...
    'MiniBatchSize',2,...
    'InitialLearnRate',1e-3,...
    'CheckpointPath',tempdir);
```

Use trainFasterRCNNObjectDetector to train Faster R-CNN object detector if doTrainingAndEval is true. Otherwise, load the pretrained network.

```
if doTrainingAndEval
```

 \% Train the Faster R-CNN detector.
 \% * Adjust NegativeOverlapRange and PositiveOverlapRange to ensure
 \% that training samples tightly overlap with ground truth.
 [detector, info] = trainFasterRCNNObjectDetector(trainingData,lgraph,options, ...
 'NegativeOverlapRange',[0 0.3], ...
 'PositiveOverlapRange',[0.6 1]);
 else
\% Load pretrained detector for the example.
pretrained = load('fasterRCNNResNet50EndToEndVehicleExample.mat');
detector = pretrained.detector;
end

This example was verified on an Nvidia(TM) Titan X GPU with 12 GB of memory. Training the network took approximately 20 minutes. The training time varies depending on the hardware you use.

As a quick check, run the detector on one test image. Make sure you resize the image to the same size as the training images.

```
I = imread(testDataTbl.imageFilename{1});
I = imresize(I,inputSize(1:2));
[bboxes,scores] = detect(detector,I);
```

Display the results.

```
I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)
```


Evaluate Detector Using Test Set

Evaluate the trained object detector on a large set of images to measure the performance. Computer Vision Toolbox ${ }^{\mathrm{TM}}$ provides object detector evaluation functions to measure common metrics such as average precision (evaluateDetectionPrecision) and logaverage miss rates (evaluateDetectionMissRate). For this example, use the average precision metric to evaluate performance. The average precision provides a single number that incorporates the ability of the detector to make correct classifications (precision) and the ability of the detector to find all relevant objects (recall).

Apply the same preprocessing transform to the test data as for the training data.

```
testData = transform(testData,@(data)preprocessData(data,inputSize));
```

Run the detector on all the test images.

```
if doTrainingAndEval
    detectionResults = detect(detector,testData,'MinibatchSize',4);
else
    % Load pretrained detector for the example.
    pretrained = load('fasterRCNNResNet50EndToEndVehicleExample.mat');
```

```
    detectionResults = pretrained.detectionResults;
end
```

Evaluate the object detector using the average precision metric.
[ap, recall, precision] = evaluateDetectionPrecision(detectionResults,testData);
The precision/recall (PR) curve highlights how precise a detector is at varying levels of recall. The ideal precision is 1 at all recall levels. The use of more data can help improve the average precision but might require more training time. Plot the PR curve.

```
figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f', ap))
```


Supporting Functions

```
function data = augmentData(data)
% Randomly flip images and bounding boxes horizontally.
tform = randomAffine2d('XReflection',true);
rout = affineOutputView(size(data{1}),tform);
data{1} = imwarp(data{1},tform,'OutputView',rout);
data{2} = bboxwarp(data{2},tform,rout);
end
function data = preprocessData(data,targetSize)
% Resize image and bounding boxes to targetSize.
scale = targetSize(1:2)./size(data{1},[1 2]);
data{1} = imresize(data{1},targetSize(1:2));
```

```
data{2} = bboxresize(data{2},scale);
```

end

References

[1] Ren, S., K. He, R. Gershick, and J. Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks." IEEE Transactions of Pattern Analysis and Machine Intelligence. Vol. 39, Issue 6, June 2017, pp. 1137-1149.
[2] Girshick, R., J. Donahue, T. Darrell, and J. Malik. "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation." Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, June 2014, pp. 580-587.
[3] Girshick, R. "Fast R-CNN." Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago, Chile, Dec. 2015, pp. 1440-1448.
[4] Zitnick, C. L., and P. Dollar. "Edge Boxes: Locating Object Proposals from Edges." European Conference on Computer Vision. Zurich, Switzerland, Sept. 2014, pp. 391-405.
[5] Uijlings, J. R. R., K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders. "Selective Search for Object Recognition." International Journal of Computer Vision. Vol. 104, Number 2, Sept. 2013, pp. 154-171.

See Also

Apps
 Image Labeler | Video Labeler

Functions

SeriesNetwork|selectStrongestBboxMulticlass|trainACFObjectDetector| trainFastRCNNObjectDetector|trainFasterRCNNObjectDetector| trainNetwork

Topics

"Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN"
"Datastores for Deep Learning" (Deep Learning Toolbox)

Introduced in R2017a

yolov20bjectDetector

Detect objects using YOLO v2 object detector

Description

The yolov20bjectDetector object defines the trained YOLO v2 object detector. To detect objects in an image, pass the trained YOLO v2 object detector to the detect object function. The YOLO v2 object detector recognizes specific objects in images, based on the training images and ground truth data used with the trainYOLOv20bjectDetector function.

Creation

Create a yolov20bjectDetector object by calling the trainYOLOv20bjectDetector function with training data (requires Deep Learning Toolbox).
detector $=$ trainYOLOv20bjectDetector(trainingData, \qquad)

Properties

ModelName - Name of the classification model

character vector | string scalar
Name of the classification model, specified as a character vector or string scalar. By default, the name is set to the heading of the second column of the trainingData table specified in the trainY0LOv20bjectDetector function. You can modify this name after creating the yolov20bjectDetector object.

Network - Trained YOLO v2 object detection network
 DAGNetwork object

This property is read-only.
Trained YOLO v2 object detection network, specified as a DAGNetwork object. This object stores the layers that define the YOLO v2 object detection network.

ClassNames - Names of object classes

cell array of character vectors
This property is read-only.
Names of object classes that the YOLO v2 object detector was trained to find, specified as a cell array of character vectors. This property is set by the trainingData input argument in the trainYOLOv20bjectDetector function. Specify the class names as part of the trainingData table.

AnchorBoxes - Set of anchor boxes

N-by-2 matrix
This property is read-only.
Set of anchor boxes, specified as an N-by-2 matrix defining the height and the width of N anchor boxes. This property is set by the AnchorBoxes property of the output layer in the YOLO v2 network.

The anchor boxes are defined when creating the YOLO v2 network by using the yolov2Layers function. Alternatively, if you create the YOLO v2 network layer-by-layer, the anchor boxes are defined by using the yolov20utputLayer function.

TrainingImageSize - Set of image sizes used for training
 M-by-2 matrix

This property is read-only.
Set of image sizes used for training, specified as an M-by-2 matrix, where each row is of the form [height width]. This property is set by the trainingSizes input argument in the trainYOLOv20bjectDetector function.

Object Functions

detect Detect objects using YOLO v2 object detector

Extended Capabilities

GPU Code Generation

Generate CUDA® code for NVIDIA® GPUs using GPU Coder ${ }^{\mathrm{TM}}$.
Usage notes and limitations:
For code generation,

- Only the detect method of the yolov20bjectDetector is supported for code generation.
- The roi argument to the detect method must be a codegen constant (coder.const()) and a 1 x 4 vector.
- Only the Threshold, SelectStrongest, MinSize, and MaxSize Name-Value pairs are supported.
- The labels output is returned as a cell array of character vectors, such as \{'car','bus'\}.

See Also

Apps
 Image Labeler | Video Labeler

Functions

yolov2Layers

Objects

boxLabelDatastore|fasterRCNNObjectDetector|
trainYOLOv20bjectDetector

Topics

"Create YOLO v2 Object Detection Network"
"Estimate Anchor Boxes From Training Data"
"Object Detection Using YOLO v2 Deep Learning"
"Getting Started with YOLO v2"
"Anchor Boxes for Object Detection"
"Datastores for Deep Learning" (Deep Learning Toolbox)

Introduced in R2019a

vision.ChromaResampler

Package: vision
Downsample or upsample chrominance components of images

Description

To downsample or upsample chrominance components of images:
1 Create the vision. ChromaResampler object and set its properties.
2 Call the object with arguments, as if it were a function.
To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax

resampler = vision.ChromaResampler
gammaCorr = vision.ChromaResampler(Name,Value)

Description

resampler $=$ vision. ChromaResampler returns a chroma resampling object, Cresampler, that downsamples or upsamples chroma components of a YCbCr signal to reduce the bandwidth and storage requirements.
gammaCorr = vision. ChromaResampler(Name, Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, resampler $=$ vision. ChromaResampler('InterpolationFilter','Linear')

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change their values after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects (MATLAB).

Resampling - Resampling format

'4:4:4 to 4:2:2' (default)|resample format
Resampling format, specified as one of the following:

```
'4:4:4 to 4:2:2'
'4:4:4 to 4:2:0 (MPEG1)'
'4:4:4 to 4:2:0 (MPEG2)'
'4:4:4 to 4:1:1'
'4:2:2 to 4:2:0 (MPEG1)'
'4:2:2 to 4:2:0 (MPEG2)'
```

To upsample the chrominance components of images, set this property to one of the following:

```
'4:2:2 to 4:4:4'
'4:2:0 (MPEG1) to 4:4:4'
'4:2:0 (MPEG2) to 4:4:4'
'4:1:1 to 4:4:4'
'4:2:0 (MPEG1) to 4:2:2'
'4:2:0 (MPEG2) to 4:2:2'
```


InterpolationFilter - Method used to approximate missing values
 Pixel replication (default)|Linear

Method used to approximate missing values, specified as Pixel replication or Linear. The default is Linear. When you set this property to Linear, the object uses linear interpolation to calculate the missing values. When you set this property to Pixel replication, the object replicates the chrominance values of the neighboring pixels to create the upsampled image. This property applies when you upsample the chrominance values.

AntialiasingFilterSource - Lowpass filter used to prevent aliasing Auto (default)| Property | None

Lowpass filter used to prevent aliasing, specified as Auto, Property, or None. When you set this property to Auto, the object uses a built-in lowpass filter. When you set this property to Property, the coefficients of the filters are specified by the HorizontalFilterCoefficients and VerticalFilterCoefficients properties. When you set this property to None, the object does not filter the input signal. This property applies when you downsample the chrominance values.

HorizontalFilterCoefficients - Horizontal filter coefficients

[0.2 0.6 0.2] (default)| three-element vector

Horizontal filter coefficients, specified as a three-element vector. This property applies when you set the Resampling property to one of [4:4:4 to $4: 2: 2] \mid$ [4:4:4 to 4:2:0 (MPEG1)]|[4:4:4 to 4:2:0 (MPEG2)]|[4:4:4 to 4:1:1] and the AntialiasingFilterSource property to Property.

VerticalFilterCoefficients - Specify the filter coefficients to apply to the input signal

[0.5 0.5] (default)| two-element vector

Specify the filter coefficients to apply to the input signal, specifie as a two-element vector. This property applies when you set the Resampling property to one of [4:4:4 to 4:2:0 (MPEG1)]|[4:4:4 to 4:2:0 (MPEG2)]|[4:2:2 to 4:2:0 (MPEG1)]| [4:2:2 to $4: 2: 0$ (MPEG2)] and the AntialiasingFilterSource property to Property.

TransposedInput - Input is row-major format false (default) | true

Input is row-major format, specified as true or false. Set this property to true when the input contains data elements from the first row first, then data elements from the second row second, and so on through the last row. Otherwise, the object assumes that the input data is stored in column-major format.

Usage

Syntax

[Cb1,Cr1] = resampler(Cb,Cr)

Description

[Cb1,Cr1] = resampler(Cb, Cr) resamples the input chrominance components Cb and Cr and returns Cb 1 and Cr 1 , as the resampled outputs.

Input Arguments

Cb1 - Chrominance component matrix

Chrominance component of an image, specified as a matrix.

Cr2 - Chrominance component matrix

Chrominance component of an image, specified as a matrix.

Output Arguments

Cb1 - Resampled chrominance component

same as input (default)
Chrominance component of an image, returned as a matrix.

Cr1 - Resampled chrominance component

same as input (default)
Chrominance component of an image, returned as a matrix.

Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:

```
release(obj)
```


Common to All System Objects

step Run System object algorithm
release Release resources and allow changes to System object property values and input characteristics
reset Reset internal states of System object

Examples

Resample Chrominance Components of Image

Create a resampler object
resampler = vision.ChromaResampler;
Read an RGB image and convert it to YCbCr.

```
imageRGB = imread('peppers.png');
```

imageYCbCr = rgb2ycbcr(imageRGB);

Resample the Cb and Cr chrominance components.
[Cb,Cr] = resampler(imageYCbCr(:,:,2), imageYCbCr(:,:,3));

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

Usage notes and limitations:

- See "System Objects in MATLAB Code Generation" (MATLAB Coder).

See Also

rgb2ycbcr
Introduced in R2012a

groundTruthDataSource

Object for storing ground truth data sources

Description

The groundTruthDataSource object defines the source of ground truth data. Use this object to specify a data source for the groundTruth object. To label the data source, load the groundTruthDataSource object into a labeling app.

- The Image Labeler supports data sources for collections of images.
- The Video Labeler and Ground Truth Labeler (requires Automated Driving Toolbox ${ }^{\mathrm{TM}}$) apps support data sources for videos and image sequences. These apps also support custom data sources.

Creation

Syntax

gtSource = groundTruthDataSource(imageFiles)
gtSource $=$ groundTruthDataSource(videoName)
gtSource = groundTruthDataSource(imageSeqFolder)
gtSource $=$ groundTruthDataSource(imageSeqFolder,timeStamps)
gtSource = groundTruthDataSource(sourceName,readerFcn,timeStamps)

Description

gtSource $=$ groundTruthDataSource(imageFiles) returns a ground truth data source object for a collection of images specified by imageFiles. Images must be in a file format readable by imread.
gtSource $=$ groundTruthDataSource(videoName) returns a ground truth data source object for a video file specified by videoName. Videos must be in a file format readable by VideoReader.
gtSource = groundTruthDataSource(imageSeqFolder) returns a ground truth data source object for an image sequence located in the folder specified by imageSeqFolder.
gtSource = groundTruthDataSource(imageSeqFolder,timeStamps) returns a ground truth data source object for an image sequence with a corresponding timestamp for each image contained in the specified folder. timeStamps sets the TimeStamps property.
gtSource = groundTruthDataSource(sourceName,readerFcn,timeStamps) returns a ground truth data source object by using the custom reader function handle, readerFcn. sourceName sets the Source property and timeStamps set the TimeStamps property. The custom reader function loads an image from sourceName that corresponds to the current timestamp specified in the duration vector timeStamps.

Input Arguments

imageFiles - Image file names

string array | cell array of character vectors
Image file names, specified as a string array or a cell array of character vectors. Images must be in a file format readable by imread. For a list of the supported image file formats, see imformats.

videoName - Name of video file
string scalar | character vector

Name of video file, specified as a string scalar or character vector. Videos must be in a file format readable by VideoReader. For a list of the supported video file formats, see VideoReader.getFileFormats. If your video format is not supported, specify a custom reader function, readerFcn.

imageSeqFolder - Image sequence folder

string scalar | character vector

Image sequence folder, specified as a string scalar or a character vector. The image files name extensions must be supported by imformats. If your video format is not supported, specify a custom reader function, readerFcn.

The images are loaded in the order returned by the dir command.

readerFcn - Custom reader function

function handle

Custom reader function, specified as a function handle. The custom reader function must load an image from a source at a specified timestamp by using this syntax:

```
outputImage = readerFcn(sourceName,currentTimeStamp)
```

- readerFcn is the name of your custom reader function.
- sourceName is the name of the data source.
- currentTimeStamp is the current timestamp, as specified by the input vector timeStamp.

The outputImage returned by the custom function must be a grayscale or RGB image in any format supported by imshow. For more information, see "Use Custom Data Source Reader for Ground Truth Labeling".

Properties

TimeStamps - Timestamps of video or image sequence duration vector

This property is read-only.
Timestamps of video or image sequence, specified as a duration vector.

- For a video file, TimeStamps is automatically populated with the timestamps that are present for the video frames.
- For an image sequence or custom reader, TimeStamps is populated with the values in the input duration vector timeStamps.
- For an image collection, the TimeStamps property remains empty.

Source - Source of ground truth data

character vector | cell array of character vectors
This property is read-only.
Source of ground truth data, specified as a character vector or cell array of character vectors. The source name can refer to image file names, a video file name, image sequence file names, or custom data source names.

Examples

Create a Ground Truth Data Source From a Video File

Use the groundTruthDataSource object to create a data source.
Read a video file and create a data source.

```
videoName = 'vipunmarkedroad.avi';
dataSource = groundTruthDataSource(videoName)
dataSource =
groundTruthDataSource for a video file with properties
```

Source: ...tlab\toolbox\vision\visiondata\vipunmarkedroad.avi TimeStamps: [84×1 duration]

Create a VideoReader to read the video frames.

```
reader = VideoReader(videoName);
```

Read the 5th frame in the video and display

```
timeStamp = seconds(dataSource.TimeStamps(5));
reader.CurrentTime = timeStamp;
I = readFrame(reader);
```

figure
imshow(I)

Create Data Source From Image Sequence

Create a ground truth data source from a an image sequence stored in a specified folder.
Specify the folder containing a sequence of images.

```
imageDir = fullfile(matlabroot,'toolbox','vision',...
    'visiondata','building');
```

Create a data source for the images that are in the imageDir folder.

```
    dataSource = groundTruthDataSource(imageDir)
```


dataSource =

groundTruthDataSource for a video as an image sequence with properties
Source: \{
'B:\matlab\toolbox\vision\visiondata\building\building1.

```
                        'B:\matlab\toolbox\vision\visiondata\building\building2..
                        'B:\matlab\toolbox\vision\visiondata\building\building3.
        ... and 2 more
    }
TimeStamps: [5x1 duration]
```

Read the 5th frame in the sequence.

```
I = imread(dataSource.Source{5});
figure
imshow(I)
```


Create Data Source Using Custom Reader

Create a ground truth data source using a custom reader.
Specify image directory containing sequence of road images.

```
imageDir = fullfile(matlabroot,'toolbox','vision','visiondata','building');
```

Use an image data store as a custom data source.
imgDataStore = imageDatastore(imageDir);
Write a reader function to read images from the data source. The first input argument, sourceName, of the custom reader function, readerFcn, is not used. The 2nd input, currentTimeStamp, is converted from a duration scalar to a 1-based index suitable for the data source.

```
readerFcn = @(~,idx)readimage(imgDataStore,seconds(idx));
```

Create a data source for the images in the imageDir folder using readerFcn.

```
dataSource = groundTruthDataSource(imageDir,readerFcn,1:5)
```

dataSource =
groundTruthDataSource with properties:

Source: ...471 pass \matlab\toolbox\vision\visiondata\building TimeStamps: [5×1 duration]

Read the 5th frame in the sequence.

```
I = readerFcn(imageDir,seconds(5));
figure
imshow(I)
```


Tips

- groundTruth objects for video-based groundTruthDataSource objects rely on the video reading capabilities of your operating system. A groundTruth object created using a video data source remains consistent only for the same platform that was used to create it. To create a platform-specific groundTruth object, convert the video into a sequence of images.

See Also

Apps

Ground Truth Labeler | Image Labeler | Video Labeler
Functions
duration | groundTruth | imageDatastore | labelType | objectDetectorTrainingData

Topics

"Get Started with the Image Labeler"
"Get Started with the Video Labeler"
"Get Started with the Ground Truth Labeler" (Automated Driving Toolbox)
"Use Custom Data Source Reader for Ground Truth Labeling"
"Create Automation Algorithm for Labeling"
"Training Data for Object Detection and Semantic Segmentation"

Introduced in R2017a

groundTruth

Object for storing ground truth labels

Description

The groundTruth object contains information about the data source, the list of label definitions, and all marked labels for a set of ground truth labels. You can export or import a groundTruth object from the Image Labeler, Video Labeler, and Ground Truth Labeler apps. Use of the Ground Truth Labeler requires Automated Driving Toolbox.

- To create training data for an object detector from arrays of groundTruth objects, use the objectDetectorTrainingData function.
- To create training data for a semantic segmentation network from arrays of groundTruth objects, use the pixelLabelTrainingData function.

Creation

Syntax

gTruth = groundTruth(dataSource,labelDefs,labelData)

Description

gTruth = groundTruth(dataSource,labelDefs,labelData) returns an object containing ground truth labels that can be imported into the Image Labeler, Video Labeler, and Ground Truth Labeler apps. The dataSource, labelDefinitions, and labelData inputs set the properties. Label definitions describe the labels, sublabels, and attributes. Label data contains the identifying information, position, and timestamps for the labels.

Properties

DataSource - Source of ground truth data
 groundTruthDataSource object

Source of ground truth data, specified as a groundTruthDataSource object. The object contains information that describes the video, image sequence, or custom data source from which ground truth data was labeled.

To access images from the original data source, use VideoReader or imageDatastore. You can also use a custom reader function. See "Use Custom Data Source Reader for Ground Truth Labeling".

LabelDefinitions - Label definitions

table
This property is read-only.
Label definitions, specified as a table with up to five columns. The possible columns are Name, Type, PixelLabelID, Description, and Hierarchy.

The table includes the PixelLabelID column when you use pixel labels and includes the Hierarchy column when you create sublabels and/or attributes. The table always contains the Name, Type, and Description columns. Descriptions for labels are optional, so that column can be empty.

Label Definition	Description
Name	Character vector specifying the name of the label category.
Type	labelType enumeration that specifies the label category type.
PixelLabelID	A scalar, column vector, or an M-by-3 matrix of integer-valued label IDs. PixelLabelID specifies the pixel label values used to represent a label category. This value is required when you set Type to labelType. PixelLabel. Pixel label ID values must be between 0 and 255.
Description	Character vector that describes the label category. The description label definition is optional.

Label Definition	Description
Hierarchy	A structure containing sublabel and attribute data. The app populates the hierarchy column when you create a sublabel or attribute. This label definition applies only to the Video Labeler and Ground Truth Labeler apps. See "Get Started with the Video Labeler" and "Get Started with the Ground Truth Labeler" (Automated Driving Toolbox).

For example, this definition table contains six label categories: cars, sky, vegetation, road, Signs, and laneMarkers.

ans $=$				
6×5 table				
Name	Type	Pixellabelid	Description	Hierarchy
'cars'	Rectangle	[]	'all types'	[1*1 struct]
'sky'	Pixellabel	[1]	'	[]
'vegetation'	Pixellabel	[2]	'Trees along highway'	[]
'road'	Pixellabel	[3]	'	[]
'Signs'	Rectangle	[]	'	[]
'laneMarkers'	Line	[]	'	[1*1 struct]

Note Attributes and sublabels are only available in the Video Labeler and Ground Truth Labeler. In the example above, two of the labels contain attributes. Therefore, a Hierarchy column was created for all labels.

The following code below represents a table with two label categories:

```
defs = table({'Cars';'Lanes'}, ...
    [labelType.Rectangle;labelType.Line], ...
    'VariableNames',{'Name','Type'})
```


LabelData - Label data for each ROI and scene label

table|timetable
This property is read-only.
Label data for each ROI and scene label, specified as a table for image collections or a timetable for videos or image sequence. Each column of the table or timetable holds
labels for a single label category. LabelData describes the elements of the table. The label categories are specified as labelType enumerations.

Label Categor y	Label Values labelT ype.Re ctangl eLabels in each row are stored as M-by-4 matrices of [x,y, width,height] bounding box locations. If the labels contain sublabels, attributes, or both, then the labels are stored as structures. These structures contain the bounding box locations and the sublabel and attribute information.
labelT ype.Li ne	Labels in each row are stored as M-by-1 cell arrays. Each element of the cell array holds [$\chi, y]$ locations for the points used to mark the polyline. If the labels contain sublabels, attributes, or both, then the labels are stored as structures. These structures contain the line locations and the sublabel and attribute information.
labelT ype.Pi xelLab el	Label data for all label categories is represented by a single label matrix. The matrix must be stored on disk as a uint8 image. The image file name must be specified as a character vector in the LabelData table. The label matrix must contain 1 or 3 channels. For a 3-channel matrix, the RGB pixel values represent label IDs.
labelT ype.Sc ene	Labels in each row are stored as logical values representing the presence or absence of the scene label for the image.
labelT ype.Cu stom	Labels in each row are stored in the way they are provided in the table. These labels are not imported into the labeling app.

Supported GroundTruth Objects

	Video Labeler or Ground Truth Labeler App	Image Labeler App
Data source	Video file, image sequence folder, custom reader	Image files
Label definitions	Rectangle, Line, PixelLabel, or Scene label types	Rectangle, PixelLabel or Scene label types
Label data	Timetable of Rectangle, Line, PixelLabel, or Scene label types	Table (no timetable) for Rectangle, PixelLabel, or Scene label types

Labels, sublabels, and attributes per frame are stored in structs

Position, attribute data, and sublabel structs for the 5 vehicles labeled at interval 0.05 sec

To add ground truth data that is not an ROI (Rectangle, Line, PixelLabel) or Scene label category to a groundTruth object, provide a label definition with a labelType that is Custom. The custom data is not visible when you load it into the labeling app.

Object Functions

selectLabelsByGroup Select ground truth data for set of labels by group selectLabelsByType Select ground truth data for a set of labels by type selectLabelsByName changeFilePaths

Select ground truth data by name
Change file paths in data source and pixel label data of ground truth object

Examples

Create Ground Truth for Stop Signs and Cars

Create a data source from a collection of images.

```
data = load('stopSignsAndCars.mat');
imageFilenames = data.stopSignsAndCars.imageFilename(1:2)
imageFilenames = 2x1 cell array
    {'stopSignImages/image001.jpg'}
    {'stopSignImages/image002.jpg'}
```

imageFilenames = fullfile(toolboxdir('vision'),'visiondata',imageFilenames);
dataSource = groundTruthDataSource(imageFilenames);

Define labels used to specify the ground truth. Use labelDefinitionCreator to create the label definitions table.

```
ldc = labelDefinitionCreator();
addLabel(ldc,'stopSign',labelType.Rectangle);
addLabel(ldc,'carRear',labelType.Rectangle);
labelDefs = create(ldc)
labelDefs=2\times4 table
    Name Type Group Description
    {'stopSign'} Rectangle {'None'} {' '}
```

```
{'carRear' } Rectangle {'None'} {' '}
```

Initialize label data for rectangle ROIs.

```
stopSignTruth = {[856 318 39 41];[445 523 52 54]};
carRearTruth = {[[398 1378 315 210];[332 633 691 287]};
Construct a table of label data.
```

```
labelNames = {'stopSign';'carRear'};
```

labelNames = {'stopSign';'carRear'};
labelData = table(stopSignTruth,carRearTruth,'VariableNames',labelNames)
labelData = table(stopSignTruth,carRearTruth,'VariableNames',labelNames)
labelData=2\times2 table
labelData=2\times2 table
stopSign carRear
stopSign carRear
{1x4 double} {1x4 double}
{1x4 double} {1x4 double}
{1x4 double} {1x4 double}

```
    {1x4 double} {1x4 double}
```

Create a ground truth object.
gTruth = groundTruth(dataSource,labelDefs,labelData)
gTruth =
groundTruth with properties:
DataSource: [1x1 groundTruthDataSource]
LabelDefinitions: [2x4 table]
LabelData: [2×2 table]

Create Ground Truth Data of Road Lanes

Create a groundTruth object to store data representing marked road lanes.
Create a data source from an image.

```
dataSource = groundTruthDataSource({'stopSignTest.jpg'});
```

Define labels used to specify ground truth. Use labelDefinitionCreator to create label definitions table.

```
ldc = labelDefinitionCreator();
addLabel(ldc,'Lane',labelType.Line);
labelDefs = create(ldc);
```

Assign two lane markers in the image.
laneMarkerTruth $=\{[257$ 254;311 180] [327 183;338 205;374 250]\};
Construct a table of label data.

```
labelNames = {'Lane'};
labelData=1\times1 table
    Lane
    {2\times2 double} {3\times2 double}
```

labelData = table(laneMarkerTruth,'VariableNames',labelNames)

Create a groundTruth object.

```
gTruth = groundTruth(dataSource,labelDefs,labelData)
```

gTruth =
groundTruth with properties:
DataSource: [1x1 groundTruthDataSource]
LabelDefinitions: [1x4 table]
LabelData: [1x1 table]

Create Ground Truth Data For Pixel Labels

Create a groundTruth object to store data representing parts of a scene.
Create a data source.

```
dataSource = groundTruthDataSource({'visionteam.jpg'});
```

Use labelDefinitionCreator to create the label definitions table. Define labels, 'Person' and 'Background '. Assign their corresponding label type as PixelLabel.
ldc =labelDefinitionCreator();
addLabel(ldc,'Person',labelType.PixelLabel);

```
addLabel(ldc,'Background',labelType.PixelLabel);
labelDefs = create(ldc)
```


Specify the location of the pixel label data for the image.

```
dataFile = {'visionteamPixelLabels.png'}
dataFile = 1x1 cell array
    {'visionteamPixelLabels.png'}
```

Construct a table of label data for the pixel label data.

```
labelData = table(dataFile,'VariableNames',{'PixelLabelData'})
```

labelData=1×1 table
PixelLabelData
\{'visionteamPixelLabels.png'\}

Create a groundTruth object.
gTruth = groundTruth(dataSource,labelDefs,labelData)
gTruth =
groundTruth with properties:
DataSource: [1x1 groundTruthDataSource]
LabelDefinitions: [2x5 table]
LabelData: [1x1 table]

Create Ground Truth for Car and Lane Markers

Create a data source from a video.

```
videoName = 'caltech_cordoval.avi';
dataSource = groundTruthDataSource(videoName);
```

Define labels used to specify the ground truth. Use labelDefinitionCreator to create the label definitions table.

```
ldc = labelDefinitionCreator();
addLabel(ldc,'Cars',labelType.Rectangle);
addLabel(ldc,'LaneMarkers',labelType.Line);
labelDefs = create(ldc)
labelDefs=2\times4 table
    Name Type Group Description
```


Create label data for cars and lane markers.

```
numRows = numel(dataSource.TimeStamps);
carsTruth = cell(numRows,1);
laneMarkerTruth = cell(numRows,1);
```

Add two car labels and two lane markers to the first frame.

```
carsTruth{1} = [182 186 31 22;404 191 53 34];
laneMarkerTruth{1} = {[257 254;311 180] [327 183;338 205;374 250]};
```

Create a table of label data.

```
labelNames = {'Cars','LaneMarkers'};
labelData = table(carsTruth,laneMarkerTruth,'VariableNames',labelNames);
```

Create a groundTruth object. To import this object into the Ground Truth Labeler app, click Import Labels.

```
gTruth = groundTruth(dataSource,labelDefs,labelData)
gTruth =
    groundTruth with properties:
```


DataSource: [1x1 groundTruthDataSource] LabelDefinitions: [2x4 table]
 LabelData: [250x2 timetable]

Tips

- groundTruth objects for video-based data sources rely on the video reading capabilities of your operating system. A groundTruth object created using a video data source remains consistent only for the same platform that was used to create it. To create a platform-specific groundTruth object, convert the video into a sequence of images.

See Also

Apps
 Ground Truth Labeler | Image Labeler | Video Labeler

Functions

groundTruthDataSource | labelType| objectDetectorTrainingData| pixelLabelDatastore|pixelLabelImageDatastore|pixelLabelTrainingData

Topics

"Get Started with the Ground Truth Labeler" (Automated Driving Toolbox)
"Get Started with the Video Labeler"
"Get Started with the Image Labeler"
"Use Custom Data Source Reader for Ground Truth Labeling"
"Share and Store Labeled Ground Truth Data"

Introduced in R2017a

selectLabels

Select ground truth data for a set of labels

Note The function will be removed in a future release. Use selectLabelsByGroupselectLabelsByType and selectLabelsByName instead.

For more information, see "selectLabels object function will be removed"

Syntax

gtLabel $=$ selectLabels(gTruth,labelNames)
gtLabel $=$ selectLabels(gTruth,types)

Description

gtLabel $=$ selectLabels(gTruth,labelNames) returns a new groundTruth object, or array of groundTruth objects, containing only the labels specified by labelNames.
gtLabel $=$ selectLabels (gTruth, types) returns a new groundTruth object, or array of groundTruth objects, containing only the label types specified by types.

Examples

Select Ground Truth Data By Label Name and Type

Add the image folder to the MATLAB path.

```
imageDir = fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages');
addpath(imageDir);
Load the ground truth object.
load('stopSignsAndCarsGroundTruth.mat');
```

View the definitions.
stopSignsAndCarsGroundTruth.LabelDefinitions

ans=3×3 table

Name
Type
Group

\{'stopSign'\}	Rectangle	\{'None'\}
\{'carRear' \}	Rectangle	\{'None'\}
\{'carFront'\}	Rectangle	\{'None'\}

Obtain the ground truth data for labelName 'stopSign'.
stopSignGroundTruth = selectLabels(stopSignsAndCarsGroundTruth,'stopSign');
Obtain the ground truth data for labelType Rectangle.
rectGroundTruth = selectLabels(stopSignsAndCarsGroundTruth,labelType.Rectangle);
Obtain ground truth for 'carRear' and 'carFront'.
carGroundTruth = selectLabels(stopSignsAndCarsGroundTruth,\{'carRear','carFront'\});
Remove the image folder from the path.
rmpath(imageDir);

Input Arguments

gTruth - Ground truth labels

groundTruth object | array of groundTruth objects
Ground truth labels, specified as a groundTruth object or as an array of groundTruth objects.

labelNames - Label names

cell array of character vectors
Label names, specified as a cell array of character vectors.

types - Label type
 labelType enumeration

Label type, specified as a labelType enumeration.

Output Arguments

gtLabel - Ground truth with only specified labels or types
 groundTruth object | array of groundTruth objects

Ground truth with only specified labels or types, returned as a groundTruth object or as an array of groundTruth objects.

Compatibility Considerations

selectLabels object function will be removed

Not recommended starting in R2019a
The selectLabels function will be removed in a future release. Use selectLabelsByName, selectLabelsByType, and selectLabelsByGroup instead.

See Also

Functions

groundTruth | groundTruthDataSource | selectLabelsByGroup | selectLabelsByName | selectLabelsByType

Introduced in R2017a

vision.labeler.AutomationAlgorithm

Interface for algorithm automation in ground truth labeling

Description

AutomationAlgorithm specifies the interface for defining custom automation algorithms to run in the labeling apps, such as the Image Labeler, Video Labeler, and Ground Truth Labeler. Classes that inherit from the AutomationAlgorithm interface can be used with the automation workflow of the labeling apps to generate ground truth labels. Use of the Ground Truth Labeler requires Automated Driving Toolbox.

Properties

The AutomationAlgorithm class predefines this set of properties.

SelectedLabelDefinitions - Selected label definitions

struct array
Selected label definitions, specified as a struct array containing two or three fields. The fields specify the Type, Name, and optionally Attributes for each selected label defintion. An additional field, PixelLabelID exists for label definitions of type PixelLabel.

The fields correspond to the selected label definition in the labeling app. Selected label definitions are highlighted in yellow on the left panels titled ROI Label Definition and Scene Label Definition in the labeling app.

Field	Description
Type	Enumeration of class labelType with possible values of Rectangle, Line, PixelLabel, or Scene. Invalid label definitions are grayed out. The Video Labeler and Ground Truth Labeler support Rectangle, Line, PixelLabel and Scene labels. The Image Labeler supports Rectangle, PixelLabel, and Scene labels.
Name	Character vector that contains the name of the selected label definition.

Field	Description
Attribute	Struct containing one field for each attribute that is part of the label definition. The value for each field describes the specifications of the attribute. The first field contains an attribute name. The second field contains the values associated with the name. The values are contained in (an additional) struct. If you are defining a List attribute, you must also define the list of values for it. Values for Numerical value, String, or Logical are optional. Descriptions for the attributes are optional for all cases. The figure shows the app interface for setting these values.
	4 Define New ROI Attribute for car - $\square \times$
	Attribute Name
	Distance \quad Numeric Value \checkmark
	Default Scalar Value (Optional)
	0.0
	Attribute Description (Optional)
	Distance to sensor ^
	\checkmark
	OK Cancel
	See the example below for the programmatic version.
PixelLabelID	Positive integer that holds the ID for each selected pixel label.
	Note This field is valid only for labels of type PixelLabel.

```
Example: Define SelectedLabelDefinitions structure array for Rectangle and
Scene labels:
```

```
selectedLabelDefs(1).Name = 'Car';
```

selectedLabelDefs(1).Name = 'Car';
selectedLabelDefs(1).Type = labelType.Rectangle;
selectedLabelDefs(1).Type = labelType.Rectangle;
selectedLabelDefs(1).Attributes = struct('distance',struct('DefaultValue',0,'Descripti
selectedLabelDefs(1).Attributes = struct('distance',struct('DefaultValue',0,'Descripti
selectedLabelDefs(2).Name = 'Sunny';
selectedLabelDefs(2).Name = 'Sunny';
selectedLabelDefs(2).Type = labelType.Scene;
selectedLabelDefs(2).Type = labelType.Scene;
selectedLabelDefs(2).Attributes = [];
selectedLabelDefs(2).Attributes = [];
Example: Define SelectedLabelDefinitions structure for PixelLabel label:
selectedLabelDefs(1).Name = 'Road';
selectedLabelDefs(1).Type = labelType.PixelLabel;
selectedLabelDefs(1).PixelLabelID = 2;

```

\section*{ValidLabelDefinitions - All valid label definitions}
```

struct array

```

All valid label definitions that satisfy the checkLabelDefinition method, specified as a struct array containing these fields.
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Type & \begin{tabular}{l} 
Enumeration of class labelType with possible values of Rectangle, \\
Line, PixelLabel, or Scene. Invalid label definitions are grayed out.
\end{tabular} \\
\hline Name & character vector that contains the name of the label definition \\
\hline PixelLabelID & Positive integer that holds the ID for each valid pixel label \\
& Note This field is valid only for labels of type PixelLabel. \\
\hline
\end{tabular}

\section*{GroundTruth - Ground truth of marked labels}

\section*{groundTruth object}

Ground truth of marked labels, specified as a groundTruth object. The object holds all the labels marked in the labeling app prior to automation.

Clients of AutomationAlgorithm class are required to define the following properties. These properties setup the name, description, and user instructions for your automated algorithm.

\section*{Name - Automation algorithm name \\ character vector}

Automation algorithm name, specified as a character vector.

\section*{Description - Automation algorithm description} character vector

Algorithm description, specified as a character vector.

\section*{UserDirections - Algorithm directions displayed in app cell array}

Algorithm directions displayed in app, specified as a cell array. UserDirections are specified as a cellstr, with each string representing a separate direction. Use the checkSetup method to verify that the directions have been adhered to.

\section*{Methods}

Clients of an AutomationAlgorithm implement these user-defined functions to define execution of the algorithm.
checkLabelDefinition Validate label definition
checkSetup Set up validation (optional)
initialize Initialize state for algorithm execution (optional)
run Run label automation on every frame in interval
terminate Terminate automated algorithm (optional)
Clients of an AutomationAlgorithm can also implement the user-defined settingsDialog function to display algorithm settings, or a constructor with no input arguments.

For more information on creating your own automation algorithm, see "Create Automation Algorithm for Labeling".

\section*{See Also}

Apps
Ground Truth Labeler | Image Labeler | Video Labeler

\section*{Functions}
groundTruth | groundTruthDataSource | imageDatastore | labelType | objectDetectorTrainingData|vision.labeler.mixin.Temporal

\section*{Topics}
"Create Automation Algorithm for Labeling"
"Automate Ground Truth Labeling of Lane Boundaries" (Automated Driving Toolbox) "Automate Ground Truth Labeling for Semantic Segmentation" (Automated Driving Toolbox)

\section*{Introduced in R2017a}

\title{
checkLabelDefinition
}

\author{
Validate label definition
}

\section*{Syntax}
isValid = checkLabelDefinition(alg0bj,labelDef)

\section*{Description}

The labeler app calls the checkLabelDefinition method for each ROI Label and Scene Label definition. The method restricts an automation algorithm to use only relevant labels. For example, a label definition of type Rectangle must not be used to mark a lane boundary.

Clients of AutomationAlgorithm must implement this method.
isValid = checkLabelDefinition(algObj,labelDef) returns true for valid label definitions and false for invalid definitions for the automation algorithm provided by algObj. labelDef is a struct containing label definitions. Definitions that return false are disabled during automation.

\section*{Examples}

These examples show two ways of defining the checkLabelDefinition method for a client of an automation algorithm.

\section*{Restrict Automation to Rectangular ROI Labels}

This checkLabelDefinition method designates Rectangle labels as valid, and all other labels as invalid.
function checkLabelDefinition(algObj, labelDef)
if labelDef.Type == labelType.Rectangle
```

 isValid = true;
 else
 isValid = false;
 end
 end

```

\section*{Restrict Automation to Any ROI}

This checkLabelDefinition method designates ROI labels (Rectangle and Line) as valid, and all other labels as invalid.
```

function checkLabelDefinition(algObj,labelDef)
if isROI(labelDef.Type)
isValid = true;
else
isValid = false;
end
end

```

\section*{Input Arguments}

\section*{algObj - Automation algorithm}

\section*{vision.labeler.AutomationAlgorithm object}

Automation algorithm, specified as a vision.labeler. AutomationAlgorithm object.

\section*{labelDef - Label definition}
struct
Label definition, specified as a struct containing Type and Name fields.
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Type & \begin{tabular}{l} 
Enumeration of class labelType with possible values of Rectangle, \\
Line, PixelLabel, and Scene.
\end{tabular} \\
\hline Name & Character vector containing the name of the specified label. \\
\hline
\end{tabular}

Example: Create a labelDef structure for a Rectangle label:
labelDef(1).Type = labelType.Rectangle;
labelDef(1).Name = 'Car';

\section*{Output Arguments}

\section*{isValid - Flag to validate label definition}
true|false
Flag to validate label definition, returned as true or false.

\section*{Tips}
- To access the selected label definitions (highlighted in yellow on the left panels titled ROI Label Definition and Scene Label Definition in the labeling app), use the SelectedLabelDefinitions property.

\section*{See Also}
labelType|vision.labeler.AutomationAlgorithm

Introduced in R2017a

\section*{checkSetup}

Set up validation (optional)

\section*{Syntax}
isReady = checkSetup(algObj)
isReady = checkSetup(alg0bj,labelsToAutomate)

\section*{Description}

The checkSetup method checks the validity of the setup when you click Run in the labeling app. If checkSetup returns true, then the setup is valid and the app proceeds to execute the initialize, run, and terminate methods.

Clients of AutomationAlgorithm can optionally implement this method.
isReady = checkSetup(alg0bj) returns true if you completed set up correctly and the automation algorithm alg0bj can begin execution. Otherwise, checkSetup returns false.
isReady = checkSetup(alg0bj,labelsToAutomate) additionally provides a table, labelsToAutomate, that contains labels selected for the automation algorithm to use for labeling. This syntax is available only for time-dependent (temporal) automation algorithms. The Ground Truth Labeler (requires Automated Driving Toolbox) and Video Labeler apps support these algorithms, but the Image Labeler does not. For more information, see "Temporal Automation Algorithms".

\section*{Examples}

\section*{Check Setup for ROI Labels}

This example shows how to define a checkSetup method for a client of a temporal automation algorithm. This method determines that an automation algorithm is ready to run if at least one ROI label exists. Note that this method uses a labelsToAutomate
argument, which is supported by the Ground Truth Labeler and Video Labeler apps, but not the Image Labeler.
```

function isReady = checkSetup(algObj,labelsToAutomate)
notEmpty = ~isempty(labelsToAutomate);
hasROILabels = any(labelsToAutomate.Type == labelType.Rectangle);
if notEmpty \&\& hasROILabels
isReady = true;
else
isReady = false;
end
end

```

\section*{Input Arguments}

\section*{algObj - Automation algorithm}
vision.labeler.AutomationAlgorithm object
Automation algorithm, specified as a vision.labeler.AutomationAlgorithm object.

\section*{labelsToAutomate - Selected labels}
table
Selected labels (ROI and Scene) that are marked before executing the algorithm, specified as a table with the following variables.
\begin{tabular}{|l|l|}
\hline Variable Name & Description \\
\hline Type & \begin{tabular}{l} 
Enumeration of class labelType with possible values of Rectangle, \\
Line and Scene.
\end{tabular} \\
\hline Name & Character vector containing the name of the specified label. \\
\hline Time & \begin{tabular}{l} 
Scalar double specifying the time, in seconds, when the label was \\
marked.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Variable Name & Description & \\
\hline \multirow{4}{|l|}{ Position } & Label Type & Description \\
\cline { 2 - 3 } & Rectangle & \begin{tabular}{l} 
Position of bounding box locations, specified as a 1- \\
by-4 vector in the format \([x, y, w, h]\).
\end{tabular} \\
\cline { 2 - 3 } & Line & \begin{tabular}{l} 
Points along a polyline, specified as an \(N\)-by-2 vector in \\
the format \([x 1, y 1 ; x 2, y 2 ; \ldots x, y N]\) for \(N\) points.
\end{tabular} \\
\cline { 3 - 3 } & Scene & {[]} \\
\hline
\end{tabular}

Example of a labelsToAutomate table:
\begin{tabular}{|c|c|c|c|}
\hline Type & Name & Time & Position \\
\hline Rectangle & 'Car' & 0.033333 & [1x4 double] \\
\hline Line & 'LaneMarker' & 0.066667 & [5x2 double] \\
\hline Scene & 'Sunny ' & 0.1 & [ 0] \\
\hline
\end{tabular}

\section*{Output Arguments}
isReady - Set up validation
true|false
Set up validation, returned as true or false.

\section*{See Also}
labelType | vision.labeler.AutomationAlgorithm

Introduced in R2017a

\section*{initialize}

Initialize state for algorithm execution (optional)

\section*{Syntax}
```

initialize(alg0bj,I)
initialize(alg0bj,I,labelsToAutomate)

```

\section*{Description}

The initialize method initializes the state of the automation algorithm before the automation algorithm runs.

Clients of AutomationAlgorithm can optionally implement this method.
initialize (alg0bj, I) initializes state of the alg0bj automation algorithm. I is a numeric matrix containing the frame that corresponds to the start of the interval.

Clients of AutomationAlgorithm must implement this user-defined method.
initialize(algObj, I, labelsToAutomate) additionally provides a table, labelsToAutomate, that contains labels selected for the automation algorithm to use for labeling. This syntax is available only for time-dependent (temporal) automation algorithms. The Ground Truth Labeler (requires Automated Driving Toolbox) and Video Labeler apps support these algorithms, but the Image Labeler does not. For more information, see "Temporal Automation Algorithms".

\section*{Input Arguments}

\section*{algObj - Automation algorithm}
vision.labeler.AutomationAlgorithm object
Automation algorithm, specified as a vision.labeler.AutomationAlgorithm object.

\section*{I - Image frame corresponding to start of time interval}
numeric matrix
Image frame corresponding to start of time interval, specified as a numeric matrix.

\section*{labelsToAutomate - Selected labels}
table
Selected labels (ROI and Scene) that are marked before executing the algorithm, specified as a table with the following variables.
\begin{tabular}{|l|l|}
\hline Variable Name & Description \\
\hline Type & \begin{tabular}{l} 
Enumeration of class labelType with possible values of Rectangle, \\
Line and Scene.
\end{tabular} \\
\hline Name & Character vector containing the name of the specified label. \\
\hline Time & \begin{tabular}{l} 
Scalar double specifying the time, in seconds, when the label was \\
marked.
\end{tabular} \\
\hline Position & Label Type \\
& Description \\
\cline { 2 - 3 } & Rectangle \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Position of bounding box locations, specified as a 1- \\
by-4 vector in the format \([x, y, w, h]\).
\end{tabular} \\
\cline { 2 - 3 } & Line \\
& \begin{tabular}{l} 
Points along a polyline, specified as an \(N\)-by-2 vector in \\
the format \([x 1, y 1 ; x 2, y 2 ; \ldots x N, y N]\) for \(N\) points.
\end{tabular} \\
\cline { 2 - 3 } & Scene \\
\hline
\end{tabular}

Example of a labelsToAutomate table:
\begin{tabular}{|c|c|c|c|}
\hline Type & Name & Time & Position \\
\hline Rectangle & 'Car' & 0.033333 & [1x4 double] \\
\hline Line & 'LaneMarker' & 0.066667 & [5x2 double] \\
\hline Scene & 'Sunny' & 0.1 & \(0]\) \\
\hline
\end{tabular}

\section*{See Also}
checkSetup | labelType | run | terminate | vision.labeler.AutomationAlgorithm

\section*{Introduced in R2017a}

\section*{run}

Run label automation on every frame in interval

\section*{Syntax}
```

autoLabels = run(algObj,I)

```

\section*{Description}
run computes the labels for a single image frame by executing the automation algorithm.
Clients of AutomationAlgorithm must implement this method.
autoLabels \(=\) run(algObj,I) processes a single image, I, using the alg0bj automation algorithm, and returns the automated labels in autoLabels.

\section*{Input Arguments}

\section*{algObj - Automation algorithm}
vision. labeler. AutomationAlgorithm object
Automation algorithm, specified as a vision.labeler. AutomationAlgorithm object.

\section*{I - Image frame}
numeric matrix
Image frame, specified as a numeric matrix.

\section*{Output Arguments}

\section*{autoLabels - Labels from automation}
table | struct array | categorical matrix
Labels from automation, returned as one of the following.
- For algorithms without pixel labels, autoLabels is returned as a table (or struct array) containing these variable (or field) names.
\begin{tabular}{|l|l|}
\hline Variable Name & Description \\
\hline Type & \begin{tabular}{l} 
Enumeration of class labelType with possible values of \\
Rectangle, Line and Scene.
\end{tabular} \\
\hline Name & Character vector containing the name of the specified label. \\
\hline Position & \begin{tabular}{l}
1 -by-4 vector in the format \([x, y, w, h]\) that specifies the position of \\
bounding box locations for the Rectangle labelType. \\
\(N\)-by-2 vector in the format \([x 1, y 1 ; x 2, y 2 ; \ldots x N, y N]\) that \\
specifies N points along a polyline for the Line labelType. \\
[ ] for Scene labelType.
\end{tabular} \\
\hline
\end{tabular}

Example of an autoLabels table:
\begin{tabular}{|c|c|c|}
\hline Name & Type & Position \\
\hline 'Car' & Rectangle & [1×4 double] \\
\hline 'LaneMarker' & Line & [ \(3 \times 2\) double] \\
\hline 'Sunny' & Scene & \(1]\) \\
\hline
\end{tabular}

For information on defining a table, see "Create autoLabels Table or Structure" on page 2-700.
- For algorithms with pixel labels, autoLabels is returned as a categorical label matrix, where each category represents a pixel label. See "How Labeler Apps Store Exported Pixel Labels"

\section*{Tips}

\section*{Create autoLabels Table or Structure}

When you implement the run method for an automation algorithm without pixel labels, you must populate a table or structure with the labels from automation, according to autoLabels. This code demonstrates how to populate a structure array with three elements.
```

% Rectangle labeled 'Car' positioned with top-left at (20,20)
% with width and height equal to 50.
autoLabels(1).Name = 'Car';
autoLabels(1).Type = labelType('Rectangle');
autoLabels(1).Position = [20 20 50 50];
% Line labeled 'LaneMarker' with 3 points.
autoLabels(2).Name = 'LaneMarker';
autoLabels(2).Type = labelType('Line');
autoLabels(2).Position = [100 100; 100 110; 110 120];
% Scene labeled 'Sunny'
autoLabels(3).Name = 'Sunny';
autoLabels(3).Type = labelType('Scene');
autoLabels(3).Position = true;

```

\section*{See Also}
```

checkSetup|initialize| labelType|terminate| vision.labeler.AutomationAlgorithm
Introduced in R2017a

```

\section*{settingsDialog}

Display algorithm settings (optional)

\section*{Syntax}
```

settingsDialog(algObj)

```

\section*{Description}

The settingsDialog method runs when the user clicks Settings in the labeling app. Use this method to provide a dialog figure with controls for user settings required for the algorithm. Use a modal dialog, created using functions like dialog, inputdlg or listdlg.

Clients of AutomationAlgorithm can optionally implement this method.
settingsDialog(algObj) displays automated algorithm settings in a dialog.

\section*{Input Arguments}

\section*{alg0bj - Automation algorithm \\ vision.labeler.AutomationAlgorithm object}

Automation algorithm, specified as a vision.labeler. AutomationAlgorithm object.

\section*{Introduced in R2017a}

\section*{terminate}

Terminate automated algorithm (optional)

\section*{Syntax}
terminate(alg0bj)

\section*{Description}

The terminate method cleans up the state of the automation algorithm after run processes the last frame in the specified interval or when the user stops the automation algorithm.

Clients of AutomationAlgorithm can optionally implement this method.
terminate (alg0bj) cleans up the state of the automation algorithm.

\section*{Input Arguments}
alg0bj - Automation algorithm
vision. labeler. AutomationAlgorithm object
Automation algorithm, specified as a vision.labeler. AutomationAlgorithm object.

\author{
See Also \\ checkSetup |initialize|run|vision.labeler.AutomationAlgorithm \\ Introduced in R2017a
}

\section*{vision.labeler.mixin. Temporal}

Mixin interface for adding temporal context to automation algorithms

\section*{Description}

The Temporal mixin class provides an interface for attaching temporal properties to an automation algorithm. You can add this class only to automation algorithms used by the Ground Truth Labeler (requires Automated Driving Toolbox) or Video Labeler app.

\section*{Properties}

The Temporal class predefines this set of properties.

\section*{StartTime - Timestamp of first frame \\ scalar}

Timestamp of the first frame of the algorithm interval, specified as a scalar.

\section*{CurrentTime - Timestamp of current executing frame scalar}

Timestamp of the current executing frame, specified as a scalar. This value updates during the execution of the algorithm.

\section*{EndTime - Timestamp of last frame scalar}

Timestamp of the last frame of the algorithm interval, specified as a scalar.

\section*{StartFrameIndex - Index of first frame \\ integer}

Index of the first frame of the algorithm interval, specified as an integer.

\section*{EndFrameIndex - Index of last frame \\ integer}

Index of the last frame of the algorithm interval, specified as an integer.

\section*{AutomationDirection - Direction in which to run automated algorithm 'Forward'| 'Reverse'}

Direction in which to run the automated algorithm, specified as ' Forward ' or 'Reverse'.

\section*{Object Functions}
supportsReverseAutomation Set reverse algorithm automation flag

\section*{See Also}

\author{
Apps \\ Ground Truth Labeler | Video Labeler \\ Objects \\ vision.labeler.AutomationAlgorithm
}

\section*{Topics}
"Create Automation Algorithm for Labeling"
"Temporal Automation Algorithms"

\section*{Introduced in R2017b}

\section*{supportsReverseAutomation}

\section*{Set reverse algorithm automation flag}

\section*{Syntax}
flag = supportsReverseAutomation(alg0bj)

\section*{Description}
flag = supportsReverseAutomation(algObj) indicates whether the temporal automation algorithm, alg0bj, supports automation in the reverse direction. A true value enables the Ground Truth Labeler (requires Automated Driving Toolbox) or Video Labeler to open the algorithm in reverse mode.

\section*{Examples}

\section*{Set Algorithm Automation Direction Flag}
```

function flag = supportsReverseAutomation(alg0bj)
flag = true;
end

```

\section*{Input Arguments}

\section*{alg0bj - Temporal automation algorithm}
object
Temporal automation algorithm, specified as an object.

\section*{Output Arguments}

\section*{flag - Reverse automation indicator \\ true | false}

Reverse automation indicator, returned as true or false.

\section*{See Also}

\section*{Apps}

Ground Truth Labeler | Video Labeler
Objects
vision.labeler.mixin.Temporal

Introduced in R2017b

\section*{labelType}

Enumeration of supported label types

\section*{Description}

The labelType enumeration provides a means to specify the type of label in a labelDefinitionCreator object and the labeler apps: Ground Truth Labeler (requires Automated Driving Toolbox), Image Labeler, and Video Labeler.

\section*{Creation}

\section*{Syntax}
labelType

\section*{Description}
labelType creates an labelType enumeration to specify a type of label.

\section*{Enumerators}

These properties represent the enumerators.

\section*{Rectangle - Rectangular region of interest}
enumerator
Rectangular region of interest (ROI) label, specified as an enumerator in labelType enumeration.

\section*{Line - Polyline region of interest label}
enumerator
Polyline region of interest label, specified as an enumerator in labelType enumeration.

\section*{Scene - Scene label}

\section*{enumerator}

Scene label, specified as an enumerator in labelType enumeration. Scene labels can be marked on a frame or on an interval of frames.

\section*{Custom - Custom label type}
enumerator
Custom label type, specified as an enumerator in labelType enumeration. The Labeler apps do not display labels with type Custom.

\section*{PixelLabel - Label marked as pixel labeled region \\ enumerator}

Label marked as pixel labeled region of interest, specified as an enumerator in labelType enumeration. The pixel labeled ROI provides labels for every pixel within the ROI and is used to label a group of neighboring pixels that share the same label category.

\section*{Object Functions}
isCustom Determine if label types are Custom labels
isROI Determine if label types are ROI labels
isScene Determine if label types are Scene labels

\section*{Examples}

\section*{Specify Label Type in Label Definition Creator Object}

Create a label definition creator object. Add a label named "Road" with the label type specified as a rectangle.
```

ldc = labelDefinitionCreator();
addLabel(ldc,'Road',labelType.Rectangle);

```

Add a label named "Sky" with the label type specified as a scene.
addLabel(ldc,'Sky',labelType.Scene);

Add a sublabel named "Lanes" to the label "Road". Specify the label type for the sublabel as a line.
```

addSublabel(ldc,'Road','Lanes',labelType.Line);

```

Display the details of the definitions stored in the label definition creator object.

\section*{ldc}
ldc =
labelDefinitionCreator contains the following labels:
Road with 1 sublabels and 0 attributes. (info)
Sky with 0 sublabels and 0 attributes. (info)
For more details about attributes and sublabels, use the info method.
Display information about the label "Road" as a structured data by using the info object function. The Type field in the structure labelStruct indicates the type of label.
```

labelStruct = info(ldc,'Road')
labelStruct = struct with fields:
Name: "Road"
Type: Rectangle
Attributes: []
Sublabels: "Lanes"
Description:

```

\section*{See Also}

\section*{Apps \\ Ground Truth Labeler | Image Labeler | Video Labeler}

\section*{Functions}
groundTruth | groundTruthDataSource| labelDefinitionCreator

\section*{Topics}
"Get Started with the Image Labeler"
"Training Data for Object Detection and Semantic Segmentation"

\footnotetext{
"Create Automation Algorithm for Labeling"
"Get Started with the Ground Truth Labeler" (Automated Driving Toolbox)
Introduced in R2017a
}

\section*{isCustom}

Determine if label types are Custom labels

\section*{Syntax}
tf = isCustom(labelTypes)

\section*{Description}
tf = isCustom(labelTypes) returns a logical array that indicates which elements in labelTypes are Custom label types. isCustom returns logical 1 (true) for Custom labels and otherwise returns logical 0 (false).

\section*{Input Arguments}

\section*{labelTypes - Type of labels}
enumeration
Types of labels, specified a labelType enumeration. labelType can contain Rectangle, Line, Scene, PixelLabel, or Custom labels.

Introduced in R2017a

\section*{isROI}

Determine if label types are ROI labels

\section*{Syntax}
tf = isROI(labelTypes)

\section*{Description}
\(\mathrm{tf}=\mathrm{isROI}(\) labelTypes \()\) returns a logical array that indicates which elements in labelTypes are ROI label types. isROI returns logical 1 (true) for ROI labels and otherwise returns logical 0 (false). Valid ROI label types are Rectangle and Line.

\section*{Input Arguments}

\section*{labelTypes - Type of labels}
enumeration
Types of labels, specified a labelType enumeration. labelType can contain Rectangle, Line, Scene, PixelLabel, or Custom labels.

Introduced in R2017a

\section*{isScene}

Determine if label types are Scene labels

\section*{Syntax}
tf = isScene(labelTypes)

\section*{Description}
tf = isScene(labelTypes) returns a logical array that indicates which elements in labelTypes are Scene label types. isScene returns logical 1 (true) for Scene labels and otherwise returns logical 0 (false).

\section*{Input Arguments}

\section*{labelTypes - Type of labels}
enumeration
Types of labels, specified a labelType enumeration. labelType can contain Rectangle, Line, Scene, PixelLabel, or Custom labels.

Introduced in R2017a

\section*{attributeType}

Enumeration of supported attribute types

\section*{Description}

The attributeType enumeration provides a means to specify the type of attribute in a labelDefinitionCreator object and the Ground Truth Labeler (requires Automated Driving Toolbox) and Video Labeler apps.

\section*{Creation}

\section*{Syntax}
attributeType

\section*{Description}
attributeType creates an attributeType enumeration to specify the type of attribute.

\section*{Enumerators}

These properties represent the enumerators.

\section*{Numeric - Numeric scalar attribute}
enumerator
Numeric scalar attribute, specified as an enumerator in attributeType enumeration.

\section*{String - String attribute}
enumerator
String attribute, specified as an enumerator in attributeType enumeration.

\section*{Logical - Logical attribute enumerator}

Logical attribute, specified as an enumerator in attributeType enumeration.

\section*{List - List of strings attribute}

\section*{enumerator}

List of strings attribute, specified as an enumerator in attributeType enumeration takes the attribute value as a string from a pre-defined list of strings.

\section*{None - None}
enumerator
None, specified as an enumerator in attributeType enumeration indicates that the attribute type is not yet defined.

\section*{Object Functions}
hasValue Determine if the attribute type is numeric or logical

\section*{Examples}

\section*{Specify Attribute Type in Label Definition Creator Object}

Create a label definition creator object and add a label named "Vehicle". Specify the type of label as a rectangle.
```

ldc = labelDefinitionCreator();
addLabel(ldc,'Vehicle',labelType.Rectangle);

```

Add an attribute named "Color" to the label "Vehicle". Specify the attribute type as a list. addAttribute(ldc, 'Vehicle','Color', attributeType.List, \{'White', 'Green', 'Blue'\})

Display information about the attribute "Color" as a structured data by using the info object function. The Type field in the output structure colorStruct indicates the type of attribute.
```

colorStruct = info(ldc,'Vehicle/Color')

```
```

colorStruct = struct with fields:
Name: "Color"
Type: List
ListItems: {'White' 'Green' 'Blue'}
Description:

```

\section*{See Also}

\author{
Apps \\ Ground Truth Labeler | Video Labeler \\ Objects \\ groundTruth | labelDefinitionCreator \\ Introduced in R2018b
}

\section*{hasValue}

Determine if the attribute type is numeric or logical

\section*{Syntax}
```

tf = hasValue(typeOfAttribute)

```

\section*{Description}
tf = hasValue(typeOfAttribute) returns a logical value that indicates if the enumerator in typeOfAttribute is either Numeric or Logical. hasValue returns logical 1 (true) for Numeric and Logical attributes. Otherwise returns logical 0 (false).

\section*{Examples}

\section*{Determine the Type of Attribute}

Create an attributeType enumeration array.
```

Type = attributeType({'Numeric'; 'String'; 'Logical'; 'List'});

```

Check if any of the enumerator defined in the attributeType enumeration array is Numeric or Logical.
```

tf = zeros(0,length(Type));
for i = l:length(Type)
tf(i) = hasValue(Type(i));
end

```

Display the output. The value 1 is returned when an enumerator in the attributeType enumeration array is either Numeric or Logical. Otherwise, the value 0 is returned.
tf
\(\mathrm{tf}=1 \times 4\)
\(\begin{array}{llll}1 & 0 & 1 & 0\end{array}\)

\section*{Input Arguments}

\section*{typeOfAttribute - Type of attribute \\ attributeType enumeration}

Type of attribute, specified as an attributeType enumeration. The enumerator in the attributeType enumeration can be Numeric, String, Logical, List, or None.

\section*{See Also}

\section*{Objects}
attributeType |groundTruth|labelDefinitionCreator

Introduced in R2018b

\section*{cameraParameters}

Object for storing camera parameters

\section*{Description}

The cameraParameters object stores the intrinsic, extrinsic, and lens distortion parameters of a camera.

\section*{Creation}

You can create a cameraParameters object using the cameraParameters function described here. You can also create a cameraParameters object by using the estimateCameraParameters with an M-by-2-by-numImages array of input image points. \(M\) is the number of keypoint coordinates in each pattern.

\section*{Syntax}
cameraParams = cameraParameters
cameraParams = cameraParameters(Name, Value)
cameraParams \(=\) cameraParameters(paramStruct)

\section*{Description}
cameraParams = cameraParameters creates a cameraParameters object that contains the intrinsic, extrinsic, and lens distortion parameters of a camera.
cameraParams = cameraParameters (Name, Value) sets properties on page 2-721 of the cameraParameters object by using one or more Name, Value pair arguments. Unspecified properties use default values.
cameraParams = cameraParameters (paramStruct) creates an identical cameraParameters object from an existing cameraParameters object with parameters stored in paramStruct.

\section*{Input Arguments}

\section*{paramStruct - Camera parameters}

\section*{struct}

Stereo parameters, specified as a stereo parameters struct. To get a paramStruct from an existing cameraParameters object, use the toStruct function.

\section*{Properties}

\section*{Intrinsic Camera Parameters:}

\section*{IntrinsicMatrix - Projection matrix}

3-by-3 identity matrix
Projection matrix, specified as a 3-by-3 identity matrix. The object uses the following format for the matrix format:
\[
\left[\begin{array}{ccc}
f_{x} & 0 & 0 \\
s & f_{y} & 0 \\
c_{x} & c_{y} & 1
\end{array}\right]
\]

The coordinates \(\left[c_{\chi} c_{y}\right.\) ] represent the optical center (the principal point), in pixels. When the \(x\) and \(y\) axis are exactly perpendicular, the skew parameter, \(s\), equals 0 .
\(f_{x}=F^{*} S_{x}\)
\(f_{y}=F^{*} S_{y}\)
\(F\), is the focal length in world units, typically expressed in millimeters.
[ \(s_{x}, s_{y}\) ] are the number of pixels per world unit in the \(x\) and \(y\) direction respectively. \(f x\) and \(f y\) are expressed in pixels.

\section*{Intrinsics - Camera intrinsics object}
cameraIntrinsics object
This property is read-only.
Camera intrinsics object, stated as a cameraIntrinsics object. The object contains information about camera intrinsic calibration parameters, including lens distortion.

\section*{Dependency}

You must provide an image size (using the ImageSize property) for the Intrinsics property to be non-empty. The intrinsics for the camera parameters depends on the image size.

\section*{ImageSize - Image size}
two-elment vector
Image size, specified as a two-element vector [mrows,ncols].

\section*{Camera Lens Distortion:}

\section*{RadialDistortion - Radial distortion coefficients}
[0 0 0 ] (default) | 2 -element vector | 3-element vector
Radial distortion coefficients, specified as either a two- or three-element vector. When you specify a two-element vector, the object sets the third element to 0 . Radial distortion occurs when light rays bend more near the edges of a lens than they do at its optical center. The smaller the lens, the greater the distortion. The camera parameters object calculates the radial distorted location of a point. You can denote the distorted points as ( \(x_{\text {distorted }}, y_{\text {distorted }}\) ), as follows:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\chi_{\text {distorted }}\) & & \(x(1\) & + & \(k_{1}{ }^{*} r^{2}\) & + & \(k_{2} *^{4}\) & + & \(k_{3}{ }^{*} r^{6}\) ) \\
\hline \(y_{\text {distorted }}=\) & \(y(1\) & & & & + & \(k_{2}{ }^{*}{ }^{4}\) & + & \(k_{3} *^{6}{ }^{6}\) \\
\hline
\end{tabular}
\(x, y=\) undistorted pixel locations
\(k_{1}, k_{2}\), and \(k_{3}=\) radial distortion coefficients of the lens
\(r^{2}=x^{2}+y^{2}\). Typically
, two coefficients are sufficient. For severe distortion, you can include \(k_{3}\). The undistorted pixel locations appear in normalized image coordinates, with the origin at the optical center. The coordinates are expressed in world units.

\section*{TangentialDistortion - Tangential distortion coefficients}
[00]' (default)|2-element vector
Tangential distortion coefficients, specified as a two-element vector. Tangential distortion occurs when the lens and the image plane are not parallel. The camera parameters object calculates the tangential distorted location of a point. You can denote the distorted points as ( \(x_{\text {distorted }}, y_{\text {distorted }}\) ). The undistorted pixel locations appear in normalized image coordinates, with the origin at the optical center. The coordinates are expressed in world units.

Tangential distortion occurs when the lens and the image plane are not parallel. The tangential distortion coefficients model this type of distortion.

Zero Tangential Distortion


Tangential Distortion


The distorted points are denoted as ( \(\chi_{\text {distorted }}, y_{\text {distorted }}\) ):

- \(\quad x, y\) - Undistorted pixel locations. \(x\) and \(y\) are in normalized image coordinates. Normalized image coordinates are calculated from pixel coordinates by translating to the optical center and dividing by the focal length in pixels. Thus, \(x\) and \(y\) are dimensionless.
- \(p_{1}\) and \(p_{2}\) - Tangential distortion coefficients of the lens.
- \(r^{2}: x^{2}+y^{2}\)

\section*{Extrinsic Camera Parameters:}

\section*{RotationMatrices - 3-D rotation matrix}

3-by-3-by-P matrix (read-only)
3-D rotation matrix, specified as a 3-by-3-by-P, with \(P\) number of pattern images. Each 3-by-3 matrix represents the same 3-D rotation as the corresponding vector.

The following equation provides the transformation that relates a world coordinate in the checkerboard frame [ \(X Y Z\) ] and the corresponding image point \([x y]\) :
\[
s\left[\begin{array}{lll}
x & y & 1
\end{array}\right]=\left[\begin{array}{llll}
X & Y & Z & 1
\end{array}\right]\left[\begin{array}{l}
R \\
t
\end{array}\right]_{K}
\]
\(R\) is the 3-D rotation matrix.
\(t\) is the translation vector.
\(K\) is the IntrinsicMatrix.
\(s\) is a scalar.
This equation does not take distortion into consideration. The undistortImage function removes distortion.

\section*{RotationVectors - 3-D rotation vectors}
```

[] (default) | P-by-3 matrix (read-only)

```

3-D rotation vectors, specified as a \(P\)-by-3 matrix containing \(P\) rotation vectors. Each vector describes the 3-D rotation of the camera image plane relative to the corresponding calibration pattern. The vector specifies the 3-D axis about which the camera is rotated, where the magnitude is the rotation angle in radians. The RotationMatrices property provides the corresponding 3-D rotation matrices.

\section*{TranslationVectors - Camera translations P-by-3 matrix | [ ]}

Camera translations, specified as an \(P\)-by- 3 matrix. This matrix contains translation vectors for \(P\) images. The vectors contain the calibration pattern that estimates the calibration parameters. Each row of the matrix contains a vector that describes the translation of the camera relative to the corresponding pattern, expressed in world units.

The following equation provides the transformation that relates a world coordinate in the checkerboard frame [ \(X Y Z\) ] and the corresponding image point \([x y]\) :
\[
s\left[\begin{array}{lll}
x & y & 1
\end{array}\right]=\left[\begin{array}{llll}
X & Y & Z & 1
\end{array}\right]\left[\begin{array}{l}
R \\
t
\end{array}\right]_{K}
\]
\(R\) is the 3-D rotation matrix.
\(t\) is the translation vector.
\(K\) is the IntrinsicMatrix.
\(s\) is a scalar.
This equation does not take distortion into consideration. The undistortImage function removes distortion.

To ensure that the number of rotation vectors equals the number of translation vectors, set the RotationVectors and TranslationVectors properties in the constructor. Setting only one property but not the other results in an error.

\section*{Estimated Camera Parameter Accuracy:}

MeanReprojectionError - Average Euclidean distance numeric value (read-only)

Average Euclidean distance between reprojected and detected points, specified as a numeric value in pixels.

\section*{ReprojectionErrors - Estimated camera parameters accuracy M-by-2-by-P array}

Estimated camera parameters accuracy, specified as an \(M\)-by-2-by-P array of [xy] coordinates. The \([x y]\) coordinates represent the translation in \(x\) and \(y\) between the reprojected pattern key points and the detected pattern key points. The values of this property represent the accuracy of the estimated camera parameters. \(P\) is the number of pattern images that estimates camera parameters. \(M\) is the number of keypoints in each image.

\section*{ReprojectedPoints - World points reprojected onto calibration images M-by-2-by-P array}

World points reprojected onto calibration images, specified as an \(M\)-by-2-by- \(P\) array of [ \(x\) \(y]\) coordinates. \(P\) is the number of pattern images and \(M\) is the number of keypoints in each image.

Settings for Camera Parameter Estimation:

\section*{NumPatterns - Number of calibrated patterns}
integer
Number of calibration patterns that estimates camera extrinsics, specified as an integer. The number of calibration patterns equals the number of translation and rotation vectors.

\section*{WorldPoints - World coordinates}

M-by-2 array | [ ]
World coordinates of key points on calibration pattern, specified as an M-by-2 array. M represents the number of key points in the pattern.

\section*{WorldUnits - World points units \\ 'mm' (default) | character vector | string scalar}

World points units, specified as a character vector or string scalar. The value describes the units of measure.

\section*{EstimateSkew - Estimate skew flag}

\section*{false (default) | logical scalar}

Estimate skew flag, specified as a logical scalar. When you set the logical to true, the object estimates the image axes skew. When you set the logical to false, the image axes are exactly perpendicular.

\section*{NumRadialDistortionCoefficients - Number of radial distortion coefficients 2 (default) | 3}

Number of radial distortion coefficients, specified as the number ' 2 ' or ' 3 '.

\section*{EstimateTangentialDistortion - Estimate tangential distortion flag false (default) | logical scalar}

Estimate tangential distortion flag, specified as the logical scalar true or false. When you set the logical to true, the object estimates the tangential distortion. When you set the logical to false, the tangential distortion is negligible.

\section*{Object Functions}
pointsToWorld Determine world coordinates of image points toStruct Convert a camera parameters object into a struct worldToImage Project world points into image

\section*{Examples}

\section*{Remove Distortion from an Image Using the Camera Parameters Object}

Use the camera calibration functions to remove distortion from an image. This example creates a vision. cameraParameters object manually, but in practice, you would use the estimateCameraParameters or the Camera Calibrator app to derive the object.

Create a vision. cameraParameters object manually.
IntrinsicMatrix \(=[715.269900 ; 0711.52810 ; 565.6995355 .34661] ;\)
radialDistortion = [-0.3361 0.0921];
cameraParams = cameraParameters('IntrinsicMatrix',IntrinsicMatrix,'RadialDistortion',r

Remove distortion from the images.
I = imread(fullfile(matlabroot,'toolbox','vision','visiondata','calibration','mono','ir
J = undistortImage(I,cameraParams);
Display the original and the undistorted images.
```

figure; imshowpair(imresize(I,0.5),imresize(J,0.5),'montage');
title('Original Image (left) vs. Corrected Image (right)');

```


\section*{References}
[1] Zhang, Z. "A flexible new technique for camera calibration". IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 11, pp. 1330-1334, 2000.
[2] Heikkila, J, and O. Silven. "A Four-step Camera Calibration Procedure with Implicit Image Correction", IEEE International Conference on Computer Vision and Pattern Recognition, 1997.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
Usage notes and limitations:
- Use in a MATLAB Function block is not supported.
- Use the toStruct method to pass a cameraParameters object into generated code. See the "Code Generation for Depth Estimation From Stereo Video" example.

\section*{See Also}

\section*{Apps}

Camera Calibrator | Stereo Camera Calibrator

\section*{Classes}
cameraCalibrationErrors|cameraIntrinsics|extrinsicsEstimationErrors |intrinsicsEstimationErrors|stereoParameters

\section*{Functions}
detectCheckerboardPoints |estimateCameraParameters| generateCheckerboardPoints|showExtrinsics|showReprojectionErrors| undistortImage

\section*{Topics}
"Measuring Planar Objects with a Calibrated Camera"
"Code Generation for Depth Estimation From Stereo Video"
"Single Camera Calibrator App"
Introduced in R2014a

\section*{fisheyeCalibrationErrors}

Object for storing standard errors of estimated fisheye camera parameters

\section*{Description}
fisheyeCalibrationErrors contains the standard errors of estimated camera parameters. You can access the standard errors of the intrinsics and extrinsics by using the object properties. To display the standard errors, use the displayErrors function.

\section*{Creation}

The estimateFisheyeParameters function returns the fisheyeCalibrationErrors object.

\section*{Properties}

\section*{IntrinsicsErrors - Standard errors of estimated intrinsics fisheyeIntrinsicsEstimationErrors object}

Standard errors of the estimated intrinsics for a fisheye camera, specified as a fisheyeIntrinsicsEstimationErrors object.

\section*{ExtrinsicsErrors - Standard errors of estimated rotations and translations extrinsicsEstimationErrors object}

Standard errors of the estimated rotations and translations for a fisheye camera relative to the calibration pattern, specified as a extrinsicsEstimationErrors object.

\section*{Object Functions}
displayErrors Display standard errors of camera parameter estimates

\section*{Examples}

\section*{Display Fisheye Camera Calibration Errors}

Gather a set of checkerboard calibration images.
```

images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata',...
'calibration','gopro'));

```

Detect the calibration pattern from the images.
```

[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);

```

Generate world coordinates for the corners of the checkerboard squares.
```

squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

```

Estimate the fisheye parameters using image and world points. Use the first image to get the image size. Also, store the errors from the calibration.
```

I = readimage(images,1);
imageSize = [size(I,1) size(I,2)];
[params,~,errors] = estimateFisheyeParameters(imagePoints, ...
worldPoints,imageSize);

```

Display the standard errors of the estimated camera parameters.
```

displayErrors(errors,params);
Standard Errors of Estimated Camera Parameters

```

\section*{Intrinsics}
\begin{tabular}{|c|c|c|c|}
\hline Mapping coefficients: [ & 51 & -0.0003 +/--0.0000 & -0.0000 \\
\hline Distortion center (pixels) & \(1005.8165+/-0.6871\) & 743.0346 +/- 0.5578 & \\
\hline Stretch matrix parameters:[ & 1.0000 +/- 0.0000 & 0.0000 +/-0.0000 & 0.00 \\
\hline
\end{tabular}

\section*{Extrinsics}

Rotation vectors:
\[
[\quad-0.0699+/-0.0010 \quad-0.0267+/-0.0009
\]

\begin{tabular}{rr}
\(0.2950+/-\) & 0.0009 \\
\(0.3442+/-\) & 0.0009 \\
\(-0.3784+/-\) & 0.0009 \\
\(0.4575+/-\) & 0.0009 \\
\(0.1089+/-\) & 0.0008 \\
\(0.0063+/-\) & 0.0008 \\
\(0.2797+/-\) & 0.0008 \\
\(-0.3295+/-\) & 0.0008 \\
\(-0.3543+/-\) & 0.0009 \\
\(0.3680+/-\) & 0.0008
\end{tabular}
\begin{tabular}{cc}
\(-82.6066+/-\) & 0.1356 \\
\(-15.7750+/-\) & 0.1712 \\
\(-56.7378+/-\) & 0.1884 \\
\(-70.2875+/-\) & 0.1041 \\
\(-46.9681+/-\) & 0.1569 \\
\(-16.0260+/-\) & 0.1153 \\
\(-125.5877+/-\) & 0.1428 \\
\(-72.5409+/-\) & 0.1260 \\
\(-24.8329+/-\) & 0.0745 \\
\(-93.4074+/-\) & 0.1010 \\
\(-51.9152+/-\) & 0.1600
\end{tabular}
195.1106
241.7126
269.9739
157.0826
228.4060
162.6247
212.8055

173 . 7615
104 . 3541
155.8247
234.4075

\section*{See Also}
estimateFisheyeParameters|extrinsicsEstimationErrors| fisheyeIntrinsicsEstimationErrors|fisheyeParameters

Introduced in R2017b

\section*{fisheyelntrinsics}

Object for storing intrinsic fisheye camera parameters

\section*{Description}

The fisheyeIntrinsics object stores the camera intrinsics for a fisheye camera. See fisheyeParameters for details on other fisheye parameters.

\section*{Creation}

\section*{Syntax}
```

intrinsics = fisheyeIntrinsics(mappingCoeffs,imageSize,
distortionCenter)
intrinsics = fisheyeIntrinsics(

```
\(\qquad\)
``` ,stretchMatrix)
```


## Description

intrinsics = fisheyeIntrinsics(mappingCoeffs,imageSize, distortionCenter) returns a fisheyeIntrinsics object with the specified [a0 a2 a3 a4] polynomial coefficients, image size, and center of distortion. These input arguments are assigned directly to the corresponding properties of the object. See fisheyeParameters for more details.
intrinsics = fisheyeIntrinsics( __ , stretchMatrix) additionally specifies a 2-by-2 transformation matrix that describes the alignment between the sensor plane and the image plane. The default value is an identity matrix.

## Properties

## MappingCoefficients - Polynomial coefficients for projection function [a0 a2 a3 a4] vector

Polynomial coefficients for the projection function described by Scaramuzza's Taylor model, specified as an [a0 a2 a3 a4] vector.

## DistortionCenter - Center of distortion in pixels

[cx cy] vector
Center of distortion in pixels, specified as a [cx cy] vector.

## Stretchmatrix - Transformation from sensor plane to pixel in camera image plane <br> 2-by-2 transformation matrix

Transformation from the sensor plane to a pixel in the camera image plane, specified as a 2-by-2 transformation matrix. This misalignment is caused by the lens not being parallel to the sensor and by the digitization process.

## ImageSize - Image size

[mrows ncols] vector
Image size, specified as an [mrows ncols] vector.

## Object Functions

pointsToWorld Determine world coordinates of image points worldToImage Project world points into image

## Examples

## Create Fisheye Intrinsics

Specify the mapping coefficients, image size, and distortion center parameters of a fisheyeIntrinsics object. Ignore optical axis misalignment.

```
mappingCoeffs = [880 -3e-4 0 0];
imageSize = [1500 2000]; % in [mrows ncols]
distortionCenter = [1000 750]; % in pixels
intrinsics = fisheyeIntrinsics(mappingCoeffs,imageSize,distortionCenter);
```


## References

[1] Scaramuzza, D., A. Martinelli, and R. Siegwart. "A Toolbox for Easy Calibrating Omindirectional Cameras." Proceedings to IEEE International Conference on Intelligent Robots and Systems (IROS 2006). Beijing, China, October 7-15, 2006.

# [2] Urban, S., J. Leitloff, and S. Hinz. "Improved Wide-Angle, Fisheye and Omnidirectional Camera Calibration." ISPRS Journal of Photogrammetry and Remove Sensing. Vol. 108, 2015, pp.72-79. 

## See Also

estimateFisheyeParameters|fisheyeParameters

## Introduced in R2017b

## fisheyeIntrinsicsEstimationErrors

Object for storing standard errors of estimated fisheye camera intrinsics

## Description

fisheyeIntrinsicsEstimationErrors contains the standard errors of estimated fisheye camera intrinsics.

## Creation

The estimateFisheyeParameters function returns the fisheyeCalibrationErrors object, which contains fisheyeIntrinsicsEstimationErrors and extrinsicsEstimationErrors as properties.

## Properties

## MappingCoefficentsError - Standard error of mapping coefficient estimates 4-element vector

Standard error of mapping coefficient estimates, specified as a 4 -element vector.

## DistortionCenterError - Standard error of distortion center estimates

 2-element vectorStandard error of distortion center estimates, specified as a two-element vector.

## StretchMatrixError - Standard error of stretch matrix estimate 3-element vector

Standard error of stretch matrix estimate, specified as a 3-element vector.

See Also<br>cameraCalibrationErrors|stereoCalibrationErrors

## Introduced in R2017b

## fisheyeParameters

Object for storing fisheye camera parameters

## Description

The fisheyeParameters object is used to store fisheye camera parameters. Use estimateFisheyeParameters to estimate parameters using calibration images.

## Creation

## Syntax

```
fisheyeParams = fisheyeParameters(intrinsics)
fisheyeParams = fisheyeParameters(intrinsics,Name,Value)
```


## Description

fisheyeParams = fisheyeParameters(intrinsics) returns an object that contains intrinsic and extrinsic parameters of a fisheye camera. intrinsics must be a fisheyeIntrinsics object. This syntax sets the Intrinsics property of the object.
fisheyeParams = fisheyeParameters(intrinsics,Name,Value) configures the fisheyeParams object properties using one or more Name, Value pair arguments. Enclose the property name in single quotes. Unspecified properties have their default values. For example, 'WorldUnits', 'm' sets the world units to 'm'.

## Properties

## Intrinsic Camera Parameters

Intrinsics - Fisheye intrinsic camera parameters<br>fisheyeIntrinsics object

Fisheye intrinsic camera parameters, specified as a fisheyeIntrinsics object.

## Extrinsic Camera Parameters

## RotationVectors - Camera rotations

[] (default) | $M$-by-3 matrix
Camera rotations, specified as an $M$-by- 3 matrix. The matrix contains rotation vectors for $M$ images, where each image contains the calibration pattern that estimates the calibration parameters. Each row of the matrix contains a vector that describes the 3-D rotation of the camera relative to the corresponding pattern.

Each vector specifies the 3-D axis about which the camera is rotated. The magnitude of the vector represents the angle of rotation in radians. You can convert any rotation vector to a 3-by-3 rotation matrix using the Rodrigues formula.

To ensure that the number of rotation vectors equals the number of translation vectors, you must set the RotationVectors and TranslationVectors properties together when creating the object. Setting only one property results in an error.

## TranslationVectors - Camera translations

## [ ] (default) | M-by-3 matrix

Camera translations, specified as an $M$-by- 3 matrix. This matrix contains translation vectors for $M$ images. The vectors contain the calibration pattern that estimates the calibration parameters. Each row of the matrix contains a vector that describes the translation of the camera relative to the corresponding pattern, expressed in world units.

To ensure that the number of rotation vectors equals the number of translation vectors, you must set the RotationVectors and TranslationVectors properties together when creating the object. Setting only one property results in an error.

## Accuracy of Estimated Camera Parameters

## ReprojectionErrors - Reprojection errors

[ ] (default) | $M$-by-2-by-P array
Reprojection errors, specified as an $M$-by-2-by- $P$ array of [ $x, y$ ] pairs. The [ $x, y$ ] pairs represent the translation in $x$ and $y$ between the reprojected pattern keypoints and the detected pattern keypoints.

## Settings Used to Estimate Camera Parameters

## NumPatterns - Number of calibrated patterns <br> integer

Number of calibration patterns used to estimate camera extrinsics, specified as an integer. The number of calibration patterns must equal the number of translation and rotation vectors.

## WorldPoints - World coordinates

## [ ] (default) | M-by-2 matrix

World coordinates of key points on the calibration pattern, specified as an $M$-by-2 matrix. $M$ represents the number of key points in the pattern.

## WorldUnits - World point units

## 'mm' (default) | character vector | string scalar

World point units, specified as the comma-separated pair consisting of 'WorldUnits ' and a character vector or string scalar. This argument is used simply to store the unit type and does not affect any calculations.

## EstimateAlignment - Estimate axes alignment false (default) | true

Estimate axes alignment, specified as false or true. Set to true if the optical axis of the fisheye lens is not perpendicular to the image plane.

## Examples

## Create Fisheye Parameters Object Manually

Create a fisheye parameters object by specifying the properties manually. Alternatively, you can create this object using the estimateFisheyeParameters function.

Specify fisheye intrinsics.

```
mappingCoefficients = rand(1,4);
distortionCenter = [320 240];
imageSize = [480 640];
intrinsics = fisheyeIntrinsics(mappingCoefficients,imageSize,distortionCenter);
```

Create a fisheyeParameters object using the specified intrinsics.

```
params = fisheyeParameters(intrinsics);
```


## References

[1] Scaramuzza, D., A. Martinelli, and R. Siegwart. "A Toolbox for Easy Calibrating Omindirectional Cameras." Proceedings to IEEE International Conference on Intelligent Robots and Systems (IROS 2006). Beijing, China, October 7-15, 2006.
[2] Urban, S., J. Leitloff, and S. Hinz. "Improved Wide-Angle, Fisheye and Omnidirectional Camera Calibration." ISPRS Journal of Photogrammetry and Remove Sensing. Vol. 108, 2015, pp.72-79.

## See Also

estimateFisheyeParameters|fisheyeIntrinsics|showExtrinsics | showReprojectionErrors|undistortFisheyeImage

## Topics

"Fisheye Calibration Basics"

Introduced in R2017b

## velodyneFileReader

Read point cloud data from Velodyne PCAP file

## Description

The velodyneFileReader object reads point cloud data from a Velodyne ${ }^{\circledR}$ packet capture (PCAP) file.

## Creation

## Syntax

```
veloReader = velodyneFileReader(fileName,deviceModel)
veloReader = velodyneFileReader(fileName,
deviceModel,'CalibrationFile',calibFile)
```


## Description

veloReader $=$ velodyneFileReader(fileName, deviceModel) creates a Velodyne file reader that reads in point cloud data. Specify the PCAP file and the device model that generated the file. The inputs set the FileName and DeviceModel properties directly. The reader supports the VLP-16, Puck LITE, Puck Hi-Res, VLP-32C, HDL-32E, HDL-64E, and VLS-128 device models.
veloReader = velodyneFileReader(fileName, deviceModel,'CalibrationFile', calibFile) specifies the Velodyne calibration XML file and sets the CalibrationFile property.

## Properties

## FileName - Velodyne PCAP file name

character vector | string scalar

This property is read-only.
Name of Velodyne PCAP file to read lidar data from, specified as a character vector or string scalar.

```
DeviceModel - Velodyne device model name
'VLP16'|'PuckLITE'|'PuckHiRes'|'VLP32C' | 'HDL32E'|'HDL64E'|'VLS128'
```

This property is read-only.
Velodyne device model name, specified as 'VLP16', 'PuckLITE', 'PuckHiRes', 'VLP32C', , 'HDL32E', 'HDL64E', or 'VLS128'.

Note Specifying the incorrect device model returns an improperly calibrated point cloud.

## CalibrationFile - Name of Velodyne calibration XML file

character vector | string scalar
This property is read-only.
Name of the Velodyne calibration XML file, specified as a character vector or string scalar. This calibration file is included with every sensor.

## NumberOfFrames - Total number of point clouds

positive integer
This property is read-only.
Total number of point clouds in the file, specified as a positive integer.

## Duration - Total duration of file in seconds

duration scalar
This property is read-only.
Total duration of the file in seconds, specified as a duration scalar.

## StartTime - Time of first point cloud reading <br> duration scalar

This property is read-only.

Time of the first point cloud, specified as a duration scalar in seconds.
Start and end times are specified relative to the previous whole hour. For instance, if the file is recorded for 7 minutes from 1:58 p.m. to 2:05 p.m., then:

- StartTime $=58 \mathrm{~min} \times 60 \mathrm{~s}=3840 \mathrm{~s}$
- EndTime $=$ StartTime $+7 \mathrm{~min} \times 60 \mathrm{~s}=3900 \mathrm{~s}$


## EndTime - Time of last point cloud reading

 duration scalarThis property is read-only.
Time of the last point cloud reading, specified as a duration scalar.
Start and end times are specified relative to the previous whole hour. For instance, if the file is recorded for 7 minutes from 1:58 PM to 2:05 PM, then:

- StartTime $=58 \mathrm{~min} \times 60 \mathrm{~s}=3840 \mathrm{~s}$
- EndTime $=$ StartTime $+7 \mathrm{~min} \times 60 \mathrm{~s}=3900 \mathrm{~s}$


## CurrentTime - Time of current point cloud reading

duration scalar
Time for the current point cloud reading in seconds, specified as a duration scalar. As you read point clouds using readFrame, this property is updated with the most recent point cloud reading time. You can use reset to reset the value of this property to the default value. The default value matches the StartTime property.

## Object Functions

hasFrame Determine if another Velodyne point cloud is available readFrame Read Velodyne point cloud from file reset Reset the CurrentTime property of velodyneFileReader object to the default value

## Examples

## Display Point Clouds from Velodyne PCAP File

Use the velodyneFileReader to read a packet capture (PCAP) file from a Velodyne® sensor. View point clouds using pcplayer.

Read in point clouds by using a Velodyne ${ }^{\circledR}$ file reader. Specify the PCAP file to read and the Velodyne ${ }^{\circledR}$ device model.

```
veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');
```

Define $x$-, $y$-, and $z$-axes limits for pcplayer in meters. Label the axes.

```
xlimits = [-60 60];
ylimits = [-60 60];
zlimits = [-20 20];
```

Create the point cloud player.

```
player = pcplayer(xlimits,ylimits,zlimits);
```

Label the axes.

```
xlabel(player.Axes,'X (m)');
```

ylabel(player.Axes,'Y (m)');
zlabel(player.Axes,'Z (m)');

The first point cloud of interest is captured at 0.3 second into the file. Set the CurrentTime property to that time to being reading point clouds from there.

```
veloReader.CurrentTime = veloReader.StartTime + seconds(0.3);
```

Display the point cloud stream for 10 seconds. Remove the last while condition to display the full stream.

Use hasFrame to check if a new frame is available. Iterate through the file by calling readF rame to read in point clouds. Display them using the point cloud player. Remove the last while condition to display the full stream.

```
while(hasFrame(veloReader) && player.isOpen() && (veloReader.CurrentTime < veloReader.S
 ptCloudObj = readFrame(veloReader);
 view(player,ptCloudObj.Location,ptCloudObj.Intensity);
 pause(0.1);
end
```



## See Also

## Functions

hasFrame | pcplayer \| pcread | pcshow \| readFrame | reset

Objects<br>pcplayer | pointCloud

## Topics

"Acquisition Using Velodyne LiDAR Sensors" (Image Acquisition Toolbox)
Velodyne LiDAR Sensors Data Acquisition (Image Acquisition Toolbox Support Package for Velodyne LiDAR Sensors)
"Build a Map from Lidar Data" (Automated Driving Toolbox)

## External Websites

Velodyne Manuals

## Introduced in R2018a

## hasFrame

Determine if another Velodyne point cloud is available

## Syntax

```
isAvailable = hasFrame(veloReader)
```


## Description

isAvailable = hasFrame(veloReader) determines if another point cloud is available in the packet capture (PCAP) file of the input Velodyne file reader. As you read point clouds using readF rame, the point clouds are read sequentially until this function returns false.

## Examples

## Check for Next Point Cloud in Velodyne PCAP File

Create a velodyneFileReader object to read a Velodyne® packet capture (PCAP) file and check for available frames using hasFrame.

Read in a point cloud by using a Velodyne® file reader. Specify the PCAP file to be read and Velodyne ${ }^{\circledR}$ device model.

```
veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');
```

Check if the file reader has a point cloud to read.

```
disp(hasFrame(veloReader));
```

    1
    Read the last frame of the file.

```
ptCloudObj = readFrame(veloReader,veloReader.NumberOfFrames);
```

Check again if the file reader has another point cloud available.

```
disp(hasFrame(veloReader));
```

0

## Input Arguments

## veloReader - Velodyne file reader

velodyneFileReader object
Velodyne file reader, specified as a velodyneFileReader object.

## Output Arguments

## isAvailable - Indicator if frame is available true |false

Indicator if frame is available, returned as true or false.

## See Also <br> pcplayer | pcshow | pointCloud | readFrame | reset | velodyneFileReader <br> External Websites <br> Velodyne Manuals <br> Introduced in R2018a

## readFrame

Read Velodyne point cloud from file

## Syntax

```
ptCloud = readFrame(veloReader)
ptCloud = readFrame(veloReader,frameNumber)
ptCloud = readFrame(veloReader,frameTime)
```


## Description

ptCloud $=$ readFrame(veloReader) reads the next point cloud in sequence from the Velodyne PCAP file and returns a pointCloud object.
ptCloud $=$ readFrame(veloReader,frameNumber) reads the point cloud with the specific frame number from the file.
ptCloud $=$ readFrame (veloReader, frameTime) reads the first point cloud recorded at or after the given frameTime.

## Examples

## Read Point Cloud from File Using Time Duration

Create a velodyneFileReader object to read a Velodyne® packet capture (PCAP) file and select specific point clouds using a duration scalar.

Read in point clouds by using a Velodyne ${ }^{\circledR}$ file reader. Specify the PCAP file to read and the Velodyne ${ }^{\circledR}$ device model.

```
veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');
```

Create a duration scalar that represents three seconds after the first point cloud reading.
timeDuration $=$ veloReader.StartTime + duration(0,0,3,'Format','s');
Read the first point cloud recorded at or after the given time duration.
ptCloudObj = readFrame(veloReader,timeDuration);
Display the point cloud using pcshow.
figure
pcshow(ptCloudObj)


## Input Arguments

veloReader - Velodyne file reader<br>velodyneFileReader object

Velodyne file reader, specified as a velodyneFileReader object.

## frameNumber - Frame number of desired point cloud in the file positive integer

Frame number of the desired point cloud in file, specified as a positive integer. Frame numbers are sequential.

## frameTime - Frame time of desired point cloud in file duration scalar

Frame time of the desired point cloud in the file, specified as a duration scalar in seconds. The first frame available at or after frameTime is given.

## Output Arguments

## ptCloud - Point cloud

pointCloud object
Point cloud, returned as a pointCloud object.

See Also<br>hasFrame | pcplayer | pcshow | pointCloud | reset | velodyneFileReader<br>External Websites<br>Velodyne Manuals<br>Introduced in R2018a

## reset

Reset the CurrentTime property of velodyneFileReader object to the default value

## Syntax

```
reset(veloReader)
```


## Description

reset (veloReader) resets the CurrentTime property of velodyneFileReader to the default value. The default value is the StartTime property of velodyneFileReader.

## Examples

## Reset the velodyneFileReader object

Construct velodyneFileReader object.
veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','PuckLITE');
Inspect the properties of the velodyneFileReader object to know the CurrentTime. The default value of CurrentTime is the value of StartTime.

```
veloReader
```

```
veloReader =
 velodyneFileReader with properties:
 FileName: 'B:\matlab\toolbox\vision\visiondata\lidarData_ConstructionRoad.p
 DeviceModel: 'PuckLITE'
 CalibrationFile: 'B:\matlab\toolbox\shared\pointclouds\utilities\velodyneFileReade
 NumberOfFrames: 1238
 Duration: 61.845 sec
 StartTime: 1145.1 sec
```


## EndTime: 1206.9 sec <br> CurrentTime: 1145.1 sec

Use readFrame to read a pointcloud sequence from the object veloReader. Specify frame number corresponding to the pointcloud sequence as 1000.

```
ptCloud = readFrame(veloReader,1000);
```

Inspect the CurrentTime property of velodyneFileReader object. The value of CurrentTime is changed to 1195 sec with reference to the pointcloud sequence read.

```
veloReader.CurrentTime
```

```
ans = duration
```

    1195 sec
    Reset the CurrentTime property of velodyneFileReader object.

```
reset(veloReader)
```

Inspect the CurrentTime property and verify that its value is reset to the default value.

```
veloReader.CurrentTime
```

ans = duration
1145.1 sec

## Input Arguments

## veloReader - Velodyne file reader

velodyneFileReader object
Velodyne file reader, specified as a velodyneFileReader object.

## See Also

hasFrame | readFrame | velodyneFileReader

## External Websites

Velodyne Manuals

Introduced in R2018a

## changeFilePaths

Change file paths in data source and pixel label data of ground truth object

## Syntax

```
unresolvedPaths = changeFilePaths(gTruth,alterPaths)
```


## Description

unresolvedPaths $=$ changeFilePaths(gTruth,alterPaths) changes file paths in the data source and pixel label data of a groundTruth object or array of groundTruth objects, gTruth, to the specified file paths in alterPaths. You can use this function to change the file paths of ground truth data that cannot be found. The function returns the file paths from ground truth data as unresolvedPaths, when:

- One or more file paths in the data source or pixel label data of gTruth cannot be found.
- One or more file paths in the data source or pixel label data of gTruth cannot be resolved using the alternative file paths specified in alterPaths. In this case, the alternative file paths cannot be found.


## Examples

## Change File Paths in Data Source and Pixel Label Data of Ground Truth Object

Load a file containing a ground truth object into the workspace. The data source and pixel label data of the ground truth object contains file paths corresponding to an image sequence. If the ground truth object contains file paths that cannot be found, a warning message is displayed.
load('gTruthSeq.mat')
Warning: The data source points to a directory that cannot be found.<br>'C:\CFP\buildir

Display the data source of the ground truth object to view the file path.

```
gTruth.DataSource
ans =
'C:\CFP\building'
```

Specify an alternative file path to replace the current file path stored in the data source of the ground truth object.

```
oldPathDataSource = "C:\CFP\building";
newPathDataSource = fullfile(matlabroot,"toolbox\vision\visiondata\building");
```

Display the pixel label data of the ground truth object to view the file path.

```
gTruth.LabelData.PixelLabelData
ans = 5\times1 cell array
 {'C:\CFP\building\PixelLabelData\Label_1.png'}
 {'C:\CFP\building\PixelLabelData\Label_2.png'}
 {'C:\CFP\building\PixelLabelData\Label_3.png'}
 {'C:\CFP\building\PixelLabelData\Label_4.png'}
 {'C:\CFP\building\PixelLabelData\Label_5.png'}
```

Specify an alternative file path to replace the current file path stored in the pixel label data of the ground truth object.

```
oldPathPixelLabel = "C:\CFP\building\PixelLabelData";
newPathPixelLabel = fullfile(matlabroot,"toolbox\vision\visiondata\building");
```

Create a cell array of both the current and alternative file paths for the data source and pixel label data. Use this cell array as the input of the changeFilePaths function to change the specified file paths in ground truth.

Change the current file paths to the alternative file paths. The function updates these file paths in the data source and pixel label data of the ground truth object. If the any of the ground truth data is still not found using the alternative file paths, the function returns the corresponding original file paths from data source as unresolved file paths.

```
unresolvedPaths = changeFilePaths(gTruth,alterPaths)
unresolvedPaths = 5×1 string array
 "C:\CFP\building\PixelLabelData\Label_1.png"
```

```
"C:\CFP\building\PixelLabelData\Label 2.png"
"C:\CFP\building\PixelLabelData\Label_3.png"
"C:\CFP\building\PixelLabelData\Label_4.png"
"C:\CFP\building\PixelLabelData\Label_5.png"
```

Change the unresolved file path by specifying a different alternative path for replacement. If the ground truth data is found using this different alternative file path, the function returns unresolvedPaths as an empty string array.

```
oldPathPixelLabel = "C:\CFP\building\PixelLabelData";
newPathPixelLabel = fullfile(matlabroot,"toolbox\vision\visiondata\buildingPixellabels"
alterPaths = {[oldPathPixelLabel newPathPixelLabel]};
unresolvedPaths = changeFilePaths(gTruth,alterPaths)
unresolvedPaths =
 0×0 empty string array
```

Display the data source of the ground truth object to verify that the file paths were changed.

## gTruth.DataSource

ans =
groundTruthDataSource for a video as an image sequence with properties
Source: \{
...\matlab\toolbox\vision\visiondata\building\building ...\matlab\toolbox\vision\visiondata\building\building
...\matlab\toolbox\vision\visiondata\building\building
.. and 2 more
\}
TimeStamps: [5×1 duration]
Display the pixel label data of the ground truth object to verify that the file paths were changed.
gTruth.LabelData.PixelLabelData

```
ans = 5×l cell array
 {'Y:\jobarchive\Bdoc18b\2018_07 17 h18m13s56 job913679 pass\matlab\toolbox\vision\
 {'Y:\jobarchive\Bdoc18b\2018-07-17 - h18m13s56 job913679 pass\matlab\toolbox\vision\
 {'Y:\jobarchive\Bdoc18b\2018-07-17 h18m13s56 job913679 pass\matlab\toolbox\vision\
 {'Y:\jobarchive\Bdoc18b\2018-07-17 h'h18m13s56_job913679 pass\matlab\toolbox\vision\
```


# Input Arguments 

## gTruth - Ground truth data <br> groundTruth object | array of groundTruth objects

Ground truth data, specified as a groundTruth object or an array of groundTruth objects. The gTruth object contains the data source, label definitions, and label data which includes pixel label data related to the ground truth.

## alterPaths - Alternative file paths

cell array of string vectors
Alternative file paths, specified as a cell array of string vectors. Each string vector must be of size 1-by-2 and of the form [current alternative], where:

- current is the current file path that you want to change. This file path is typically one from the data source or pixel label data of gTruth that cannot be found.
- alternative is the desired file path to change the current file path to.

If you specify gTruth as an array of groundTruth objects, the same alternative file paths apply to all groundTruth objects in the array.

Example: \{[oldPath_1 newPath_1];[oldPath_2 newPath_2]\} changes file path oldPath_1 to newPath_1 and, similarly, oldPath_2 to newPath_2.

## Output Arguments

unresolvedPaths - Unresolved file paths
string array
Unresolved file paths, returned as a string array. The returned strings are file paths from the data source and pixel label data of gTruth that cannot be found or are not resolved with the alternative file paths specified in alterPaths. The function returns unresolvedPaths as an empty string array if all the file paths of the ground truth data are found or resolved with the specified alternative file paths.
See AlsogroundTruth | groundTruthDataSource
Topics"Share and Store Labeled Ground Truth Data""How Labeler Apps Store Exported Pixel Labels"
Introduced in R2018b

## labeIDefinitionCreator

Object for storing, modifying and creating label definitions table

## Description

The labelDefinitionCreator object stores definitions of labels, sublabels, and attributes for labeling ground truth data. Use "Object Functions" on page 2-761 to add, remove, modify, or display label definitions. Using the create object function, you can create label definitions table from the labelDefinitionCreator object. You can use this label definitions table with the Ground Truth Labeler (requires Automated Driving Toolbox), Image Labeler, and Video Labeler apps.

## Creation

## Syntax

```
ldc = labelDefinitionCreator()
ldc = labelDefinitionCreator(labelDefs)
```


## Description

ldc = labelDefinitionCreator() creates an empty label definition creator object, ldc. Add label definitions by using "Object Functions" on page 2-761. The details of the stored labels, sublabels, and attributes can be inspected using the info object function.
ldc $=$ labelDefinitionCreator(labelDefs) creates a label definition creator object ldc and stores definitions from the label definitions table labelDefs. Use "Object Functions" on page 2-761 to add new label definitions or modify the existing label definitions. The details of the stored labels, sublabels, and attributes can be inspected using the info object function.

## Input Arguments

## labelDefs - Label definitions <br> table

Label definitions, specified as a table with up to five columns. The possible columns are Name, Type, PixelLabelID, Description, and Hierarchy. This table specifies the definitions of labels, sublabels, and attributes for labeling ground truth data. For more details, see "LabelDefinitions" on page 2-0

## Output Arguments

## ldc - Label definition creator <br> labelDefinitionCreator object

Label definition creator, returned as a labelDefinitionCreator object that contains information about label definitions associated with ground truth data.

Note The labelDefinitionCreator supports the Ground Truth Labeler, Image Labeler, and Video Labeler. Use of the Ground Truth Labeler requires Automated Driving Toolbox.

## Object Functions

addLabel Add label to label definition creator object addSublabel Add sublabel to label in label definition creator object addAttribute Add attributes to label or sublabel in label definition creator object removeLabel Remove label from label definition creator object removeSublabel Remove sublabel from label in label definition creator object removeAttribute Remove attribute from label or sublabel in label definition creator object
editLabelGroup Modify a label group name
editGroupName Change group name
editLabelDescription Modify description of label or sublabel in label definition creator object
editAttributeDescription Modify description of attribute in label definition creator object
create Create label definitions table from the label definition creator object
info Display information about a label, sublabel, or attribute stored in label definition creator object

## Examples

## Create Label Definition Creator Object and Add Label Definitions

Create an empty label definition creator object.

```
ldc = labelDefinitionCreator()
```

ldc $=$
labelDefinitionCreator with 0 labels. Use the addLabel method to add a label.
Add a label with the name "Vehicle" and specify the type of label as a rectangle. addLabel(ldc, 'Vehicle', labelType.Rectangle)

Add a sublabel with the name "Wheel" and an attribute with the name "Color" to the label "Vehicle" stored in ldc. Specify the type of sublabel as a rectangle and the attribute type as a string with value 'Red '.

```
addSublabel(ldc,'Vehicle','Wheel',labelType.Rectangle)
```

addAttribute(ldc,'Vehicle','Color', attributeType.String, 'Red')

Display the details of the label definition creator object.
ldc
ldc =
labelDefinitionCreator contains the following labels:
Vehicle with 1 sublabels and 1 attributes. (info)
For more details about attributes and sublabels, use the info method.

## Create Label Definition Creator Object from Existing Label Definitions Table

Load an existing label definitions table into the workspace.

```
labelDefFile = fullfile(toolboxdir('vision'), 'visiondata', 'labelDefsWithAttributes.mat');
ld = load(labelDefFile)
ld =
 struct with fields:
 labelDefs: [4×4 table]
Create a label definition creator object from the label definitions table. Display the details of the label definition creator object.
```

```
ldc = labelDefinitionCreator(ld.labelDefs)
```

ldc = labelDefinitionCreator(ld.labelDefs)
ldc =
labelDefinitionCreator contains the following labels:
Vehicle with 0 sublabels and 3 attributes. (info)
Pedestrian with 0 sublabels and 0 attributes. (info)
LaneMarker with 0 sublabels and 2 attributes. (info)
TrafficLight with 1 sublabels and 0 attributes. (info)
For more details about attributes and sublabels, use the info method.

```

\section*{See Also}

\section*{Apps \\ Ground Truth Labeler | Image Labeler | Video Labeler}
```

Objects
attributeType | groundTruth | labelType
Introduced in R2018b

```

\section*{addLabel}

Add label to label definition creator object

\section*{Syntax}
```

addLabel(ldc,labelName,typeOfLabel)
addLabel(

```
\(\qquad\)
``` , Name, Value)
```


Description

addLabel(ldc, labelName, typeOfLabel) adds a label with the specified name and type to the label definition creator object ldc.
addLabel(\qquad , Name, Value) specifies options using one or more name-value arguments in addition to the input arguments in the previous syntax.

Examples

Add Label Using Label Definition Creator

Create a labelDefinitionCreator.
ldc $=$ labelDefinitionCreator();
Add a label named 'Car'.
addLabel(ldc,'Car',labelType.Rectangle);
Inspect the label.
ldc
ldc =
labelDefinitionCreator contains the following labels:

Car with 0 sublabels and 0 attributes and belongs to None group. For more details about attributes and sublabels, use the info method.

Add another label named 'StopSign' in a group named 'TrafficSign'. Add a description.
addLabel(ldc,'StopSign','Rectangle','Group','TrafficSign','Description','Bounding boxe Inspect the labels.
ldc
ldc =
labelDefinitionCreator contains the following labels:
Car with 0 sublabels and 0 attributes and belongs to None group. (info)
StopSign with 0 sublabels and 0 attributes and belongs to TrafficSign group.
For more details about attributes and sublabels, use the info method.

Add Labels Related to Driving Scene to Label Definition Creator Object

Create an empty label definition creator object.

```
ldc = labelDefinitionCreator()
ldc =
labelDefinitionCreator
```

Add label "Vehicle" to the label definition creator object. Specify the type of label as a rectangle.
addLabel(ldc, 'Vehicle',labelType.Rectangle)
Add label "StopSign" to the label definition creator object. Specify the type of label as a rectangle and add a description to the label.
addLabel(ldc,'StopSign',labelType.Rectangle,'Description','Bounding boxes for stop sig
Display the details of the label definition creator object.
ldc

```
ldc =
```

```
info(ldc,'Vehicle')
```

info(ldc,'Vehicle')
Name: "Vehicle"
Type: Rectangle
Attributes: []
Sublabels: []
Description:

```
labelDefinitionCreator contains the following labels:
    Vehicle with 0 sublabels and 0 attributes. (info)
    StopSign with 0 sublabels and 0 attributes. (info)
For more details about attributes and sublabels, use the info method.

Display information about the label "Vehicle" using the object function info.

Display information about the label "StopSign" using the object function info.
```

info(ldc,'StopSign')

```
                            Name: "StopSign"
                            Type: Rectangle
    Attributes: []
    Sublabels: []
Description: 'Bounding boxes for stop signs'

\section*{Input Arguments}

\section*{ldc - Label definition creator}
labelDefinitionCreator object
Label definition creator, specified as a labelDefinitionCreator object.

\section*{labelName - Label name}
character vector | string scalar
Label name, specified as a character vector or string scalar that uniquely identifies the label to be added.

\section*{typeOfLabel - Type of label}
labelType enumeration | character vector | string scalar

Type of label, specified as one of these values:
- labelType enumeration - You can use any of these labelType enumerators to specify the type of label: Rectangle, Line, PixelLabel, Scene, or Custom.

\section*{Example: addLabel(ldc, 'Car',labelType.Rectangle);}
- Character vector or string scalar - This value must partially or fully match one of the labelType enumerators.

Example: addLabel(ldc, 'Car', 'Rec');

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, ... , NameN, ValueN.

Example: addLabel(ldc,'Car',labelType.Rectangle,'Description','Type of Vehicle');

\section*{Group - Group name}
' None' (default)| character vector | string scalar
Group name, specified as a comma-separated pair consisting of 'Group ' and a character vector or string scalar. Use this name-value pair to specify a name for a group of labels.

\section*{Description - Label description}
' ' (default) | character vector | string scalar
Label description, specified as a comma-separated pair consisting of 'Description' and a character vector or string scalar. Use this name-value pair to describe the label.

\section*{See Also}

\section*{Objects}
labelDefinitionCreator| labelType

\section*{Functions}
addAttribute|addSublabel|editLabelDescription|removeLabel

\section*{Introduced in R2018b}

\section*{addSublabel}

Add sublabel to label in label definition creator object

\section*{Syntax}
```

addSublabel(ldc,labelName,sublabelName,typeOfSublabel)
addSublabel(

```
\(\qquad\)
``` ,Name, Value)
```


## Description

addSublabel(ldc,labelName, sublabelName,typeOfSublabel) adds a sublabel with the specified name and type to the indicated label. The sublabel is added under the hierarchy for the specified label in the label definition creator object ldc.
addSublabel( $\qquad$ , Name, Value) specifies options using one or more name-value arguments in addition to the input arguments in the previous syntax.

## Examples

## Add Sublabels to Labels in Label Definition Creator Object

Load an existing label definitions table into the workspace.

```
load('labelDefsTable.mat')
```

Create a label definition creator object from the label definitions table.

```
ldc = labelDefinitionCreator(labelDefs)
```

ldc =
labelDefinitionCreator contains the following labels:

```
For more details about attributes and sublabels, use the info method.
```

Add sublabel "Wheel" to the label "Car". Specify the label type for sublabel as a rectangle and add description to the sublabel.
addSublabel(ldc,'Car','Wheel',labelType.Rectangle,'Description','Bounding box for the
Add sublabels "RedLight" and "GreenLight" to the label "TrafficLight". Specify the label type for the sublabels as rectangle.

```
addSublabel(ldc,'TrafficLight','RedLight',labelType.Rectangle)
addSublabel(ldc,'TrafficLight','GreenLight',labelType.Rectangle)
```

Display the details of the label definition creator object.

## ldc

ldc =
labelDefinitionCreator contains the following labels:

> Car with 1 sublabels and 0 attributes and belongs to None group. (info) TrafficLight with 2 sublabels and 0 attributes and belongs to None group.

```
For more details about attributes and sublabels, use the info method.
```

Display information about the sublabels under the label "Car" using the info object function.

```
info(ldc,'Car')
```

    Name: "Car"
        Type: Rectangle
        Group: "None"
    Attributes: []
    Sublabels: "Wheel"
    Description: 'Bounding box for car'
    Display information about the sublabels under the label "TrafficLight" using the info object function.

```
info(ldc,'TrafficLight')
 Name: "TrafficLight"
 Type: Rectangle
```

```
 Group: "None"
 Attributes: []
 Sublabels: ["RedLight" "GreenLight"]
Description: 'Bounding boxes for traffic light'
```


## Input Arguments

ldc - Label definition creator<br>labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

## labelName - Label name

character vector | string scalar
Label name, specified as a character vector or string scalar that uniquely identifies the label to which the sublabel is associated.

## sublabelName - Sublabel name

character vector | string scalar
Sublabel name, specified as a character vector or string scalar that identifies the sublabel to be added.

```
typeOfSublabel - Type of sublabel
labelType enumeration | character vector | string scalar
```

Type of sublabel, specified as one of these values:

- labelType enumeration - The type of sublabel must be one of these labelType enumerators: Rectangle or Line.

Example: addSublabel(ldc,'Car','Wheel', labelType.Rectangle)

- Character vector or string scalar - This value must partially or fully match one of these labelType enumerators: Rectangle or Line.

Example: addSublabel(ldc,'Car','Wheel', 'Rec')

Note The labelType enumerators PixelLabel, Scene, and Custom are not supported as values for the type of sublabel in Ground Truth Labeler and Video Labeler apps. Hence, they cannot be assigned for a sublabel.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: addSublabel(ldc, 'Car','Wheel', 'Rect','Description', 'Bounding box for Wheel');

## Description - Sublabel description

' ' (default) | character vector | string scalar
Sublabel description, specified as a comma-separated pair consisting of 'Description' and a character vector or string scalar. Use this name-value pair to describe the sublabel.

## See Also

## Objects

labelDefinitionCreator|labelType

## Functions

addAttribute | addLabel| removeSublabel

## Introduced in R2018b

## addAttribute

Add attributes to label or sublabel in label definition creator object

## Syntax

addAttribute(ldc,labelName, attributeName,typeOfAttribute, attributeDefault)
addAttribute( $\qquad$ ,Name, Value)

## Description

addAttribute(ldc,labelName,attributeName,typeOfAttribute, attributeDefault) adds an attribute with specified name and type to the indicated label or sublabel. The attribute is added under the hierarchy for the specified label or sublabel in the label definition creator object ldc.
addAttribute( $\qquad$ , Name, Value) specifies options using one or more name-value arguments in addition to the input arguments in the previous syntax.

## Examples

## Add Attributes to Label and Sublabel in Label Definition Creator Object

Load an existing label definitions table into the workspace.
load('sublabelDefsTable.mat')
Create a label definition creator object from the the label definitions table.
ldc = labelDefinitionCreator(labelDefs)
ldc =
labelDefinitionCreator contains the following labels:

```
 Car with 1 sublabels and 0 attributes. (info)
 TrafficLight with 2 sublabels and 0 attributes. (info)
For more details about attributes and sublabels, use the info method.
```

Add attribute "Color" to the label "Car". Specify the attribute type as a string with value 'Red'.
addAttribute(ldc,'Car','Color',attributeType.String, 'Red')
Display information about the sublabels under the label "TrafficLight".

```
info(ldc,'TrafficLight')
```

    Name: "TrafficLight"
    Type: Rectangle
    Attributes: []
    Sublabels: ["RedLight" "GreenLight"]
    Description: 'Bounding boxes for traffic light'

Add attribute "IsOn" to the label "TrafficLight/RedLight". Specify the attribute type as logical with value true.

```
addAttribute(ldc,'TrafficLight/RedLight','IsOn','logical',true)
```

Display the details of the label definition creator object.

## ldc

ldc =
labelDefinitionCreator contains the following labels:
Car with 1 sublabels and 1 attributes. (info)
TrafficLight with 2 sublabels and 0 attributes. (info)
For more details about attributes and sublabels, use the info method.
Display information about the attributes under the label "Car" using the info object function.

```
info(ldc,'Car')
```

Name: "Car"
Type: Rectangle
Attributes: "Color"

```
 Sublabels: "Light"
Description: 'Bounding box for vehicle'
```

Display information about the attributes for sublabel "RedLight" under the label "TrafficLight" using the info object function.

```
info(ldc,'TrafficLight/RedLight')
```

Name: "RedLight"
Type: Rectangle
Attributes: "IsOn"
Sublabels: []
Description:

## Input Arguments

## ldc - Label definition creator <br> labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

## labelName - Label or sublabel name

character vector | string scalar
Label or sublabel name, specified as a character vector or string scalar that uniquely identifies the label or sublabel to which the attribute is to be added.

- To specify a label, use the form 'labelName'.
- To specify a sublabel, use the form 'labelName/sublabelName'. In this case, the attribute associates to the sublabel.


## attributeName - Attribute name <br> character vector | string scalar

Attribute name, specified as a character vector or string scalar that identifies the attribute to be added to the label or sublabel.

## typeOfAttribute - Type of attribute

attributeType enumeration | character vector | string scalar
Type of attribute, specified as one of these values:

- attributeType enumeration - The type of attribute must be one of these enumerators in attributeType enumeration: Numeric, Logical, String, or List.


## Example: addAttribute(ldc, 'Car','Color', attributeType.String, 'Red');

- Character vector or string scalar - This value must partially or fully match one of the enumerators in attributeType enumeration.

Example: addAttribute(ldc, 'Car','Color','Str','Red');

## attributeDefault - Default value of attribute

numeric scalar | logical scalar | character vector | string scalar | cell array of character vectors | cell array of string scalars

Default value of the attribute, specified as one of these values:

- Numeric scalar - Specify this value when typeOfAttribute is Numeric.
- Logical scalar - Specify this value when typeOfAttribute is Logical.
- Character vector or string scalar - Specify this value when typeOfAttribute is String.
- Cell array of character vectors or cell array of string scalars - Specify this value when typeOfAttribute is List.


## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: addAttribute(ldc, 'Car/
Wheel','Outsidediameter', attributeType.Numeric,740, 'Description', 'Ou tside diameter in mm');

## Description - Attribute description

' ' (default) | character vector | string scalar
Attribute description, specified as a comma-separated pair consisting of 'Description' and a character vector or string scalar. Use this name-value pair to describe the attribute.

See Also<br>Objects<br>attributeType|labelDefinitionCreator<br>\section*{Functions}<br>addLabel | addSublabel|editAttributeDescription| removeAttribute Introduced in R2018b

## removeLabel

Remove label from label definition creator object

## Syntax

removeLabel(ldc,labelName)

## Description

removeLabel(ldc,labelName) removes the specified label from the label definition creator object ldc.

Note Removing a label also removes any attributes or sublabels associated with that label.

## Examples

## Remove Label from Label Definition Creator Object

Load an existing label definitions table into the workspace.
labelDefFile = fullfile(toolboxdir('vision'),'visiondata','labelDefsWithAttributes.mat ld = load(labelDefFile)
ld = struct with fields:
labelDefs: [4×4 table]

Create a label definition creator object from the label definitions table.
ldc = labelDefinitionCreator(ld.labelDefs)
ldc =
labelDefinitionCreator contains the following labels:

```
 Vehicle with 0 sublabels and 3 attributes. (info)
 Pedestrian with 0 sublabels and 0 attributes. (info)
 LaneMarker with 0 sublabels and 2 attributes. (info)
 TrafficLight with 1 sublabels and 0 attributes. (info)
For more details about attributes and sublabels, use the info method.
```

Remove the label "Vehicle" from the label definition creator object.

```
removeLabel(ldc,'Vehicle')
```

Display the details of the label definition creator object to confirm that "Vehicle" is removed from the label definitions.

## ldc

ldc =
labelDefinitionCreator contains the following labels:
Pedestrian with 0 sublabels and 0 attributes. (info)
LaneMarker with 0 sublabels and 2 attributes. (info)
TrafficLight with 1 sublabels and 0 attributes. (info)

For more details about attributes and sublabels, use the info method.

## Input Arguments

## ldc - Label definition creator <br> labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

## labelName - Label name

character vector | string scalar
Label name, specified as a character vector or string scalar that uniquely identifies the label to be removed from the label definition creator object.

See Also<br>Objects<br>labelDefinitionCreator<br>\section*{Functions}<br>addLabel| removeAttribute | removeSubLabel<br>Introduced in R2018b

## removeSublabel

Remove sublabel from label in label definition creator object

## Syntax

removeSublabel(ldc, labelName, sublabelName)

## Description

removeSublabel(ldc,labelName, sublabelName) removes the specified sublabel from the indicated label. This label must be in the label definition creator object ldc.

Note Removing a sublabel also removes any attributes associated with that sublabel.

## Examples

## Remove Sublabel from Label in Label Definition Creator Object

Load an existing label definitions table into the workspace.
labelDefFile = fullfile(toolboxdir('vision'), 'visiondata', 'labelDefsWithAttributes.ma ld = load(labelDefFile)
ld = struct with fields:
labelDefs: [4×4 table]

Create a label definition creator object from the label definitions table.
ldc = labelDefinitionCreator(ld.labelDefs)
ldc =
labelDefinitionCreator contains the following labels:

```
Vehicle with 0 sublabels and 3 attributes. (info)
Pedestrian with 0 sublabels and 0 attributes. (info)
LaneMarker with 0 sublabels and 2 attributes. (info)
TrafficLight with 1 sublabels and 0 attributes. (info)
```

For more details about attributes and sublabels, use the info method.

Display information about the label "TrafficLight" defined in the label definition creator object.

```
info(ldc,'TrafficLight')
 Name: "TrafficLight"
 Type: Rectangle
 Attributes: []
 Sublabels: "Light"
 Description: 'Mark a tight bounding box around the traffic light. Use the sublabel
```

Remove the sublabel "Light" from the label "TrafficLight".
removeSublabel(ldc,'TrafficLight','Light')

Display the details of the label definition creator object to confirm that a sublabel is removed from the label "TrafficLight".
ldc

```
ldc =
labelDefinitionCreator contains the following labels:
```

    Vehicle with 0 sublabels and 3 attributes. (info)
    Pedestrian with 0 sublabels and 0 attributes. (info)
    LaneMarker with 0 sublabels and 2 attributes. (info)
    TrafficLight with 0 sublabels and 0 attributes. (info)
    For more details about attributes and sublabels, use the info method.

Display information about the label "TrafficLight". Confirm that the sublabel "Light" is removed.

```
info(ldc,'TrafficLight')
 Name: "TrafficLight"
 Type: Rectangle
 Attributes: []
```

Sublabels: []
Description: 'Mark a tight bounding box around the traffic light. Use the sublabel

## Input Arguments

## ldc - Label definition creator <br> labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

## labelName - Label name

character vector | string scalar
Label name, specified as a character vector or string scalar that uniquely identifies the label to which the sublabel is associated.

## sublabelName - Sublabel name

character vector | string scalar
Sublabel name, specified as a character vector or string scalar that identifies the sublabel to be removed from the indicated label labelName.

## See Also

## Objects

labelDefinitionCreator

## Functions

addLabel|addSublabel|removeAttribute| removeLabel

Introduced in R2018b

## removeAttribute

Remove attribute from label or sublabel in label definition creator object

## Syntax

removeAttribute(ldc,labelName,attributeName)

## Description

removeAttribute(ldc, labelName, attributeName) removes the specified attribute from the indicated label or sublabel in the label definition creator object ldc.

## Examples

## Remove Attributes from Label and Sublabel in Label Definition Creator Object

Load an existing label definitions table into the workspace.
labelDefFile = fullfile(toolboxdir('vision'), 'visiondata','labelDefsWithAttributes.mat ld = load(labelDefFile)
ld = struct with fields:
labelDefs: [4×4 table]

Create a label definition creator object from the label definitions table.
ldc = labelDefinitionCreator(ld.labelDefs)
ldc =
labelDefinitionCreator contains the following labels:
Vehicle with 0 sublabels and 3 attributes. (info) Pedestrian with 0 sublabels and 0 attributes. (info)
LaneMarker with 0 sublabels and 2 attributes. (info)

TrafficLight with 1 sublabels and 0 attributes. (info) For more details about attributes and sublabels, use the info method

## Remove an Attribute from a Label

Display information about the label "Vehicle" defined in the label definition creator object.

```
info(ldc,'Vehicle')
```

Name: "Vehicle"
Type: Rectangle
Attributes: ["Class" "Color" "View"]
Sublabels: []
Description: 'Draw a tight bounding box around the vehicle. Use this label for car
Remove the attribute "Color" from the label "Vehicle".

```
removeAttribute(ldc,'Vehicle','Color')
```

Display information about the label "Vehicle". Confirm that the attribute "Color" is removed.

```
info(ldc,'Vehicle')
```

    Name: "Vehicle"
    Type: Rectangle
    Attributes: ["Class" "View"]
    Sublabels: []
    Description: 'Draw a tight bounding box around the vehicle. Use this label for car
    
## Remove an Attribute from a Sublabel

Display information about the label "TrafficLight" defined in the label definition creator object.

```
info(ldc,'TrafficLight')
 Name: "TrafficLight"
 Type: Rectangle
 Attributes: []
 Sublabels: "Light"
 Description: 'Mark a tight bounding box around the traffic light. Use the sublabel
```

Display information about the sublabel "Light" under the label "TrafficLight".

```
info(ldc,'TrafficLight/Light')
 Name: "Light"
 Type: Rectangle
 Attributes: ["Active" "Color"]
 Sublabels: []
Description: 'Mark a tight bounding box around each light.'
```

Remove the attribute "Active" from the sublabel "TrafficLight/Light".

```
removeAttribute(ldc,'TrafficLight/Light','Active')
```

Display information about the sublabel "TrafficLight/Light". Confirm that the attribute "Active" is removed.

```
info(ldc,'TrafficLight/Light')
```

Name: "Light"
Type: Rectangle
Attributes: "Color"
Sublabels: []
Description: 'Mark a tight bounding box around each light.'

## Input Arguments

## ldc - Label definition creator labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

## labelName - Label or sublabel name

character vector | string scalar
Label or sublabel name, specified as a character vector or string scalar that uniquely identifies the label or sublabel from which the attribute is to be removed.

- To specify a label, use the form 'labelName'.
- To specify a sublabel, use the form 'labelName/sublabelName'. In this case, the attribute associates to the sublabel.


## attributeName - Attribute name

character vector | string scalar

Attribute name, specified as a character vector or string scalar that identifies the attribute to be removed from the indicated label or sublabel labelName.

## See Also

## Objects

labelDefinitionCreator

## Functions

addAttribute |addLabel| removeLabel

Introduced in R2018b

## editLabelDescription

Modify description of label or sublabel in label definition creator object

## Syntax

editLabelDescription(ldc,labelName, description)

## Description

editLabelDescription(ldc, labelName, description) modifies the description of a label or sublabel identified by labelName. The label or sublabel must be in the label definition creator object ldc.

## Examples

## Modify Description of Label and Sublabel in Label Definition Creator Object

Load an existing label definitions table into the workspace.

```
load('editlabelDefs.mat')
```

Create a label definition creator object from the label definitions table.

```
ldc = labelDefinitionCreator(labelDefs)
ldc =
labelDefinitionCreator contains the following labels:
 Vehicle with 0 sublabels and 3 attributes. (info)
 Pedestrian with 0 sublabels and 0 attributes. (info)
 LaneMarker with 0 sublabels and 2 attributes. (info)
 TrafficLight with 1 sublabels and 0 attributes. (info)
For more details about attributes and sublabels, use the info method.
```


## Modify the Description of a Label

Display information about the label "LaneMarker".

```
info(ldc,'LaneMarker')
```

```
 Name: "LaneMarker"
 Type: Line
 Attributes: ["BoundaryType" "Location_wrt_Ego"]
 Sublabels: []
Description: '
```

Modify the description for the label "LaneMarker".

```
editLabelDescription(ldc,'LaneMarker','Use 5 or more points for curved lane lines.')
```

Display information about the label "LaneMarker" to verify the modified label description.

```
info(ldc,'LaneMarker')
 Name: "LaneMarker"
 Type: Line
 Attributes: ["BoundaryType" "Location wrt Ego"]
 Sublabels: []
 Description: 'Use 5 or more points for curved lane lines.'
```


## Modify the Description of a Sublabel

Display information about the label "TrafficLight".

```
info(ldc,'TrafficLight')
```

Name: "TrafficLight"
Type: Rectangle
Attributes: []
Sublabels: "Light"
Description: 'Bounding box for the traffic light. Use sublabels to mark each indiv:
Display information about the sublabel "Light" under the label "TrafficLight".

```
info(ldc,'TrafficLight/Light')
```

Name: "Light"
Type: Rectangle
Attributes: ["Active" "Color"]

```
Sublabels: []
Description: 'lights'
```

Modify the description for the sublabel "Light".
editLabelDescription(ldc,'TrafficLight/Light','Mark a tight bounding box around each l.
Display information about the sublabel "Light" to verify the modified sublabel description.

```
info(ldc,'TrafficLight/Light')
 Name: "Light"
 Type: Rectangle
 Attributes: ["Active" "Color"]
 Sublabels: []
Description: 'Mark a tight bounding box around each light.'
```


## Input Arguments

## ldc - Label definition creator <br> labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

## labelName - Label or sublabel name

character vector | string scalar
Label or sublabel name, specified as a character vector or string scalar that uniquely identifies the label or sublabel for which the description is to be updated.

- To specify a label, use the form 'labelName'.
- To specify a sublabel, use the form 'labelName/sublabelName'.
description - Description
character vector | string scalar
Description, specified as a character vector or string scalar that contains the new description for the label or sublabel identified by labelName.

See Also<br>Objects<br>groundTruth | labelDefinitionCreator<br>\section*{Functions}<br>editAttributeDescription<br>Introduced in R2018b

## editLabelGroup

Modify a label group name

## Syntax

editLabelGroup(ldc,labelName,groupName)

## Description

editLabelGroup(ldc, labelName, groupName) modifies the group name that corresponds to the label identified by labelName. The label must be in the label definition creator object ldc.

## Examples

## Modify Group Name for Labels

Create a labelDefinitionCreator.
ldc = labelDefinitionCreator();
Add a rectangle label named Car in a group named Vehicle.

```
addLabel(ldc,'Car',labelType.Rectangle,'Group','Vehicle');
```

Add a rectangle label named Truck in a group named FourWheeler.

```
addLabel(ldc,'Truck',labelType.Rectangle,'Group','FourWheeler');
```

Move the Car label into the FourWheeler group.
editLabelGroup(ldc, 'Car','FourWheeler');
Inspect the labels.
ldc
ldc =
labelDefinitionCreator contains the following labels:
Car with 0 sublabels and 0 attributes and belongs to FourWheeler group. Truck with 0 sublabels and 0 attributes and belongs to FourWheeler group.

For more details about attributes and sublabels, use the info method.

## Input Arguments

## ldc - Label definition creator <br> labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.
labelName - Label name
character vector | string scalar
Label name, specified as a character vector or string scalar that uniquely identifies the label that corresponds to the groupName you want to modify.

## groupName - Group name

character vector | string scalar
Group name, specified as a character vector or string scalar that identifies the group you want to modify, which corresponds to the label specified by labelName.

## See Also

Objects<br>labelDefinitionCreator<br>Functions<br>editGroupName|editLabelDescription<br>Introduced in R2019a

## editGroupName

Change group name

## Syntax

editGroupName(ldc,oldname, newname)

## Description

editGroupName(ldc,oldname, newname) changes the group name from oldname to newname. This function changes the group name in all the label definitions that have the oldname.

## Examples

## Rename Label Group Created with labelDefinitionCreator

Create a labelDefinitionCreator.
ldc = labelDefinitionCreator();
Add labels named Car and Truck in a group named Vehicle.

```
addLabel(ldc,'Car',labelType.Rectangle,'Group','Vehicle');
```

addLabel(ldc,'Truck',labelType.Rectangle, 'Group','Vehicle');

Change the Vehicle group name FourWheeler.
editGroupName(ldc, 'Vehicle','FourWheeler');
Inspect the labels.
ldc
ldc =
labelDefinitionCreator contains the following labels:

Car with 0 sublabels and 0 attributes and belongs to FourWheeler group.

## Input Arguments

## ldc - Label definition creator <br> labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

## oldname - Old group name

character vector | string scalar
Old group name, specified as a character vector or string scalar that uniquely identifies group name you want to modify.

## newname - New group name

character vector | string scalar
New group name, specified as a character vector or string scalar that uniquely identifies the new group name.

## See Also

## Objects

labelDefinitionCreator

## Functions

editLabelDescription|editLabelGroup

Introduced in R2019a

## editAttributeDescription

Modify description of attribute in label definition creator object

## Syntax

```
editAttributeDescription(ldc,labelName,attributeName,description)
```


## Description

editAttributeDescription(ldc, labelName, attributeName, description) modifies the description of an attribute under the label or sublabel identified by labelName. The label or sublabel must be in the label definition creator object ldc.

## Examples

## Modify Description of Attributes in Label Definition Creator Object

Load an existing label definitions table into the workspace.
labelDefFile = fullfile(toolboxdir('vision'), 'visiondata', 'labelDefsWithAttributes.ma ld = load(labelDefFile)
ld = struct with fields:
labelDefs: [4×4 table]

Create a label definition creator object from the label definitions table.
ldc = labelDefinitionCreator(ld.labelDefs)
ldc =
labelDefinitionCreator contains the following labels:
Vehicle with 0 sublabels and 3 attributes and belongs to None group. (info) Pedestrian with 0 sublabels and 0 attributes and belongs to None group.

LaneMarker with 0 sublabels and 2 attributes and belongs to None group. For more details about attributes and sublabels, use the info method.

## Modify the Description of Attribute Under a Label

Display information about the label "Vehicle".

```
info(ldc,'Vehicle')
```

Name: "Vehicle"
Type: Rectangle
Group: "None"
Attributes: ["Class" "Color" "View"]
Sublabels: []
Description: 'Draw a tight bounding box around the vehicle. Use this label for car
Display information about the attribute "Color" under the label "Vehicle".
info(ldc,'Vehicle/Color')
Name: "Color"
Type: String
DefaultValue: ""
Description: 'Color of the vehicle, specified as a string, such as red, blue, whi
Modify the description of the attribute "Color" under the label "Vehicle".
editAttributeDescription(ldc,'Vehicle','Color','Color of the vehicle, specified as a s
Display information about the label "Vehicle" to verify the modified attribute description.
info(ldc,'Vehicle/Color')
Name: "Color"
Type: String
DefaultValue: ""
Description: 'Color of the vehicle, specified as a string, e.g. "red".'

## Modify the Description of Attribute Under a Sublabel

Display information about the label "TrafficLight".
info(ldc,'TrafficLight')

```
 Name: "TrafficLight"
 Type: Rectangle
 Group: "None"
 Attributes: []
 Sublabels: "Light"
Description: 'Mark a tight bounding box around the traffic light. Use the sublabels
```

Display information about the sublabel "Light" under the label "TrafficLight".

```
info(ldc,'TrafficLight/Light')
```

    Name: "Light"
    Type: Rectangle
    Attributes: ["Active" "Color"]
    Sublabels: []
    Description: 'Mark a tight bounding box around each light.'

Display information about the attribute "Active" under the sublabel "TrafficLight/Light".

```
info(ldc,'TrafficLight/Light/Active')
```

Name: "Active"
Type: Logical
DefaultValue: 0
Description: 'Mark true if this light is active and false if not.'
Modify the description of the attribute "Active" under the sublabel "TrafficLight/Light".
editAttributeDescription(ldc,'TrafficLight/Light','Active','Is Active: true (DefaultVa
Display information about the attribute "Active" to verify the modified attribute description.

```
info(ldc,'TrafficLight/Light/Active')
 Name: "Active"
 Type: Logical
 DefaultValue: 0
 Description: 'Is Active: true (DefaultValue: 1), false (DefaultValue: 0)'
```


## Input Arguments

## ldc - Label definition creator

labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

## labelName - Label or sublabel name

character vector | string scalar
Label or sublabel name, specified as a character vector or string scalar that uniquely identifies the label or sublabel to which the attribute is associated.

- To specify a label, use the form 'labelName'.
- To specify a sublabel, use the form 'labelName/sublabelName'. In this case, the attribute is associated with the sublabel.


## attributeName - Attribute name

character vector | string scalar
Attribute name, specified as a character vector or string scalar that identifies the attribute for which the description is to be updated.

## description - Description

character vector | string scalar
Description, specified as a character vector or string scalar that contains the new description for the attribute identified by attributeName.

## See Also

## Objects

labelDefinitionCreator

## Functions

editLabelDescription

Introduced in R2018b

## create

Create label definitions table from the label definition creator object

## Syntax

labelDefs = create(ldc)

## Description

labelDefs = create(ldc) creates a label definitions table, labelDefs, from the label definition creator object ldc. You can import the labelDefs table into the Ground Truth Labeler (requires Automated Driving Toolbox), Image Labeler, and Video Labeler apps to label ground truth data.

## Examples

## Create Label Definitions Table from Label Definition Creator Object

Create an empty label definition creator object.

```
ldc = labelDefinitionCreator()
```

ldc =
labelDefinitionCreator

Add a label "Vehicle" to the label definition creator object. Specify the type of label as a rectangle and add a description to the label.
addLabel(ldc,'Vehicle','Rectangle','Description','Bounding box for the vehicle. Use th
Add an attribute "IsCar" to the label "Vehicle". Specify the type of attribute as logical with value true and add description to the attribute.

```
addAttribute(ldc,'Vehicle','IsCar','logical',true,'Description','Type of vehicle')
```

Add an attribute "IsBus" to the label "Vehicle". Specify the type of attribute as logical with value false and add description to the attribute.

```
addAttribute(ldc,'Vehicle','IsBus','logical',false,'Description','Type of vehicle')
```

Create a label definitions table from the definitions stored in the label definition creator object.

```
labelDefs = create(ldc)
labelDefs=1\times4 table
 Name Type Description
 'Vehicle' Rectangle 'Bounding box for the vehicle. Use this label for cars ar
```


## Input Arguments

## ldc - Label definition creator <br> labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object. The object ldc defines the labels, sublabels, and attributes used for generating the label definitions table labelDefs.

## Output Arguments

## labelDefs - Label definitions

table
Label definitions, returned as a table with up to five columns. The possible columns are Name, Type, PixelLabelID, Description, and Hierarchy.

Label   Definition	Description
Name	Character vector identifying the name of the label specified by,   labelName.


Label   Definition	Description
Type	labelType enumeration that identifies the label type specified by,   typeOfLabel
PixelLabelID	A scalar, a column vector, or an $M$-by-3 matrix of integer-valued label   IDs. PixelLabelID specifies the pixel label values used to represent a   label. PixelLabelID values must be between 0 and 255. The function   creates this column, when typeOfLabel is labelType. PixelLabel.
Description	Character vector that describes the label. The default value is ' '.
Hierarchy	A "nested" struct containing the sublabels and the attributes. The   hierarchy column is generated, when the label definition creator object   contains label definitions with one or more sublabels and attributes.   The function adds the sublabel as a struct with name sublabelName   under the associated label. The sublabel type specified in,   typeOfSublabel and the sublabel description are added as members   of this struct. Similarly, an attribute is added as struct with name   attributeName under the associated label or sublabel. The attribute   value specified in, attributeDefault and the attribute description   are added as members of the attribute struct.

For example, this figure demonstrates the organization of the label definitions table created from the label definition creator object ldc.


Note The sublabel and the attribute properties are allowed only for label definitions table associated with the Ground Truth Labeler and the Video Labeler apps. Hence, the Hierarchy field exists only in label definitions table associated with the Ground Truth Labeler and the Video Labeler app.

## See Also

## Objects

labelDefinitionCreator

Functions<br>addAttribute | addLabel | addSublabel | info<br>Introduced in R2018b

## info

Display information about a label, sublabel, or attribute stored in label definition creator object

## Syntax

```
info(ldc,name)
infoStruct = info(ldc,name)
```


## Description

info(ldc, name) displays information about the specified label, sublabel or attribute stored in the label definition creator object ldc.
infoStruct $=$ info(ldc, name) returns the information as a structure.

## Examples

## Display Information About Definitions Stored in Label Definition Creator Object

Load an existing label definitions table into the workspace. Create a label definition creator object.

```
FilePath = fullfile(toolboxdir('vision'),'visiondata','labelDefsWithAttributes.mat');
Ld = load(FilePath);
ldc = labelDefinitionCreator(Ld.labelDefs)
ldc =
labelDefinitionCreator contains the following labels:
 Vehicle with 0 sublabels and 3 attributes. (info)
 Pedestrian with 0 sublabels and 0 attributes. (info)
 LaneMarker with 0 sublabels and 2 attributes. (info)
 TrafficLight with 1 sublabels and 0 attributes. (info)
```

For more details about attributes and sublabels, use the info method.
Get information about the label "TrafficLight" as a structured data.
trafficStruct = info(ldc,'TrafficLight')
trafficStruct = struct with fields:
Name: "TrafficLight"
Type: Rectangle
Attributes: []
Sublabels: "Light"
Description: 'Mark a tight bounding box around the traffic light. Use the sublabel

Get information about the sublabel "Light" under the label "TrafficLight" as a structured data.

```
lightStruct = info(ldc,'TrafficLight/Light')
lightStruct = struct with fields:
 Name: "Light"
 Type: Rectangle
 Attributes: ["Active" "Color"]
 Sublabels: []
 Description: 'Mark a tight bounding box around each light.'
```

Get information about the attribute "Color" under the sublabel "TrafficLight/Light" as a structured data.

```
colorStruct = info(ldc,'TrafficLight/Light/Color')
colorStruct = struct with fields:
 Name: "Color"
 Type: List
 ListItems: {3\times1 cell}
 Description: 'Specify the color of the light as one of Red, Yellow (amber) or Gree।
```

Display the ListItems field of the structure colorStruct.
colorStruct.ListItems
ans $\begin{aligned}=3 \times 1 \\ \text { \{'Red' cell }\end{aligned}$

## Input Arguments

## ldc - Label definition creator <br> labelDefinitionCreator object

Label definition creator, specified as a labelDefinitionCreator object.

## name - Name of label, sublabel, or attribute

character vector | string scalar
Name of label, sublabel, or attribute in the ldc object, specified as a character vector or string scalar whose form depends on the type of name you specify.

- To specify a label, use the form 'labelName'.
- To specify a sublabel, use the form 'labelName/sublabelName'.
- To specify an attribute, use the form 'labelName/sublabelName/attributeName'.


## Output Arguments

## infoStruct - Information structure <br> structure

Information structure, returned as a structure that contains the fields Name, Type, Attributes (when pertinent), Sublabels (when pertinent), and Description. If name specifies an attribute, then infoStruct also contains the fields DefaultValue and ListItems (for List attributes).

## See Also

## Objects

labelDefinitionCreator
Functions
addLabel|create

## Introduced in R2018b

## vision. DeployableVideoPlayer

Package: vision
Display video

## Description

The DeployableVideoPlayer object displays video frames. This player is capable of displaying high definition video at high frame rates. This video player object supports C code generation.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the System object, you can call the object with arguments, as if it were a function. For example, $y=$ step(obj, $x$ ) and $y=o b j(x)$ perform equivalent operations.

## Creation

## Syntax

depVideoPlayer = vision. DeployableVideoPlayer
depVideoPlayer = vision. DeployableVideoPlayer(Name,Value)

## Description

depVideoPlayer = vision. DeployableVideoPlayer returns a video player depVideoPlayer, for displaying video frames. This object, unlike the vision. VideoPlayer object, can generate C code.
depVideoPlayer = vision. DeployableVideoPlayer(Name,Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, depVideoPlayer = vision. DeployableVideoPlayer('Name','Caption title')

## Properties

## Location - Bottom left corner of video window

[ ] (default) | two-element vector
Location of bottom left corner of video frame, specified as a two-element vector. The first and second elements are specified in pixels and represent the horizontal and vertical coordinates respectively. The coordinates [0 0] represent the bottom left corner of the screen. The default location depends on the screen resolution, and will result in a window positioned in the center of the screen.

## Name - Video window title bar caption <br> 'Deployable Video Player'

Video window title bar caption, specified as the comma-separated pair consisting of 'Name' and a character vector.

## Size - Size of video display window

True size (1:1) (default)|Full-screen|Custom
Size of video display window, specified as the comma-separated pair consisting of 'Size' and Full-screen, True size (1:1) or Custom. When this property is set to Fullscreen, use the Esc key to exit out of full-screen mode.

## CustomSize - Custom size for video player window

[300 410] (default)| two-element vector
Custom size for video player window, specified as the comma-separated pair consisting of 'CustomSize' and a two-element vector. The first and second elements are specified in pixels and represent the horizontal and vertical components respectively. The video data will be resized to fit the window. This property applies when you set the Size property to Custom.

## InputColorFormat - Color format of input signal <br> RGB (default)|'YCbCr 4:2:2'

Color format of input signal, specified as the comma-separated pair consisting of 'InputColorFormat' and 'RGB' or 'YCbCr 4:2:2'. The number of columns in the Cb and Cr components must be half the number of columns in Y .

## Usage

## Syntax

```
depVideoPlayer(videoFrame)
depVideoPlayer(videoFrame,Y,Cb,Cr)
```


## Description

depVideoPlayer(videoFrame) displays one grayscale or truecolor RGB video frame in the video player.
depVideoPlayer(videoFrame, $\mathrm{Y}, \mathrm{Cb}, \mathrm{Cr}$ ) displays one frame of $\mathrm{YCbCr} 4: 2: 2$ video in the color components $\mathrm{Y}, \mathrm{Cb}$, and Cr when you set the InputColorFormat property to $\mathrm{YCbCr} 4: 2: 2$. The number of columns in the Cb and Cr components must be half the number of columns in the Y component.

## Input Arguments

videoFrame - Video frame<br>truecolor | 2-D grayscale image

Video frame, specified as a truecolor or 2-D grayscale image.

## $\mathrm{Y}, \mathrm{Cb}, \mathrm{Cr}$ - YCbCr color format <br> 'YCbCr 4:2:2'

YCbCr color format, returned in the $\mathrm{YCbCr} 4: 2: 2$ format.

## Object Functions

To use an object function, specify the System object as the first input argument. For example, to release system resources of a System object named obj, use this syntax:
release(obj)

## Specific to vision.DeployableVideoPlayer

isOpen Visible or hidden status for player

## Common to All System Objects

## step Run System object algorithm

```
release Release resources and allow changes to System object property values andinput characteristics
reset Reset internal states of System object
```


## Examples

## Play a Video From a File

Set up System objects to read and view a video file.

```
videoFReader = vision.VideoFileReader('atrium.mp4');
depVideoPlayer = vision.DeployableVideoPlayer;
```

Continue to read frames of video until the last frame is read. Exit the loop if user closes the video player window.

```
cont = ~isDone(videoFReader);
 while cont
 videoFrame = videoFReader();
 depVideoPlayer(videoFrame);
 cont = ~isDone(videoFReader) && isOpen(depVideoPlayer);
 end
```

Release System objects.

```
release(videoFReader);
release(depVideoPlayer);
```


## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Generated code for this function uses a precompiled platform-specific shared library.
- See "System Objects in MATLAB Code Generation" (MATLAB Coder).


## See Also

vision.VideoFileReader|vision.VideoFileWriter|vision.VideoPlayer
Introduced in R2012a

## Functions in Computer Vision Toolbox

# showvipblockdatatypetable 

Simulink Block Data Type Support Table

## Syntax

showvipblockdatatypetable

## Description

showvipblockdatatypetable returns a table that shows characteristics for the Simulink blocks in Computer Vision Toolbox. The table provides details regarding capabilities and limitations pertaining to code generation, variable-sizing, and supported data types for all Computer Vision Toolbox blocks. An "X" in a cell indicates a given block supports the capability indicated by the column heading. Numbered footnotes included in cells, "(\#)", are described below the table.

## Examples

## Show Block Characteristics For Computer Vision Toolbox

You can use the showvipblockdatatypetable function to return a table of block characteristics for the Computer Vision Toolbox.

To return the table of block characteristics, at the MATLAB® command line type:
showvipblockdatatypetable
Loading Computer Vision Toolbox Library.
The table opens in a separate window.

## Introduced in R2008b

## read

Read data from a datastore

## Syntax

C = read(ds)
[C,info] = read(ds)

## Description

$C=r e a d(d s)$ returns data from a pixel label, pixel image label, or box label datastore. Subsequent calls to the read function continue reading from the endpoint of the previous call.
[C,info] $=$ read(ds) also returns information about the extracted data in info, including metadata.

## Input Arguments

## ds - Input datastore

## PixelLabelDatastore object|PixelImageLabelDatastore object| boxLabelDatastore object

Input datastore, specified as a PixelLabelDatastore, pixelLabelImageDatastore, or a boxLabelDatastore object.

## Output Arguments

## C - Output data

cell array of categorical matrices | M-by-2 cell array | table
Output data, returned as an M-by-2 cell array, cell array of categorical matrices, or a table.

Datastore	Output Description
PixelLabelDatastore	Table with MiniBatchSize number of rows. For the last   bixelLabelImageDatasto   re
be divisible by MiniBatchSize or read returns a partial	
batch containing all the remaining observations in the	
datastore.	

## info - Information about read data

structure array
Information about read data, returned as a structure array. The structure array can contain the following fields.

Datastore	Field Name	Description
PixelLabelDatastore	Filename	Fully resolved path containing   the path string, name of the file,   and file extension. For   PixelLabelDatastore   objects whose ReadSize   property is greater than 1,   Filename is a cell array of file   names corresponding to each   image.


Datastore	Field Name	Description
	FileSize	Total file size, in bytes. For MAT-   files, FileSize is the total   number of key-value pairs in the   file. For   PixelLabelDatastore   objects whose ReadSize   property is greater than 1,   FileSize is a vector of file   sizes corresponding to each   image.
	ImageFilename	Fully resolved path containing   the path string, name of the   image file, and file extension.
	PixelLabelFilename	Fully resolved path containing   the path string, name of the   pixel label file, and file   extension.
	CurrentIndex	Starting position of each read   operation of the label data.
	ReadSize	ReadSize property of the   datastore.

## Tips

- read (ds) returns an error if there is no more data in the input datastore, ds. Use hasdata(ds) with read(ds) to avoid the error.

```
See Also
boxLabelDatastore|datastore|pixelLabelDatastore|
pixelLabelImageDatastore|read (Datastore)| readByIndex|readall
Introduced in R2017b
```


## progress

Percentage of data read from a datastore

## Syntax

progress(ds)

## Description

progress(ds) returns a fraction between 0.0 and 1.0 to indicate the percentage of data read from the datastore.

## Examples

## Read Datastore and Check Progress

Load training data that contains bounding boxes with labels for vehicles.

```
data = load('vehicleTrainingData.mat');
trainingData = data.vehicleTrainingData;
```

Add fullpath to the local vehicle data folder.

```
dataDir = fullfile(toolboxdir('vision'), 'visiondata');
trainingData.imageFilename = fullfile(dataDir,...
 trainingData.imageFilename);
blds = boxLabelDatastore(trainingData(:,2:end));
```

Read a couple of times, before looking at the progress.

```
read(blds);
read(blds);
```

See the progress made by the boxLabelDatastore.

```
preview(blds)
```

```
ans = 1\times2 cell array
```

    \(\{1 \times 4\) double \(\quad\{[\) vehicle] \(\}\)
    
## Input Arguments

## ds - Datastore with labeled data

boxLabelDatastore object
Datastore with labeled data for training a semantic segmentation network or an object detection network, specified as a boxLabelDatastore object.

## See Also

## Functions

objectDetectorTrainingData
Objects
boxLabelDatastore|datastore

Introduced in R2019b

## estimateAnchorBoxes

Estimate anchor boxes for deep learning object detectors

## Syntax

anchorBoxes $=$ estimateAnchorBoxes(trainingData, numAnchors)
[anchorBoxes,meanIoU] = estimateAnchorBoxes(trainingData,numAnchors)

## Description

anchorBoxes = estimateAnchorBoxes(trainingData, numAnchors) estimates the specified number of anchor boxes using the training data.
[anchorBoxes,meanIoU] = estimateAnchorBoxes(trainingData,numAnchors) additionally returns the mean intersection-over-union (IoU) value of the anchor boxes in each cluster.

## Examples

## Estimate anchor boxes for a YOLO v2 Object Detection Network

This example shows how to estimate anchor boxes using a table containing the training data. The first column contains the training images and the remaining columns contain the labeled bounding boxes.

```
data = load('vehicleTrainingData.mat');
trainingData = data.vehicleTrainingData;
```

Create a boxLabelDatastore using the labeled bounding boxes from the training data.
blds = boxLabelDatastore(trainingData(:,2:end));
Estimate anchor boxes using the boxLabelDatastore.

```
numAnchors = 5;
anchorBoxes = estimateAnchorBoxes(blds,numAnchors);
```

Specify the image size.
inputImageSize = [128,228,3];
Specify the number of classes to detect.
numClasses = 1;
Use a pretrained ResNet-50 network as a base network for the YOLO v2 network.

```
network = resnet50();
```

Specify the network layer to use for feature extraction. You can use analyzeNetwork to see all the layer names in a network.

```
featureLayer = 'activation_49_relu';
```

Create the YOLO v2 object detection network.

```
lgraph = yolov2Layers(inputImageSize,numClasses,anchorBoxes,network, featureLayer)
```


## lgraph =

LayerGraph with properties:
Layers: [182×1 nnet.cnn.layer.Layer]
Connections: [197×2 table]

Visualize the network using the network analyzer.
analyzeNetwork(lgraph)

## Estimate Anchor Boxes From Training Data

Anchor boxes are important parameters of deep learning object detectors such as Faster R-CNN and YOLO v2. The shape, scale, and number of anchor boxes impact the efficiency and accuracy of the detectors.

For more information, see "Anchor Boxes for Object Detection".

## Load Training Data

Load the vehicle dataset, which contains 295 images and associated box labels.

```
data = load('vehicleTrainingData.mat');
vehicleDataset = data.vehicleTrainingData;
```

Add the full path to the local vehicle data folder.

```
dataDir = fullfile(toolboxdir('vision'),'visiondata');
vehicleDataset.imageFilename = fullfile(dataDir,vehicleDataset.imageFilename);
```

Display the data set summary.

## summary (vehicleDataset)

## Variables:

imageFilename: $295 \times 1$ cell array of character vectors
vehicle: $295 \times 1$ cell

## Visualize Ground Truth Box Distribution

Visualize the labeled boxes to better understand the range of object sizes present in the data set.

Combine all the ground truth boxes into one array.

```
allBoxes = vertcat(vehicleDataset.vehicle{:});
```

Plot the box area versus the box aspect ratio.

```
aspectRatio = allBoxes(:,3) ./ allBoxes(:,4);
area = prod(allBoxes(:,3:4),2);
figure
scatter(area,aspectRatio)
xlabel("Box Area")
ylabel("Aspect Ratio (width/height)");
title("Box Area vs. Aspect Ratio")
```



The plot shows a few groups of objects that are of similar size and shape, However, because the groups are spread out, manually choosing anchor boxes is difficult. A better way to estimate anchor boxes is to use a clustering algorithm that can group similar boxes together using a meaningful metric.

## Estimate Anchor Boxes

Estimate anchor boxes from training data using the estimateAnchorBoxes function, which uses the intersection-over-union (IoU) distance metric.

A distance metric based on IoU is invariant to the size of boxes, unlike the Euclidean distance metric, which produces larger errors as the box sizes increase [1]. In addition,
using an IoU distance metric leads to boxes of similar aspect ratios and sizes being clustered together, which results in anchor box estimates that fit the data.

Create a boxLabelDatastore using the ground truth boxes in the vehicle data set. If the preprocessing step for training an object detector involves resizing of the images, use transform and bboxresize to resize the bounding boxes in the boxLabelDatastore before estimating the anchor boxes.

```
trainingData = boxLabelDatastore(vehicleDataset(:,2:end));
```

Select the number of anchors and estimate the anchor boxes using estimateAnchorBoxes function.

```
numAnchors = ;
[anchorBoxes,meanIoU] = estimateAnchorBoxes(trainingData,numAnchors);
anchorBoxes
anchorBoxes = 5\times2
 21 27
 87 116
 67 92
 43 61
 86 105
```

Choosing the number of anchors is another training hyperparameter that requires careful selection using empirical analysis. One quality measure for judging the estimated anchor boxes is the mean IoU of the boxes in each cluster. The estimateAnchorBoxes function uses a $k$-means clustering algorithm with the IoU distance metric to calculate the overlap using the equation, 1 - bboxOverlapRatio(allBoxes,boxInCluster).
meanIoU
meanIoU $=0.8411$
The mean IoU value greater than 0.5 ensures that the anchor boxes overlap well with the boxes in the training data. Increasing the number of anchors can improve the mean IoU measure. However, using more anchor boxes in an object detector can also increase the computation cost and lead to overfitting, which results in poor detector performance.

Sweep over a range of values and plot the mean IoU versus number of anchor boxes to measure the trade-off between number of anchors and mean IoU.

```
 maxNumAnchors = 15;
 meanIoU = zeros([maxNumAnchors,1]);
 anchorBoxes = cell(maxNumAnchors, 1);
 for k = 1:maxNumAnchors
 % Estimate anchors and mean IoU.
 [anchorBoxes{k},meanIoU(k)] = estimateAnchorBoxes(trainingData,k);
 end
 figure
 plot(1:maxNumAnchors,meanIoU,'-o')
ylabel("Mean IoU")
xlabel("Number of Anchors")
title("Number of Anchors vs. Mean IoU")
```



Using two anchor boxes results in a mean IoU value greater than 0.65 , and using more than 7 anchor boxes yields only marginal improvement in mean IoU value. Given these results, the next step is to train and evaluate multiple object detectors using values between 2 and 6 . This empirical analysis helps determine the number of anchor boxes required to satisfy application performance requirements, such as detection speed, or accuracy.

## Input Arguments

## trainingData - Training data <br> datastore

Training data, specified as a datastore that returns a cell array or table with two or more columns. The bounding boxes must be in a cell array of $M$-by- 4 matrices in the format [ $x, y$, width,height].

The datastore must be one of the following:

- A boxLabelDatastore in the format [boxes,labels]
- \{images,boxes,labels\} - A combined datastore. For example, using combine(imds,blds).


## numAnchors - Number of anchor boxes

integer
Number of anchor boxes for the function to return, specified as an integer.

## Output Arguments

## anchorBoxes - Anchor boxes

$N$-by-2 matrix
Anchor boxes, returned as an $N$-by- 2 matrix, where $N$ is the number of anchor boxes and each entry has the format [height, width]. Use numAnchors to specify the number of anchor boxes.

## meanIoU - Distance metric

scalar

Distance metric, returned as a scalar value. The distance metric provides the mean intersection-over-union (IoU) value of the anchor boxes in each cluster. To ensure anchor boxes overlap well with the boxes in the training data, the meanIoU value must be greater than 0.5 . The $k$-means clustering algorithm uses the IoU distance metric to calculate the overlap using the equation 1-bbox0verlapRatio(box1,box2).

## See Also

Objects
boxLabelDatastore|fasterRCNNObjectDetector

## Functions

yolov2Layers

## Topics

"Anchor Boxes for Object Detection"
"Datastores for Deep Learning" (Deep Learning Toolbox)
"Training Data for Object Detection and Semantic Segmentation"

## Introduced in R2019b

## deeplabv3plusLayers

Create DeepLab v3+ convolutional neural network for semantic image segmentation

## Syntax

```
layerGraph = deeplabv3plusLayers(imageSize,numClasses,network)
layerGraph = deeplabv3plusLayers(
```

$\qquad$

``` ,'DownsamplingFactor', value)
```


## Description

layerGraph = deeplabv3plusLayers(imageSize,numClasses,network) returns a DeepLab v3+ layer with the specified base network, number of classes, and image size.
layerGraph = deeplabv3plusLayers( __ ,'DownsamplingFactor',value) additionally sets the downsampling factor (output stride) [1] to either 8 or 16. The downsampling factor sets the amount the encoder section of DeepLav v3+ downsamples the input image.

## Examples

## Create DeepLab v3+ Network Based on ResNet-18

Create a DeepLab v3+ network based on ResNet-18.

```
imageSize = [480 640 3];
numClasses = 5;
network = 'resnet18';
lgraph = deeplabv3plusLayers(imageSize,numClasses,network, ...
 'DownsamplingFactor',16);
```

Display the network.
analyzeNetwork(lgraph)

## Train DeepLab v3+ Network

Load the triangle data set images using an image datastore. The datastore contains 200 grayscale images of random triangles. Each image is 32-by-32.

```
dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
imds = imageDatastore(imageDir);
```

Load the triangle data set pixel labels using a pixel label datastore.

```
labelDir = fullfile(dataSetDir, 'trainingLabels');
classNames = ["triangle","background"];
labelIDs = [255 0];
pxds = pixelLabelDatastore(labelDir,classNames,labelIDs);
```

Create a DeepLab v3+ network.
imageSize = [256 256];

```
numClasses = numel(classNames);
```

lgraph = deeplabv3plusLayers(imageSize,numClasses,'resnet18');

Combine image and pixel label data for training. Set the image output size to the input size of the network to automatically resize images during training.

```
pximds = pixelLabelImageDatastore(imds,pxds,'OutputSize',imageSize,...
 'ColorPreprocessing','gray2rgb');
```

Specify training options. Lower the mini-batch size to reduce memory usage.

```
opts = trainingOptions('sgdm',...
 'MiniBatchSize',8,...
 'MaxEpochs',3);
```

Train the network.

```
net = trainNetwork(pximds,lgraph,opts);
Training on single CPU.
```



1	1	00:00:08	57.31\%	0.7145	0.01
2	50	00:06:05	99.23\%	0.0198	0.01
3	75	00:09:05	99.12\%	0.0214	0.01

Read a test image.

```
I = imread('triangleTest.jpg');
```

Resize the test image by a factor equal to the input image size divided by 32 so that the triangles in the test image are roughly equal to the size of the triangles during training.

I = imresize(I,'Scale',imageSize./32);
Segment the image.
C = semanticseg(I, net);
Display the results.
B = labeloverlay(I,C);
figure
imshow(B)


## Input Arguments

## imageSize - Network input image size

2 -element vector | 3-element vector
Network input image size, specified as a:

- 2-element vector in the format [height, width].
- 3-element vector in the format [height, width, 3]. The third element, 3, corresponds to RGB.


## numClasses - Number of classes

integer greater than 1
Number of classes for network to classify, specified as an integer greater than 1.

```
network - Base network
'resnet18'|'resnet50'||'mobilenetv2'|'xception'|
'inceptionresnetv2'
```

Base network, specified as resnet18, resnet50, mobilenetv2, xception, or inceptionresnetv2. You must install the corresponding network add-on.

## Output Arguments

## layerGraph - DeepLab v3+ network

layer graph
DeepLab v3+ network, returned as a convolutional neural network for semantic image segmentation. The network uses encoder-decoder architecture, dilated convolutions, and skip connections to segment images. You must use the trainNetwork function (requires Deep Learning Toolbox) to train the network before you can use the network for semantic segmentation.

## Algorithms

- When you use either the xception or mobilenetv2 base networks to create a DeepLab v3+ network, depth separable convolutions are used in the atrous spatial
pyramid pooling (ASPP) and decoder subnetworks. For all other base networks, convolution layers are used.
- This implementation of DeepLab v3+ does not include a global average pooling layer in the ASPP.


## References

[1] Chen, L., Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation." Computer Vision - ECCV 2018, 833-851. Munic, Germany: ECCV, 2018.

## See Also

## Objects

layerGraph | pixelClassificationLayer

## Functions

deeplabv3plusLayers|fcnLayers| segnetLayers|semanticseg| trainNetwork|unetLayers

## Topics

"Getting Started With Semantic Segmentation Using Deep Learning" "Deep Learning in MATLAB" (Deep Learning Toolbox)

## Introduced in R2019b

## fasterRCNNLayers

Create a faster R-CNN object detection network

## Syntax

```
lgraph = fasterRCNNLayers(inputImageSize,numClasses,anchorBoxes,
network)
lgraph = fasterRCNNLayers(inputImageSize,numClasses,anchorBoxes,
network,featureLayer)
lgraph = fasterRCNNLayers(
```

$\qquad$

``` , Name, Value)
```


## Description

lgraph = fasterRCNNLayers(inputImageSize,numClasses,anchorBoxes, network) returns a Faster R-CNN network as a layerGraph object. A Faster R-CNN network is a convolutional neural network based object detector. The detector predicts the coordinates of bounding boxes, objectness scores, and classification scores for a set of anchor boxes. To train the created network, use the trainFasterRCNNObjectDetector function. For more information, see "Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN".
lgraph = fasterRCNNLayers(inputImageSize, numClasses, anchorBoxes, network, featureLayer) returns the object detection network based on the specified featureLayer of the network. Use this syntax when you specify the network as a SeriesNetwork, DAGNetwork, or layerGraph. object.
lgraph $=$ fasterRCNNLayers( $\qquad$ ,Name, Value) returns the object detection network with optional input properties specified by one or more name-value pair arguments.

Using this function requires Deep Learning Toolbox.

## Examples

## Create a Faster R-CNN Object Detection Network

Specify the image size.

```
inputImageSize = [224 224 3];
```

Specify the number of objects to detect.

```
numClasses = 1;
```

Use a pretrained ResNet-50 network as the base network for the Faster R-CNN network. You must download the resnet50 support package.

```
network = 'resnet50';
```

Specify the network layer to use for feature extraction. You can use the analyzeNetwork function to see all the layer names in a network.

```
featureLayer = 'activation_40_relu';
```

Specify the anchor boxes. You can also use the estimateAnchorBoxes function to estimate anchor boxes from your training data.

```
anchorBoxes = [64,64; 128,128; 192,192];
```

Create the Faster R-CNN object detection network.

```
lgraph = fasterRCNNLayers(inputImageSize,numClasses,anchorBoxes, ...
 network,featureLayer)
lgraph =
 LayerGraph with properties:
 Layers: [188\times1 nnet.cnn.layer.Layer]
 Connections: [205\times2 table]
```

Visualize the network using the network analyzer.
analyzeNetwork(lgraph)

## Input Arguments

## inputImageSize - Network input image size <br> 3-element vector

Network input image size, specified as a 3-element vector in the format [height, width, depth]. depth is the number of image channels. Set depth to 3 for RGB images, to 1 for grayscale images, or to the number of channels for multispectral and hyperspectral images.

## numClasses - Number of classes

integer greater than 1
Number of classes for the network to classify, specified as an integer greater than 1.

## anchorBoxes - Anchor boxes

M-by-2 matrix
Anchor boxes, specified as an $M$-by-2 matrix of $M$ anchor boxes in the format [height, width]. Anchor boxes are determined based on the scale and aspect ratio of objects in the training data set. For example, if an object is localized by a square window, then you can set the size of the anchor boxes to [64 64;128 128].

## network - Pretrained classification network

SeriesNetwork object | DAGNetwork object | LayerGraph object | 'alexnet' | 'vgg16' |'vgg19'|'resnet18'|'resnet50'|'resnet101'|'inceptionv3'| 'googlenet'|'inceptionresnetv2'|'mobilenetv2'|'squeezenet'

Pretrained classification network, specified as a SeriesNetwork, DAGNetwork, or layerGraph, or as on of the following:

- 'alexnet'
- 'vgg16'
- 'vgg19'
- 'resnet18'
- 'resnet50'
- 'resnet101'
- 'inceptionv3'
- 'googlenet'
- 'inceptionresnetv2'
- 'squeezenet'
- 'mobilenetv2'

When you specify the network as a SeriesNetwork object, a DAGNetwork object, or by name, the function transforms the network into a Faster R-CNN network. It transforms the network by adding a region proposal network (RPN), and ROI max pooling layer, and new classification and regression layers to support object detection.

## featureLayer - Feature extraction layer <br> character vector | string scalar

Feature extraction layer, specified as a character vector or a string scalar. Use one of the deeper layers in the network you specify. You can use the analyzeNetwork function to view the names of the layers in the input network.

Note You can specify any network layer except the fully connected layer as the feature layer.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, ..., NameN, ValueN.

Example: 'ROIMaxPoolingLayer','auto'

## ROIMaxPoolingLayer - ROI max pooling layer

 'auto' (default)|'insert'|'replace'ROI max pooling layer, specified as a 'auto', 'insert', or 'replace'. You can specify whether a roiMaxPooling2dLayer replaces the pooling layer or follows the feature extraction layer.

If you select 'auto ' , the function:

- Inserts a new ROI max pooling layer after the feature extraction layer when the layer next to the feature extraction layer is not a max pooling layer.
- Replaces the current pooling layer after the feature extraction layer with an ROI max pooling layer.


## ROIOutputSize - ROI max pooling layer output size

'auto' (default)| 2-element vector

ROI max pooling layer output size, specifed as 'auto' or a 2 -element vector of positive integers. When you set the value to 'auto', the function determines the output size based on the ROIMaxPoolingLayer property. It uses the output size of the feature extraction layer or the pooling layer following the feature extraction layer.

## Output Arguments

## lgraph - Object detection network layerGraph object

Object detection network, returned as a layerGraph object. The output and base network imageInputLayer normalization values are equal.

## See Also

## Apps <br> Deep Network Designer

## Functions

analyzeNetwork|estimateAnchorBoxes | fasterRCNNObjectDetector | trainFasterRCNNObjectDetector|yolov2Layers

## Topics

"Estimate Anchor Boxes From Training Data"
"Anchor Boxes for Object Detection"
"Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN"

## Introduced in R2019b

## yolov2Layers

Create YOLO v2 object detection network

## Syntax

```
lgraph = yolov2Layers(imageSize,numClasses,anchorBoxes,network,
featureLayer)
lgraph = yolov2Layers(
```

$\qquad$

``` ,'ReorgLayerSource',reorgLayer)
```


## Description


#### Abstract

lgraph = yolov2Layers(imageSize,numClasses,anchorBoxes,network, featureLayer) creates a YOLO v2 object detection network and returns it as a LayerGraph object. lgraph = yolov2Layers(__,'ReorgLayerSource',reorgLayer) specifies the source of reorganization layer by using a name-value pair. You can specify this name-value pair to add reorganization layer to the YOLO v2 network architecture. Specify this argument in addition to the input arguments in the previous syntax.


## Examples

## Create YOLO v2 Network for Object Detection

Specify the size of the input image for training the network.

```
imageSize = [224 224 3];
```

Specify the number of object classes the network has to detect.

```
numClasses = 1;
```

Define the anchor boxes.
anchorBoxes = [1 1;4 6;5 3;9 6];

Specify the pretrained ResNet -50 network as the base network for YOLO v2. To use this pretrained network, you need to install the 'Deep Learning Toolbox Model for ResNet-50 Network' support package.

```
network = resnet50();
```

Analyze the network architecture to view all the network layers.
analyzeNetwork(network)


Specify the network layer to be used for feature extraction. You can choose any layer except the fully connected layer as feature layer.
featureLayer = 'activation 49 relu';
Create the YOLO v2 object detection network. The network is returned as a LayerGraph object.
lgraph = yolov2Layers(imageSize, numClasses,anchorBoxes,network,featureLayer);
Analyze the YOLO v2 network architecture. The layers succeeding the feature layer are removed. A series of convolution, ReLU, and batch normalization layers along with the YOLO v2 transform and YOLO v2 output layers are added to the feature layer of the base network.
analyzeNetwork(lgraph)


## Create YOLO v2 Network with Reorganization Layer

Specify the size of the input image for training the network.
imageSize = [224 224 3];

Specify the number of object classes the network has to detect.

```
numClasses = 1;
```

Define the anchor boxes.
anchorBoxes = [1 1;4 6;5 3;9 6];
Specify the pretrained ResNet -50 as base network for YOLO v2. To use this pretrained network, you need to install the 'Deep Learning Toolbox Model for ResNet-50 Network' support package.

```
network = resnet50();
```

Analyze the network architecture to view all the network layers.
analyzeNetwork(network)


Specify the network layer to be used for feature extraction. You can choose any layer except the fully connected layer as feature layer.

```
featureLayer = 'activation 49_relu';
```

Specify the network layer to be used as the source for reorganization layer.

```
reorgLayer = 'activation_47_relu';
```

Create the YOLO v2 object detection network. The network is returned as a LayerGraph object.

```
lgraph = yolov2Layers(imageSize,numClasses,anchorBoxes,network,featureLayer,'Reorglaye
```

Analyze the YOLO v2 network architecture. The layers succeeding the feature layer are removed. The detection subnetwork along with the YOLO v2 transform and YOLO v2 output layers are added to the feature layer of base network. The reorganization layer and the depth concatenation layer are also added to the network. The YOLO v2 reorg layer reorganizes the dimension of output features from activation_47_relu layer. The depth concatenation layer concatenates the output of the reorganization layer with the output of a higher layer.

```
analyzeNetwork(lgraph)
```



## Input Arguments

imageSize - Size of input image
two-element vector | three-element vector
Size of input image, specified as one of these values:

- Two-element vector of form [HW] - For a grayscale image of size $H$-by- $W$
- Three-element vector of form [HW3] - For an RGB color image of size $H$-by- $W$


## numClasses - Number of object classes <br> positive integer

Number of object classes, specified as a positive integer.

## anchorBoxes - Anchor boxes

M-by-2 matrix
Anchor boxes, specified as an $M$-by-2 matrix defining the size and the number of anchor boxes. Each row in the $M$-by-2 matrix denotes the size of the anchor box in the form of [height width]. $M$ denotes the number of anchor boxes. This input sets the AnchorBoxes property of the output layer.

The size of each anchor box is determined based on the scale and aspect ratio of different object classes present in input training data. Also, the size of each anchor box must be smaller than or equal to the size of the input image. You can use the clustering approach for estimating anchor boxes from the training data. For more information, see "Estimate Anchor Boxes From Training Data".

## network - Pretrained convolutional neural network

LayerGraph object |DAGNetwork object | SeriesNetwork object
Pretrained convolutional neural network, specified as an LayerGraph, DAGNetwork, or SeriesNetwork object. This pretrained convolutional neural network is used as the base for the YOLO v2 object detection network. For details on pretrained networks in MATLAB, see "Pretrained Deep Neural Networks" (Deep Learning Toolbox).

## featureLayer - Name of feature layer

character vector | string scalar
Name of feature layer, specified as a character vector or a string scalar. The name of one of the deeper layers in the network to be used for feature extraction. The features extracted from this layer are given as input to the YOLO v2 object detection subnetwork. You can use the analyzeNetwork function to view the names of the layers in the input network.

Note You can specify any network layer except the fully connected layer as the feature layer.

## reorgLayer - Name of reorganization layer

character vector | string scalar
Name of reorganization layer, specified as a character vector or a string scalar. The name of one of the deeper layers in the network to be used as input to the reorganization layer. You can use the analyzeNetwork function to view the names of the layers in the input network. The reorganization layer is the pass-through layer that reorganizes the dimension of low layer features to facilitate concatenation with high layer features.

Note The input to the reorganization layer must be from any one of the network layers that lie above the feature layer.

## Output Arguments

## lgraph - YOLO v2 object detection network

LayerGraph object
YOLO v2 object detection network, returned as a LayerGraph object.

Note The default value for the Normalization property of the image input layer in the returned lgraph object is set to the Normalization property of the base network specified in network.

## Algorithms

The yolov2Layers function creates a YOLO v2 network, which represents the network architecture for YOLO v2 object detector. Use the trainYOLOv20bjectDetector function to train the YOLO v2 network for object detection. The function returns an object that generates the network architecture for YOLO v2 object detection network presented in [1] and [2].
yolov2Layers uses a pretrained neural network as the base network to which it adds a detection subnetwork required for creating a YOLO v2 object detection network. Given a base network, yolov2Layers removes all the layers succeeding the feature layer in the base network and adds the detection subnetwork. The detection subnetwork comprises of groups of serially connected convolution, ReLU, and batch normalization layers. The YOLO v2 transform layer and YOLO v2 output layer are added to the detection
subnetwork. If you specify the name-value pair 'ReorgLayerSource' , the YOLO v2 network concatenates the output of reorganization layer with the output of feature layer.

For information on creating a custom YOLO v2 network layer-by-layer, see "Create YOLO v2 Object Detection Network".

## References

[1] Joseph. R, S. K. Divvala, R. B. Girshick, and F. Ali. "You Only Look Once: Unified, RealTime Object Detection." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779-788. Las Vegas, NV: CVPR, 2016.
[2] Joseph. R and F. Ali. "YOLO 9000: Better, Faster, Stronger." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517-6525. Honolulu, HI: CVPR, 2017.

## Extended Capabilities

## GPU Code Generation

Generate CUDA® code for NVIDIA® ${ }^{\circledR}$ GPUs using GPU Coder ${ }^{\mathrm{TM}}$.
Usage notes and limitations:
For code generation, you must first create a YOLO v2 object detection network by using the yolov2Layers function. Then, use the trainYOLOv20bjectDetector function on the resulting lgraph object to train the YOLO v2 network for object detection. Once the detector is trained and evaluated, you can generate code for the yolov20bjectDetector using GPU Coder ${ }^{\mathrm{TM}}$.

## See Also

analyzeNetwork|resnet50|trainY0L0v20bjectDetector| yolov20bjectDetector | yolov20utputLayer | yolov2ReorgLayer | yolov2TransformLayer
Topics"Create YOLO v2 Object Detection Network""Estimate Anchor Boxes From Training Data""Object Detection Using YOLO v2 Deep Learning""Getting Started with YOLO v2""Anchor Boxes for Object Detection"
Introduced in R2019a

## selectLabelsByGroup

Select ground truth data for set of labels by group

## Syntax

```
gtLabel = selectLabelsByGroup(gTruth,groups)
```


## Description

gtLabel = selectLabelsByGroup(gTruth, groups) returns gtLabel, a groundTruth object or an array of groundTruth objects, containing any labels from gTruth that match those specified by groups.

## Examples

## Select Ground Truth Data By Group

Load data to create a ground truth object. Add the image folder to the path.

```
data = load('stopSignsAndCars.mat');
imageFilenames = data.stopSignsAndCars.imageFilename(1:2)
imageFilenames = 2x1 cell array
 {'stopSignImages/image001.jpg'}
 {'stopSignImages/image002.jpg'}
imageFilenames = fullfile(toolboxdir('vision'),'visiondata',imageFilenames);
dataSource = groundTruthDataSource(imageFilenames);
```

Define labels for identifying ground truth data.

```
names = {'stopSign';'carRear'};
types = [
 labelType('Rectangle')
```

```
 labelType('Rectangle')
];
groups = {'TrafficSigns';'Vehicles'};
labelDefs = table(names,types,groups,'VariableNames', {'Name','Type','Group'})
labelDefs=2\times3 table
 Name Type Group
 {'stopSign'} Rectangle {'TrafficSigns'}
 {'carRear' } Rectangle {'Vehicles' }
```

Initialize label data for rectangle ROIs.

```
numRows = numel(imageFilenames);
stopSignTruth = {[[856 [13 318 39 41]; [[445 523 52 54]};
```



Construct a table containing label data.

```
labelData = table(stopSignTruth,carRearTruth,'VariableNames',names)
labelData=2\times2 table
 stopSign carRear
 {1x4 double} {1x4 double}
 {1x4 double} {1x4 double}
```

Create a groundTruth object.
gTruth = groundTruth(dataSource,labelDefs,labelData)
gTruth =
groundTruth with properties:
DataSource: [1x1 groundTruthDataSource]
LabelDefinitions: [2x3 table]
LabelData: [2×2 table]

Select labels by group.

```
vehicleGroundTruth = selectLabelsByGroup(gTruth, 'Vehicles')
vehicleGroundTruth =
 groundTruth with properties:
 DataSource: [1x1 groundTruthDataSource]
 LabelDefinitions: [1x3 table]
 LabelData: [2x1 table]
```


## Input Arguments

## gTruth - Ground truth labels

groundTruth object | array of groundTruth objects
Ground truth labels, specified as a groundTruth object or an array of groundTruth objects.

## groups - Group names

cell array of character vectors | string array of character vectors
Group names, specified as a cell or string array of character vectors.

## Output Arguments

## gtLabel - Ground truth with only specified labels

groundTruth object | array of groundTruth objects
Ground truth with only specified labels, returned as a groundTruth object or an array of groundTruth objects, containing any labels from gTruth that match those specified by groups.

## See Also

## Objects

groundTruth | groundTruthDataSource

## Functions

selectLabelsByName \| selectLabelsByType

## Introduced in R2019a

## selectLabelsByType

Select ground truth data for a set of labels by type

## Syntax

```
gtLabel = selectLabelsByType(gTruth,labelTypes)
```


## Description

gtLabel $=$ selectLabelsByType(gTruth, labelTypes) returns gtLabel a groundTruth object or an array of groundTruth objects, containing any labels from gTruth that match those specified by labelTypes..

## Examples

## Select Ground Truth Data by Types

Add the image directory to the MATLAB path.

```
imageDir = fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages');
 addpath(imageDir);
Load the groundTruth object.
load('stopSignsAndCarsGroundTruth.mat');
View the label definitions.
stopSignsAndCarsGroundTruth.LabelDefinitions
ans=3\times3 table
 Name
 {'stopSign'} Rectangle {'None'}
```

```
{'carRear' } Rectangle {'None'}
{'carFront'} Rectangle {'None'}
```

Obtain the ground truth data for Rectangle labelType.

```
rectGroundTruth = selectLabelsByType(stopSignsAndCarsGroundTruth,labelType.Rectangle);
```

Remove the image directory from the path.

```
rmpath(imageDir);
```


## Input Arguments

## gTruth - Ground truth labels <br> groundTruth object | array of groundTruth objects

Ground truth labels, specified as a groundTruth object or as an array of groundTruth objects.

## labelTypes - Label types

enumeration
Label types, specified as an enumeration.

## Output Arguments

## gtLabel - Ground truth with only specified labels

groundTruth object | array of groundTruth objects
Ground truth with only specified labels, returned as a groundTruth object or an array of groundTruth objects, containing any labels from gTruth that match those specified by labelTypes.

## See Also

## Objects

groundTruth | groundTruthDataSource

Functions<br>selectLabelsByGroup | selectLabelsByName<br>Introduced in R2019a

## selectLabelsByName

Select ground truth data by name

## Syntax

gtLabel $=$ selectLabelsByName(gTruth,labelNames)

## Description

gtLabel $=$ selectLabelsByName ( g Truth, labelNames) returns gtLabel, a groundTruth object or an array of groundTruth objects, containing any labels from gTruth that match those specified by labelNames.

## Examples

## Select Ground Truth Data By Name

Add the image directory to the MATLAB path.

```
imageDir = fullfile(matlabroot,'toolbox','vision','visiondata','stopSignImages');
addpath(imageDir);
Load the groundTruth object.
load('stopSignsAndCarsGroundTruth.mat');
View the label definitions.
stopSignsAndCarsGroundTruth.LabelDefinitions
ans=3\times3 table
 Name
 {'stopSign'} Rectangle {'None'}
```

```
{'carRear' } Rectangle {'None'}
{'carFront'} Rectangle {'None'}
```

Obtain the ground truth data for StopSign label name.

```
stopSignGroundTruth = selectLabelsByName(stopSignsAndCarsGroundTruth, ...
 'stopSign');
```

Obtain ground truth data for carRear and carFront.

```
carGroundTruth = selectLabels(stopSignsAndCarsGroundTruth, ...
```

    \{'carRear','carFront'\});
    Remove the image directory from the path.

```
rmpath(imageDir);
```


## Input Arguments

## gTruth - Ground truth labels <br> groundTruth object | array of groundTruth objects

Ground truth labels, specified as a groundTruth object or as an array of groundTruth objects.

## labelNames - Label names <br> cell array of character vectors | string array of character vectors

Label names, specified as a cell or string array of character vectors.

## Output Arguments

## gtLabel - Ground truth with only specified labels

groundTruth object | array of groundTruth objects
Ground truth with only specified labels, returned as a groundTruth object or an array of groundTruth objects, containing any labels from gTruth that match those specified by labelNames.

## See Also

Objects<br>groundTruth | groundTruthDataSource<br>\section*{Functions}<br>selectLabelsByGroup| selectLabelsByType<br>Introduced in R2019a

## correct

Package: vision
Correction of measurement, state, and state estimation error covariance

## Syntax

[z_corr,x_corr,P_corr] = correct(kalmanFilter,z)

## Description

[z_corr,x_corr,P_corr] = correct(kalmanFilter,z) returns the correction of measurement, state, and state estimation error covariance. The correction is based on the current measurement $z$. The object overwrites the internal state and covariance of the Kalman filter with corrected values.

## Examples

## Tracking Objects

Use the predict and correct functions based on detection results.
When the tracked object is detected, use the predict and correct functions with the Kalman filter object and the detection measurement. Call the functions in the following order:
[...] = predict(kalmanFilter);
[...] = correct(kalmanFilter,measurement);
When the tracked object is not detected, call the predict function, but not the correct method. When the tracked object is missing or occluded, no measurement is available. Set the functions up with the following logic:
[...] = predict(kalmanFilter);
If measurement exists

```
 [...] = correct(kalmanFilter,measurement);
end
```

If the tracked object becomes available after missing for the past $t$ - 1 contiguous time steps, you can call the predict function $t$ times. This syntax is particularly useful to process asynchronous video.. For example,

```
for i = 1:k
 [...] = predict(kalmanFilter);
end
[...] = correct(kalmanFilter,measurement)
```


## Input Arguments

## kalmanFilter - Kalman filter object object

Kalman filter object.

## z - Current measurement <br> N -element vector

Current measurement, specified as an $N$-element vector.

See Also<br>assignDetectionsToTracks|configureKalmanFilter<br>Introduced in R2012b

## distance

Package: vision
Confidence value of measurement

## Syntax

```
d = distance(kalmanFilter,zmatrix)
```


## Description

d = distance(kalmanFilter,zmatrix) computes a distance between the location of a detected object and the predicted location by the Kalman filter object. This distance computation takes into account the covariance of the predicted state and the process noise. The distance function can only be called after the predict function.

Use the distance function to find the best matches. The computed distance values describe how a set of measurements matches the Kalman filter. You can thus select a measurement that best fits the filter. This strategy can be used for matching object detections against object tracks in a multiobject tracking problem. This distance computation takes into account the covariance of the predicted state and the process noise.

## Examples

## Track Location of An Object

Track the location of a physical object moving in one direction.
Generate synthetic data which mimics the 1-D location of a physical object moving at a constant speed.

```
detectedLocations = num2cell(2*randn(1,40) + (1:40));
```

Simulate missing detections by setting some elements to empty.

```
detectedLocations{1} = [];
 for idx = 16: 25
 detectedLocations{idx} = [];
 end
```

Create a figure to show the location of detections and the results of using the Kalman filter for tracking.

```
figure;
hold on;
ylabel('Location');
ylim([0,50]);
xlabel('Time');
xlim([0,length(detectedLocations)]);
```



Create a 1-D, constant speed Kalman filter when the physical object is first detected. Predict the location of the object based on previous states. If the object is detected at the current time step, use its location to correct the states.

```
kalman = [];
for idx = 1: length(detectedLocations)
 location = detectedLocations{idx};
 if isempty(kalman)
 if ~isempty(location)
```

            stateModel = [1 1;0 1];
            measurementModel = [10];
            kalman = vision.KalmanFilter(stateModel,measurementModel,'ProcessNoise',1e-4,'Me
            kalman.State = [location, 0];
    ```
 end
 else
 trackedLocation = predict(kalman);
 if ~isempty(location)
 plot(idx, location,'k+');
 d = distance(kalman,location);
 title(sprintf('Distance:%f', d));
 trackedLocation = correct(kalman,location);
 else
 title('Missing detection');
 end
 pause(0.2);
 plot(idx,trackedLocation,'ro');
 end
end
legend('Detected locations','Predicted/corrected locations');
```

Distance:3.126145


## Remove Noise From a Signal

Use Kalman filter to remove noise from a random signal corrupted by a zero-mean Gaussian noise.

Synthesize a random signal that has value of 1 and is corrupted by a zero-mean Gaussian noise with standard deviation of 0.1.
$\mathrm{x}=1$;
len $=100$;
$z=x+0.1$ * randn(1,len);

Remove noise from the signal by using a Kalman filter. The state is expected to be constant, and the measurement is the same as state.

```
stateTransitionModel = 1;
```

measurementModel = 1;
obj = vision.KalmanFilter(stateTransitionModel,measurementModel,'StateCovariance',1,'P
z_corr = zeros(1,len);
for idx = 1: len
predict(obj);
z_corr(idx) = correct(obj,z(idx));
end

Plot results.

```
figure, plot(x * ones(1,len),'g-');
hold on;
plot(1:len,z,'b+',1:len,z_corr,'r-');
legend('Original signal','Noisy signal','Filtered signal');
```



## Input Arguments

## kalmanFilter - Kalman filter object

object
Kalman filter object.
zmatrix - Location of a detected object
$N$-column matrix

Location of a detected object, specified as an $N$-column matrix. Each row matrix contains a measurement vector. The distance function returns a row vector where each distance element corresponds to the measurement input.

## More About

## Distance Equation

$$
d(z)=(z-H x)^{T} \sum^{-1}(z-H x)+\ln \left|\sum\right|
$$

Where $\Sigma=H P H^{T}+R$ and $|\Sigma|$ is the determinant of $\Sigma$. You can then find the best matches by examining the returned distance values.

See Also<br>assignDetectionsToTracks | configureKalmanFilter<br>Introduced in R2012b

## vision.KalmanFilter.predict

Package: vision
Prediction of measurement

## Syntax

[z_pred,x_pred,P_pred] = predict(kalmanFilter)
[z_pred,x_pred,P_pred] = predict(kalmanFilter,u)

## Description

[z_pred,x_pred,P_pred] = predict(kalmanFilter) returns the prediction of measurement, state, and state estimation error covariance at the next time step (e.g., the next video frame). The object overwrites the internal state and covariance of the Kalman filter with the prediction results.
[z_pred,x_pred,P_pred] = predict(kalmanFilter,u) additionally lets you specify the control input, $u$. This syntax applies when you set the control model, B.

## Examples

## Tracking Objects

Use the predict and correct functions based on detection results.
When the tracked object is detected, use the predict and correct functions with the Kalman filter object and the detection measurement. Call the functions in the following order:
[...] = predict(kalmanFilter);
[...] = correct(kalmanFilter,measurement);

When the tracked object is not detected, call the predict function, but not the correct method. When the tracked object is missing or occluded, no measurement is available. Set the functions up with the following logic:

```
[...] = predict(kalmanFilter);
If measurement exists
 [...] = correct(kalmanFilter,measurement);
end
```

If the tracked object becomes available after missing for the past $t$ - 1 contiguous time steps, you can call the predict function $t$ times. This syntax is particularly useful to process asynchronous video.. For example,

```
for i = 1:k
 [...] = predict(kalmanFilter);
end
[...] = correct(kalmanFilter,measurement)
```


## Input Arguments

## kalmanFilter - Kalman filter object

object
Kalman filter object.

## u - Control input

L-element vector
Control input, specified as an $L$-element vector.

## See Also

assignDetectionsToTracks|configureKalmanFilter
Introduced in R2012b

## pcregistercpd

Register two point clouds using CPD algorithm

## Syntax

tform = pcregistercpd(moving,fixed)
[tform,movingReg] = pcregistercpd(moving,fixed)
[___,rmse] = pcregistercpd(moving,fixed)
[__] = pcregistercpd(moving,fixed,Name,Value)

## Description

tform = pcregistercpd(moving, fixed) returns a transformation that registers a moving point cloud with a fixed point cloud using the coherent point drift (CPD) algorithm [1].

Note Consider downsampling point clouds using pcdownsample before using pcregistercpd to improve the efficiency of registration.
[tform, movingReg] = pcregistercpd(moving,fixed) also returns the transformed point cloud that aligns with the fixed point cloud.
$\qquad$ , rmse] = pcregistercpd(moving,fixed) also returns the root mean square error of the Euclidean distance between the aligned point clouds, using any of the preceding syntaxes.
[___] = pcregistercpd(moving,fixed,Name,Value) uses additional options specified by one or more Name, Value pair arguments.

## Examples

## Align Two Point Clouds Using CPD Algorithm

Load point cloud data into the workspace. Extract the moving and the fixed point clouds from the point cloud data in workspace.

```
handData = load('hand3d.mat');
moving = handData.moving;
fixed = handData.fixed;
```

To improve the efficiency and accuracy of the CPD registration algorithm, downsample the moving and the fixed point clouds.

```
movingDownsampled = pcdownsample(moving,'gridAverage',0.03);
fixedDownsampled = pcdownsample(fixed,'gridAverage',0.03);
```

Display the downsampled point clouds before registration.

```
figure
pcshowpair(movingDownsampled,fixedDownsampled,'MarkerSize',50)
xlabel('X')
ylabel('Y')
zlabel('Z')
title('Point clouds before registration')
legend({'Moving point cloud','Fixed point cloud'},'TextColor','w')
legend('Location','southoutside')
```



Perform non-rigid registration using the CPD algorithm.
tform = pcregistercpd(movingDownsampled,fixedDownsampled); movingReg = pctransform(movingDownsampled,tform);

Display the downsampled point clouds after registration.
figure
pcshowpair(movingReg,fixedDownsampled,'MarkerSize',50)
xlabel('X')
ylabel('Y')
zlabel('Z')
title('Point clouds after registration')
legend(\{'Moving point cloud','Fixed point cloud'\},'TextColor','w')
legend('Location','southoutside')


## Input Arguments

moving - Moving point cloud
pointCloud object
Moving point cloud, specified as a pointCloud object.

## fixed - Fixed point cloud

pointCloud object
Fixed point cloud, specified as a pointCloud object.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'MaxIterations' , 20 stops the CPD algorithm after 20 iterations.

## Transform - Type of transformation <br> 'Nonrigid' (default) | 'Rigid'|'Affine'

Type of transformation, specified as the comma-separated pair consisting of
'Transform' and the 'Nonrigid', 'Rigid', or 'Affine' character vectors or string scalars.

Data Types: char|string

## OutlierRatio - Expected percentage of outliers

0.1 (default) | scalar in the range [0,1)

Expected percentage of outliers with respect to a normal distribution, specified as the comma-separated pair consisting of 'OutlierRatio' and a scalar in the range [0, 1). Increasing this value reduces the influence of outliers and noise.

Data Types: single | double
MaxIterations - Maximum number of iterations
20 (default) | positive integer
Maximum number of iterations before CPD stops, specified as the comma-separated pair consisting of 'MaxIterations ' and a positive integer.
Data Types: single | double

## Tolerance - Tolerance between consecutive CPD iterations le-5 (default) | scalar

Tolerance between consecutive CPD iterations, specified as the comma-separated pair consisting of 'Tolerance' and a scalar. The algorithm stops when absolute percentage change in the values of the log likelihood function measured between consecutive iterations reaches or falls below the specified tolerance value. Decreasing this value increases the likelihood of a better alignment.

## Data Types: single|double

## InteractionSigma - Interaction between points

## 2.0 (default) | positive scalar

Interaction between points, specified as the comma-separated pair consisting of ' InteractionSigma ' and a positive scalar that represents standard deviation of a Gaussian filter. Typical values are in the range [1.5,3]. Increasing this value increases interaction between the points in point cloud. As a result, you can observe coherent motion in the point cloud and every point undergoes the same displacement. Alternatively, decreasing this value reduces interaction between the points in point cloud. As a result, you can observe localized displacement of points and the output displacement field exhibits localized deformation.

Note To use this name-value pair, 'Transform' must be 'Nonrigid'.

## Data Types: single | double

## SmoothingWeight - Motion smoothing weight

3.0 (default) | positive scalar

Motion smoothing weight, specified as the comma-separated pair consisting of 'SmoothingWeight' and a positive scalar. Typical values are in the range [0.1,10]. Increase this value to produce a more coherent motion in the output displacement field.

Note To use this name-value pair, 'Transform' must be 'Nonrigid'.

Data Types: single | double
Verbose - Display progress information false (default) | true

Display progress information, specified as the comma-separated pair consisting of 'Verbose' and a logical scalar. Set 'Verbose' to true to display progress information.
Data Types: logical

Note Both 'MaxIterations' and 'Tolerance' are used as stopping criteria. The algorithm stops when it satisfies either of the stopping conditions, i.e., when the number
of iteration reaches MaxIterations or the absolute percentage change in log likelihood function is less than or equal to Tolerance.

## Output Arguments

## tform - Transformation

affine3d object | displacement field
Transformation, returned as an affine3d object or a displacement field. tform is the 3D transformation that registers the moving point cloud, moving to the fixed point cloud, fixed. When 'Transform' is 'Nonrigid', the function returns a displacement field. The returned displacement field is a numeric matrix of same size and datatype as the Location property of moving point cloud object, moving.

## movingReg - Transformed point cloud

pointCloud object
Transformed point cloud, returned as a pointCloud object. The transformed point cloud is aligned with the fixed point cloud, fixed.

## rmse - Root mean square error

positive real number
Root mean square error, returned as a positive real number. rmse is the Euclidean distance between the aligned point clouds.

## Data Types: double

## Algorithms

## Complete Point Cloud Registration Workflow



Update expectation maximization algorithm

| Rigid or Affine | Non-rigid $\quad$'InteractionSigma' <br> 'SmoothingWeight' |
| :---: | :---: |
| Solve for transformation | Solve for displacement field |


'MaxIterations'

Alignment \& Stitching
Optional


## References

[1] Myronenko, A., and X. Song. "Point Set Registration: Coherent Point Drift. "Proceedings of IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). Vol 32, Number 12, December 2010, pp. 2262-2275.

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathrm{Coder}^{\mathrm{TM}}$.
Usage notes and limitations:

- Supports code generation (requires MATLAB Coder) only in generic MATLAB Host Computer target platform.
- Generates code that uses a precompiled, platform-specific shared library.


## See Also

## Functions

pcdenoise | pcdownsample|pcfitplane|pcmerge|pcregistericp| pcregisterndt|pcshow| pcshowpair|pctransform

## Objects

affine3d | pointCloud

## Topics

"3-D Point Cloud Registration and Stitching"
"Point Cloud Registration Overview"

## Introduced in R2018b

## initializeObject

## System object: vision.HistogramBasedTracker Package: vision

Set object to track

## Syntax

initialize0bject(hbtracker, I,R) initialize0bject(hbtracker, I, R,N)
initialize0bject(hbtracker, I, R,N)

## Description

initialize0bject(hbtracker, I, R) sets the object to track by extracting it from the [ $x$ y width height] region $R$ located in the 2-D input image, $I$. The input image, $I$, can be any 2-D feature map that distinguishes the object from the background. For example, the image can be a hue channel of the HSV color space. Typically, I will be the first frame in which the object appears. The region, $R$, is also used for the initial search window, in the next call to the step method. For best results, the object must occupy the majority of the region, R.
initializeObject(hbtracker, I, R, N) additionally, lets you specify $N$, the number of histogram bins.

## Description

initializeObject(hbtracker, $I, R, N$ ) additionally, lets you specify $N$, the number of histogram bins.

## Examples

## Track a Face

Track and display a face in each frame of an input video.
Create System objects for reading and displaying video and for drawing a bounding box of the object.

```
videoFileReader = vision.VideoFileReader('vipcolorsegmentation.avi');
videoPlayer = vision.VideoPlayer();
shapeInserter = vision.ShapeInserter('BorderColor','Custom', ...
 'CustomBorderColor',[1 0 0]);
```

Read the first video frame, which contains the object. Convert the image to HSV color space. Then define and display the object region.

```
objectFrame = videoFileReader();
objectHSV = rgb2hsv(objectFrame);
objectRegion = [40, 45, 25, 25];
objectImage = shapeInserter(objectFrame, objectRegion);
figure
imshow(objectImage)
title('Red box shows object region')
```


(Optionally, you can select the object region using your mouse. The object must occupy the majority of the region. Use the following command.)
figure; imshow(objectFrame); objectRegion=round(getPosition(imrect))

Set the object, based on the hue channel of the first video frame.

```
tracker = vision.HistogramBasedTracker;
initializeObject(tracker, objectHSV(:,:,1) , objectRegion);
```

Track and display the object in each video frame. The while loop reads each image frame, converts the image to HSV color space, then tracks the object in the hue channel where it is distinct from the background. Finally, the example draws a box around the object and displays the results.

```
while ~isDone(videoFileReader)
 frame = videoFileReader();
 hsv = rgb2hsv(frame);
 bbox = tracker(hsv(:,:,1));
 out = shapeInserter(frame,bbox);
 videoPlayer(out);
end
```



Release the video reader and player.
release(videoPlayer);
release(videoFileReader);


## Input Arguments

## hbtracker - Histogram based tracker

vision. HistogramBasedTracker object
Histogram based tracker, specified as a vision. HistogramBasedTracker object.

## I - Video frame

grayscale | truecolor (RGB)
Video frame, specified as grayscale or truecolor (RGB).

## R - Initial search window

[x y width height]

Initial search window, specified in the format [ $x y$ width height].

## N - Number of histogram bins

16 (default) | integer
Number of histogram bins, specified as an integer. Increasing the number of bins enhances the ability of the tracker to discriminate the object. However, this approach also narrows the range of changes to the object's visual characteristics that the tracker can accommodate. Consequently, this narrow range increases the likelihood of losing track.

## Introduced in R2012a

## hide

## Package:

Hide player figure

## Syntax

hide(player)

## Description

 78(player).

## Examples

Hide and Show 3-D Point Cloud Figure
Load point cloud.
ptCloud = pcread('teapot.ply');
Create the player and customize player axis labels.
player = pcplayer(ptCloud.XLimits,ptCloud.YLimits,ptCloud.ZLimits);


Hide figure.
hide(player)
Show figure.
show(player)
view(player, ptCloud);


## Input Arguments

player - Player
player object

Player for data, specified as a pcplayer or vision. VideoPlayer object.

## Introduced in R2015b

## show

## Package:

Show player

## Syntax

show(player)

## Description

show (player) makes the player figure visible again after closing or hiding it.

## Examples

Hide and Show 3-D Point Cloud Figure
Load point cloud.
ptCloud = pcread('teapot.ply');
Create the player and customize player axis labels.
player = pcplayer(ptCloud.XLimits,ptCloud.YLimits,ptCloud.ZLimits);


Hide figure.
hide(player)
Show figure.

```
show(player)
view(player,ptCloud);
```



## Input Arguments

player - Player
object

Player for visualizing data streams, specified as a pcplayer or a vision.VideoPlayer object. Use this method to view the figure after you have removed it from display. For example, after you x-out of a figure and you want to view it again. This is particularly useful to use after a while loop that contains display code ends.

## Introduced in R2015b

## initializeSearchWindow

Set initial search window

## Syntax

initializeSearchWindow(hbtracker, R)

## Description

initializeSearchWindow(hbtracker, R) sets the initial search window region,R. The tracker uses this region as the initial window to search for the object. You can also use this function when the tracker loses track of the object. Use the function to reinitialize an object's initial location and size.

## Examples

## Track a Face

Track and display a face in each frame of an input video.
Create System objects for reading and displaying video and for drawing a bounding box of the object.

```
videoFileReader = vision.VideoFileReader('vipcolorsegmentation.avi');
videoPlayer = vision.VideoPlayer();
shapeInserter = vision.ShapeInserter('BorderColor','Custom', ...
 'CustomBorderColor',[1 0 0]);
```

Read the first video frame, which contains the object. Convert the image to HSV color space. Then define and display the object region.

```
objectFrame = videoFileReader();
objectHSV = rgb2hsv(objectFrame);
objectRegion = [40, 45, 25, 25];
```

```
objectImage = shapeInserter(objectFrame, objectRegion);
```

figure
imshow(objectImage)
title('Red box shows object region')

Red box shows object region

(Optionally, you can select the object region using your mouse. The object must occupy the majority of the region. Use the following command.)
figure; imshow(objectFrame); objectRegion=round(getPosition(imrect))
Set the object, based on the hue channel of the first video frame.

```
tracker = vision.HistogramBasedTracker;
initializeObject(tracker, objectHSV(:,:,1) , objectRegion);
```

Track and display the object in each video frame. The while loop reads each image frame, converts the image to HSV color space, then tracks the object in the hue channel where it is distinct from the background. Finally, the example draws a box around the object and displays the results.

```
while ~isDone(videoFileReader)
 frame = videoFileReader();
 hsv = rgb2hsv(frame);
 bbox = tracker(hsv(:,:,1));
 out = shapeInserter(frame,bbox);
 videoPlayer(out);
end
```



Release the video reader and player.
release(videoPlayer);
release(videoFileReader);


## Input Arguments

## hbtracker - Histogram based tracker

vision.HistogramBasedTracker object
Histogram based tracker, specified as a vision. HistogramBasedTracker object.

## R - Initial search window

[x y width height]
Initial search window, specified in the format $[x y$ width height].

Introduced in R2012a

## initialize

Initialize video frame and points to track

## Syntax

```
initialize(pointTracker,points,I)
```


## Description

initialize(pointTracker, points, I) initializes points to track and sets the initial video frame. The function sets the $M$-by- 2 points array of [x y] coordinates with the points to track, and sets the initial video frame, I.

If you want to use the point tracker as a persistent variable, you must call initialize only during creation. If you call initialize in a loop, the previous state is lost and therefore, the tracker cannot maintain tracking.

## Examples

## Track a Face in Scene

Create System objects for reading and displaying video and for drawing a bounding box of the object.

```
videoFileReader = vision.VideoFileReader('visionface.avi');
videoPlayer = vision.VideoPlayer('Position',[100,100,680,520]);
```

Read the first video frame, which contains the object, define the region.

```
objectFrame = videoFileReader();
objectRegion = [264,122,93,93];
```

As an alternative, you can use the following commands to select the object region using a mouse. The object must occupy the majority of the region:
figure; imshow(objectFrame);

> objectRegion=round(getPosition(imrect))

Show initial frame with a red bounding box.
objectImage = insertShape(objectFrame,'Rectangle',objectRegion,'Color','red'); figure;
imshow(objectImage);
title('Red box shows object region');

Red box shows object region


Detect interest points in the object region.
points = detectMinEigenFeatures(rgb2gray(objectFrame),'ROI',objectRegion);

Display the detected points.
pointImage = insertMarker(objectFrame, points.Location,'+','Color','white'); figure; imshow(pointImage);
title('Detected interest points');

Detected interest points


Create a tracker object.
tracker = vision.PointTracker('MaxBidirectionalError',1);
Initialize the tracker.
initialize(tracker, points.Location,objectFrame);

Read, track, display points, and results in each video frame.

```
while ~isDone(videoFileReader)
 frame = videoFileReader();
 [points,validity] = tracker(frame);
 out = insertMarker(frame,points(validity, :),'+');
 videoPlayer(out);
end
```



Release the video reader and player.
release(videoPlayer);
release(videoFileReader);


## Input Arguments

pointTracker - Point tracker
PointTracker object

Point tracker, specified as a vision. PointTracker object.

## points - Points

M-by-2 array
Points, specified as an $M$-by-2 array of [x y] coordinates that correspond to the locations of the points in the input frame, I.

## I - Video frame <br> grayscale | truecolor (RGB)

Video frame, specified as grayscale or truecolor (RGB) and must be the same size as the images read into the tracker.

## Introduced in R2012b

## fcnLayers

Create fully convolutional network layers for semantic segmentation

## Syntax

```
lgraph = fcnLayers(imageSize,numClasses)
lgraph = fcnLayers(imageSize,numClasses,'Type',type)
```


## Description

lgraph = fcnLayers(imageSize, numClasses) returns a fully convolutional network (FCN), configured as FCN 8s, for semantic segmentation. The FCN is preinitialized using layers and weights from the VGG-16 network.
fcnLayers includes a pixelClassificationLayer to predict the categorical label for every pixel in an input image. The pixel classification layer only supports RGB images.

This function requires the Deep Learning Toolbox Model for VGG-16 Network support package. If this support package is not installed, then the vgg 16 function provides a download link.
lgraph = fcnLayers(imageSize,numClasses,'Type',type) returns an FCN configured as a type specified by type.

## Examples

## Create Fully Convolutional Network 8s

Define the image size and number of classes, then create the network.

```
imageSize = [480 640];
numClasses = 5;
lgraph = fcnLayers(imageSize,numClasses)
```

Display the network.

```
plot(lgraph)
```


## Create Fully Convolutional Network 16s

Create a FCN 16s.

```
imageSize = [480 640];
numClasses = 5;
lgraph = fcnLayers(imageSize,numClasses,'Type','16s')
```

Display the network.

```
plot(lgraph)
```


## Input Arguments

## imageSize - Network input image size

## 2-element vector

Network input image size, specified as a 2-element vector in the format [height, width]. The minimum image size is [224 224] because an FCN is based on the VGG-16 network.

## numClasses - Number of classes

integer greater than 1
Number of classes in the semantic segmentation, specified as an integer greater than 1.

```
type - Type of FCN model
'8s' (default)|'16s'|'32s'
```

Type of FCN model, specified as one of the following:

| FCN Model | Description |
| :--- | :--- |
| '32s' | Upsamples the final feature map by a factor of 32. This option <br> provides coarse segmentation with a lower computational cost. |
| '16s' | Upsamples the final feature map by a factor of 16 after fusing the <br> feature map from the fourth pooling layer. This additional <br> information from earlier layers provides medium-grain <br> segmentation at the cost of additional computation. |


| FCN Model | Description |
| :--- | :--- |
| ' 8s ' | Upsamples the final feature map by a factor of 8 after fusing <br> feature maps from the third and fourth max pooling layers. This <br> additional information from earlier layers provides finer-grain <br> segmentation at the cost of additional computation. |

## Output Arguments

## lgraph - Layers

## LayerGraph object

Layers that represent the FCN network architecture, returned as a layerGraph object.
All transposed convolution layers are initialized using bilinear interpolation weights. All transposed convolution layer bias terms are fixed to zero.

## Tips

- Networks produced by fcnLayers support GPU code generation for deep learning once they are trained with trainNetwork. See "Deep Learning Code Generation" (Deep Learning Toolbox) for details and examples.


## References

[1] Long, J., E. Shelhamer, and T. Darrell. "Fully Convolutional Networks for Semantic Segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3431-3440.

## See Also

## Objects

layerGraph | pixelClassificationLayer

## Functions

deeplabv3plusLayers|fcnLayers| segnetLayers|semanticseg |
trainNetwork|unetLayers

## Topics

"Getting Started With Semantic Segmentation Using Deep Learning"
"Deep Learning in MATLAB" (Deep Learning Toolbox)

## Introduced in R2017b

## segnetLayers

Create SegNet layers for semantic segmentation

## Syntax

```
lgraph = segnetLayers(imageSize,numClasses,model)
lgraph = segnetLayers(imageSize,numClasses,encoderDepth)
lgraph = segnetLayers(imageSize,numClasses,encoderDepth,Name,Value)
```


## Description

lgraph = segnetLayers(imageSize,numClasses,model) returns SegNet layers, lgraph, that is preinitialized with layers and weights from a pretrained model.

SegNet is a convolutional neural network for semantic image segmentation. The network uses a pixelClassificationLayer to predict the categorical label for every pixel in an input image.

Use segnetLayers to create the network architecture for SegNet. You must train the network using the Deep Learning Toolbox function trainNetwork.
lgraph = segnetLayers(imageSize, numClasses,encoderDepth) returns uninitialized SegNet layers configured using the specified encoder depth.
lgraph = segnetLayers(imageSize,numClasses,encoderDepth,Name,Value) returns a SegNet layer with additional options specified by one or more Name, Value pair arguments.

## Examples

## Train SegNet

Load training images and pixel labels.

```
dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
labelDir = fullfile(dataSetDir,'trainingLabels');
```

Create an image datastore holding the training images.

```
imds = imageDatastore(imageDir);
```

Define the class names and their associated label IDs.

```
classNames = ["triangle", "background"];
labelIDs = [255 0];
```

Create a pixel label datastore holding the ground truth pixel labels for the training images.

```
pxds = pixelLabelDatastore(labelDir,classNames,labelIDs);
```

Create SegNet layers.

```
imageSize = [32 32];
```

numClasses = 2;
lgraph = segnetLayers(imageSize,numClasses,2)
lgraph =
LayerGraph with properties:
Layers: [31x1 nnet.cnn.layer.Layer]
Connections: [34×2 table]
InputNames: \{'inputImage'\}
OutputNames: \{'pixelLabels'\}

Create a pixel label image datastore for training a semantic segmentation network.

```
pximds = pixelLabelImageDatastore(imds,pxds);
```

Set up training options.

```
options = trainingOptions('sgdm','InitialLearnRate',1e-3, ...
 'MaxEpochs',20,'VerboseFrequency',10);
```

Train the network.

```
net = trainNetwork(pximds,lgraph,options)
```

Training on single CPU.
Initializing input data normalization.

| Epoch | Iteration | Time Elapsed <br> (hh:mm:ss) | Mini-batch Accuracy | Mini-batch Loss | Base Learnin Rate |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 00:00:06 | 39.81\% | 0.7661 | 0.00 |
| 10 | 10 | 00:00:53 | 49.22\% | 0.7373 | 0.00 |
| 20 | 20 | 00: 01:49 | 65.83\% | 0.6916 | 0.00 |

net =
DAGNetwork with properties:
Layers: [31x1 nnet.cnn.layer.Layer]
Connections: [34×2 table]
InputNames: \{'inputImage'\} OutputNames: \{'pixelLabels'\}

Display the network.
plot(lgraph)


## Create SegNet With Custom Encoder-Decoder Depth

Create SegNet layers with an encoder/decoder depth of 4.
imageSize = [480 640 3];
numClasses = 5;
encoderDepth = 4;
lgraph = segnetLayers(imageSize,numClasses,encoderDepth)
lgraph =
LayerGraph with properties:

Layers: [59x1 nnet.cnn.layer.Layer]
Connections: [66x2 table]
InputNames: \{'inputImage'\}
OutputNames: \{'pixelLabels'\}

Display network.
figure
plot(lgraph)


## Input Arguments

## imageSize - Network input image size

2-element vector | 3-element vector
Network input image size, specified as a:

- 2 -element vector in the format [height, width].
- 3-element vector in the format [height, width, depth]. depth is the number of image channels. Set depth to 3 for RGB images, 1 for grayscale images, or to the number of channels for multispectral and hyperspectral images.


## numClasses - Number of classes

integer greater than 1
Number of classes in the semantic segmentation, specified as an integer greater than 1.

## model - Pretrained network model

 'vgg16'|'vgg19'Pretrained network model, specified as 'vgg16' or 'vgg19'. These models have an encoder depth of 5 .

## encoderDepth - Encoder depth

positive integer
Encoder depth, specified as a positive integer.
SegNet is composed of an encoder and corresponding decoder subnetwork. The depth of these networks determines the number of times the input image is downsampled or upsampled as it is processed. The encoder network downsamples the input image by a factor of $2^{D}$, where $D$ is the value of encoderDepth. The decoder network upsamples the encoder network output by a factor of $2^{D}$.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Example: 'NumConvolutionLayers',1

## NumConvolutionLayers - Number of convolutional layer sections

2 (default) | positive integer | vector of positive integers
Number of convolutional layers in each encoder and decoder section, specified as a positive integer or vector of positive integers.

| NumConvolutionLayers | Description |
| :--- | :--- |
| scalar | The same number of layers is used for all encoder and <br> decoder sections. |
| vector | The $k$ th element of NumConvolutionLayers is the <br> number of convolution layers in the $k$ th encoder section <br> and corresponding decoder section. Typical values are <br> in the range [1, 3]. |

## NumOutputChannels - Number of output channels

64 (default) | positive integer | vector of positive integers
Number of output channels for each section in the SegNet encoder network, specified as a positive integer or vector of positive integers. segnetLayers sets the number of output channels in the decoder to match the corresponding encoder section.

| NumOutputChannels | Description |
| :--- | :--- |
| scalar | The same number of output channels is used for all <br> encoder and decoder sections. |
| vector | The $k$ th element of Num0utputChannels is the <br> number of output channels of the $k$ th encoder section <br> and corresponding decoder section. |

## FilterSize - Convolutional layer filter size

3 (default) | positive odd integer | 2-element row vector of positive odd integers
Convolutional layer filter size, specified as a positive odd integer or a 2-element row vector of positive odd integers. Typical values are in the range [3, 7].

| FilterSize | Description |
| :--- | :--- |
| scalar | The filter is square. |


| FilterSize | Description |
| :--- | :--- |
| 2-element row vector | The filter has the size [height width]. |

## Output Arguments

## lgraph - Layers

LayerGraph object
Layers that represent the SegNet network architecture, returned as a layerGraph object.

## Tips

- The sections within the SegNet encoder and decoder subnetworks are made up of convolutional, batch normalization, and ReLU layers.
- All convolutional layers are configured such that the bias term is fixed to zero.
- Convolution layer weights in the encoder and decoder subnetworks are initialized using the 'MSRA' weight initialization method. For 'vgg16' or 'vgg19' models, only the decoder subnetwork is initialized using MSRA.[1]
- Networks produced by segnetLayers support GPU code generation for deep learning once they are trained with trainNetwork. See "Deep Learning Code Generation" (Deep Learning Toolbox) for details and examples.


## References

[1] He, K., X. Zhang, S. Ren, and J. Sun. "Delving Deep Into Rectifiers: Surpassing HumanLevel Performance on ImageNet Classification." Proceedings of the IEEE International Conference on Computer Vision. 2015, 1026-1034.
[2] Badrinarayanan, V., A. Kendall, and R. Cipolla. "Segnet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation." arXiv. Preprint arXiv: 1511.0051, 2015.

## Extended Capabilities

## GPU Code Generation

Generate CUDA® code for NVIDIA ${ }^{\circledR}$ GPUs using GPU Coder ${ }^{\text {TM }}$.
Usage notes and limitations:
For code generation, you must first create a SegNet network by using the segnetLayers function. Then, use the trainNetwork function on the resulting lgraph object to train the network for segmentation. Once the network is trained and evaluated, you can generate code for the DAGNetwork object using GPU Coder.

## See Also

## Objects

DAGNetwork | layerGraph | pixelClassificationLayer

## Functions

deeplabv3plusLayers | evaluateSemanticSegmentation|fcnLayers |
segnetLayers|semanticseg|trainNetwork|unetLayers

## Topics

"Getting Started With Semantic Segmentation Using Deep Learning"
"Deep Learning in MATLAB" (Deep Learning Toolbox)

## Introduced in R2017b

## unetLayers

Create U-Net layers for semantic segmentation

## Syntax

```
lgraph = unetLayers(imageSize,numClasses)
[lgraph,outputSize] = unetLayers(imageSize,numClasses)
___ = unetLayers(imageSize,numClasses,Name,Value)
```


## Description

lgraph $=$ unetLayers(imageSize, numClasses) returns a U-Net network. unetLayers includes a pixel classification layer in the network to predict the categorical label for every pixel in an input image.

Use unetLayers to create the U-Net network architecture. You must train the network using the Deep Learning Toolbox function trainNetwork.
[lgraph,outputSize] = unetLayers(imageSize, numClasses) also returns the size of the output size from the U-Net network.
$\qquad$ = unetLayers(imageSize, numClasses, Name, Value) specifies options using one or more name-value pair arguments. Enclose each property name in quotes. For example, unetLayers(imageSize, numClasses,'NumFirstEncoderFilters',64) additionally sets the number of output channels to 64 for the first encoder stage.

## Examples

## Create U-Net Network with Custom Encoder-Decoder Depth

Create a U-Net network with an encoder-decoder depth of 3 .

```
imageSize = [480 640 3];
```

numClasses = 5;

```
encoderDepth = 3;
lgraph = unetLayers(imageSize,numClasses,'EncoderDepth',encoderDepth)
lgraph =
 LayerGraph with properties:
 Layers: [46x1 nnet.cnn.layer.Layer]
 Connections: [48\times2 table]
 InputNames: {'ImageInputLayer'}
 OutputNames: {'Segmentation-Layer'}
```

Display the network.
plot(lgraph)


## Train U-Net Network for Semantic Segmentation

Load training images and pixel labels into the workspace.

```
dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
labelDir = fullfile(dataSetDir,'trainingLabels');
```

Create an imageDatastore object to store the training images.
imds = imageDatastore(imageDir);
Define the class names and their associated label IDs.

```
classNames = ["triangle","background"];
labelIDs = [255 0];
```

Create a pixelLabelDatastore object to store the ground truth pixel labels for the training images.

```
pxds = pixelLabelDatastore(labelDir,classNames,labelIDs);
```

Create the U-Net network.
imageSize = [32 32];
numClasses = 2;
lgraph $=$ unetLayers(imageSize, numClasses)
lgraph =
LayerGraph with properties:

```
Layers: [58×1 nnet.cnn.layer.Layer] Connections: [61×2 table] InputNames: \{'ImageInputLayer'\} OutputNames: \{'Segmentation-Layer'\}
```

Create a datastore for training the network.
ds = pixelLabelImageDatastore(imds,pxds);
Set training options.

```
options = trainingOptions('sgdm', ...
 'InitialLearnRate',1e-3, ...
 'MaxEpochs',20, ...
 'VerboseFrequency',10);
```

Train the network.

```
net = trainNetwork(ds,lgraph,options)
```

Training on single CPU.
Initializing input data normalization.

| Epoch | Iteration | Time Elapsed <br> (hh:mm:ss) | Mini-batch Accuracy | $\begin{aligned} & \text { Mini-batch } \\ & \text { Loss } \end{aligned}$ | Base Learnin Rate |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 00:00:04 | 79.88\% | 1.8376 | 0.00 |
| 10 | 10 | 00:00:40 | 97.18\% | 0.3447 | 0.00 |
| 20 | 20 | 00:01:20 | 97.95\% | 0.1829 | 0.00 |

```
net =
 DAGNetwork with properties:
```

            Layers: [58×1 nnet.cnn.layer.Layer]
        Connections: [61×2 table]
            InputNames: \{'ImageInputLayer'\}
        OutputNames: \{'Segmentation-Layer'\}
    
## Input Arguments

## imageSize - Network input image size

2-element vector | 3-element vector
Network input image size, specified as a:

- 2 -element vector in the form [height, width].
- 3-element vector in the form [height, width, depth]. depth is the number of image channels. Set depth to 3 for RGB images, to 1 for grayscale images, or to the number of channels for multispectral and hyperspectral images.

```
Data Types: single|double| int8| int16|int32|int64|uint8|uint16|
uint32|uint64
```


## numClasses - Number of classes

```
integer greater than 1
```

Number of classes in the semantic segmentation, specified as an integer greater than 1.
Data Types: single|double |int8|int16|int32|int64|uint8|uint16| uint32|uint64

## Name-Value Pair Arguments

Example: 'EncoderDepth', 3

## EncoderDepth - Encoder depth

4 (default) | positive integer
Encoder depth, specified as a positive integer. U-Net is composed of an encoder subnetwork and a corresponding decoder subnetwork. The depth of these networks determines the number of times the input image is downsampled or upsampled during processing. The encoder network downsamples the input image by a factor of $2^{D}$, where $D$ is the value of EncoderDepth. The decoder network upsamples the encoder network output by a factor of $2^{D}$.

Data Types: single|double|int8|int16|int32|int64|uint8|uint16| uint32|uint64

## NumOutputChannels - Number of output channels

64 (default) | positive integer

Note NumOutputChannels is renamed to NumFirstEncoderFilters and will not be supported in a future release. Use NumFirstEncoderFilters instead.

Number of output channels for the first encoder stage, specified as a positive integer or vector of positive integers. In each subsequent encoder stage, the number of output channels doubles. unetLayers sets the number of output channels in each decoder stage to match the number in the corresponding encoder stage.

Data Types: single|double |int8|int16|int32|int64|uint8|uint16| uint32|uint64

## NumFirstEncoderFilters - Number of output channels for first encoder 32 (default) | positive integer

Number of output channels for the first encoder stage, specified as a positive integer or vector of positive integers. In each subsequent encoder stage, the number of output channels doubles. The unetLayers function sets the number of output channels in each decoder stage to match the number in the corresponding encoder stage.

Data Types: single|double |int8|int16|int32|int64|uint8|uint16| uint32 | uint64

## FilterSize - Convolutional layer filter size

3 (default) | positive odd integer | 2-element row vector of positive odd integers
Convolutional layer filter size, specified as a positive odd integer or a 2-element row vector of positive odd integers. Typical values are in the range [3, 7].

| FilterSize | Description |
| :--- | :--- |
| scalar | The filter is square. |
| 2-element row vector | The filter has the size [height width]. |

Data Types: single | double | int8| int16|int32|int64|uint8|uint16| uint32|uint64

## ConvolutionPadding - Type of padding

'same' (default)|'valid'
Type of padding, specified as 'same' or 'valid'. The type of padding specifies the padding style for the convolution2dLayer in the encoder and the decoder subnetworks. The spatial size of the output feature map depends on the type of padding. If you specify type of padding as:

- ' same' - Zero padding is applied to the inputs to convolution layers such that the output and input feature maps are the same size.
- 'valid' - Zero padding is not applied to the inputs to convolution layers. The convolution layer returns only values of the convolution that are computed without zero padding. The output feature map is smaller than the input feature map.

Note To ensure that the height and width of the inputs to max-pooling layers are even, choose the network input image size to confirm to any one of these criteria:

- If you specify 'ConvolutionPadding' as 'same', then the height and width of the input image must be a multiple of $2^{D}$.
- If you specify 'ConvolutionPadding' as 'valid', then the height and width of the input image must be chosen such that height $-\sum_{i=1}^{D} 2^{i}\left(f_{h}-1\right)$ and width $-\sum_{i=1}^{D} 2^{i}\left(f_{w}-1\right)$ are multiples of $2^{D}$.
where $f_{h}$ and $f_{w}$ are the height and width of the two-dimensional convolution kernel, respectively. $D$ is the encoder depth.


## Data Types: char|string

## Output Arguments

## lgraph - Layers <br> layerGraph object

Layers that represent the U-Net network architecture, returned as a layerGraph object.

## outputSize - Network output image size

three-element vector
Network output image size, returned as a three-element vector of the form [height, width, channels]. channels is the number of output channels and it is equal to the number of classes specified at the input. The height and width of the output image from the network depend on the type of padding convolution.

- If you specify 'ConvolutionPadding' as 'same', then the height and width of the network output image are the same as that of the network input image.
- If you specify 'ConvolutionPadding' as 'valid', then the height and width of the network output image are less than that of the network input image.


## Data Types: double

## More About

## U-Net Architecture

- The U-Net architecture consists of an encoder subnetwork and decoder subnetwork that are connected by a bridge section.
- The encoder and decoder subnetworks in the U-Net architecture consists of multiple stages. EncoderDepth, which specifies the depth of the encoder and decoder subnetworks, sets the number of stages.
- The stages within the U-Net encoder subnetwork consist of two sets of convolutional and ReLU layers, followed by a 2-by-22 max pooling layer. The decoder subnetwork consists of a transposed convolution layer for upsampling, followed by two sets of convolutional and ReLU layers.
- The bridge section consists of two sets of convolution and ReLU layers.
- The bias term of all convolutional layers is initialized to zero.
- Convolution layer weights in the encoder and decoder subnetworks are initialized using the 'He' weight initialization method [2].


## Tips

- Use ' same ' padding in convolution layers to maintain the same data size from input to output and enable the use of a broad set of input image sizes.
- Use patch-based approaches for seamless segmentation of large images. You can extract image patches by using the randomPatchExtractionDatastore function in Image Processing Toolbox.
- Use 'valid ' padding to prevent border artifacts while you use patch-based approaches for segmentation.
- You can use the network created using unetLayers function for GPU code generation after training with trainNetwork. For details and examples, see "Deep Learning Code Generation" (Deep Learning Toolbox).


## Compatibility Considerations

## NumOutputChannels argument in unetLayers is renamed to NumFirstEncoderFilters

Not recommended starting in R2019b
unetLayers argument NumOutputChannels is renamed to NumFirstEncoderFilters. NumOutputChannels will not be supported in a future release. Use NumFirstEncoderFilters instead. To update your code, replace all instances of NumOutputChannels with NumFirstEncoderFilters.

## References

[1] Ronneberger, O., P. Fischer, and T. Brox. "U-Net: Convolutional Networks for Biomedical Image Segmentation." Medical Image Computing and ComputerAssisted Intervention (MICCAI). Vol. 9351, 2015, pp. 234-241.
[2] He, K., X. Zhang, S. Ren, and J. Sun. "Delving Deep Into Rectifiers: Surpassing HumanLevel Performance on ImageNet Classification." Proceedings of the IEEE International Conference on Computer Vision. 2015, 1026-1034.

## Extended Capabilities

## GPU Code Generation

Generate CUDA® code for NVIDIA® GPUs using GPU Coder ${ }^{\mathrm{TM}}$.
Usage notes and limitations:
You can use the U-Net network for code generation. First, create the network using the unetLayers function. Then, use the trainNetwork function to train the network for segmentation. After training and evaluating the network, you can generate code for the DAGNetwork object by using GPU Coder.

## See Also

## Objects

DAGNetwork|layerGraph | pixelClassificationLayer

## Functions

deeplabv3plusLayers | evaluateSemanticSegmentation|fcnLayers | segnetLayers|semanticseg|trainNetwork

## Topics

"Semantic Segmentation of Multispectral Images Using Deep Learning"
"Getting Started With Semantic Segmentation Using Deep Learning"
"Deep Learning in MATLAB" (Deep Learning Toolbox)

## Introduced in R2018b

## unet3dLayers

Create 3-D U-Net layers for semantic segmentation of volumetric images

## Syntax

```
lgraph = unet3dLayers(inputSize,numClasses)
[lgraph,outputSize] = unet3dLayers(inputSize,numClasses)
[___] = unet3dLayers(inputSize,numClasses,Name,Value)
```


## Description

lgraph $=$ unet3dLayers(inputSize, numClasses) returns a 3-D U-Net network. unet3dLayers includes a pixel classification layer in the network to predict the categorical label for each pixel in an input volumetric image.

Use unet3dLayers to create the network architecture for 3-D U-Net. Train the network using the Deep Learning Toolbox function trainNetwork.
[lgraph,outputSize] = unet3dLayers(inputSize,numClasses) also returns the size of an output volumetric image from the 3-D U-Net network.

[] = unet3dLayers(inputSize, numClasses,Name, Value) specifies options using one or more name-value pair arguments in addition to the input arguments in previous syntax.

## Examples

## Create 3-D U-Net Network with Custom Encoder-Decoder Depth

Create a 3-D U-Net network with an encoder-decoder depth of 2 . Specify the number of output channels for the first convolution layer as 16.

```
imageSize = [128 128 128 3];
numClasses = 5;
```

```
encoderDepth = 2;
lgraph = unet3dLayers(imageSize,numClasses,'EncoderDepth',encoderDepth,'NumFirstEncode
lgraph =
 LayerGraph with properties:
 Layers: [40\times1 nnet.cnn.layer.Layer]
 Connections: [41\times2 table]
 InputNames: {'ImageInputLayer'}
 OutputNames: {'Segmentation-Layer'}
```

Display the network.
figure('Units','Normalized','Position',[0 0 0.5 0.55]); plot(lgraph)


Use the deep learning network analyzer to visualize the 3-D U-Net network. analyzeNetwork(lgraph);


The visualization shows the number of output channels for each encoder stage. The first convolution layers in encoder stages 1 and 2 have 16 and 32 output channels, respectively. The second convolution layers in encoder stages 1 and 2 have 32 and 64 output channels, respectively.

## Input Arguments

## inputSize - Network input image size

three-element vector | four-element vector

Network input image size representing a volumetric image, specified as one of these values:

- Three-element vector of the form [height width depth]
- Four-element vector of the form [height width depth channel]. channel denotes the number of image channels.

Note Network input image size must be chosen such that the dimension of the inputs to the max-pooling layers must be even numbers.

```
Data Types: single| double| int8| int16| int32| int64|uint8|uint16| uint32|uint64
```


## numClasses - Number of classes

scalar greater than 1
Number of classes to segment, specified as a scalar greater than 1.
Data Types: single | double|int8|int16|int32|int64|uint8|uint16| uint32|uint64

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: unet3dLayers(inputSize, numClasses, 'EncoderDepth' , 4)

## EncoderDepth - Encoder depth

3 (default) | positive integer
Encoder depth, specified as a positive integer. The 3-D U-Net network is composed of an encoder subnetwork and a corresponding decoder subnetwork. The depth of the network determines the number of times the input volumetric image is downsampled or upsampled during processing. The encoder network downsamples the input volumetric image by a factor of $2^{D}$, where $D$ is the value of EncoderDepth. The decoder network upsamples the encoder network output by a factor of $2^{D}$. The depth of the decoder subnetwork is same as that of the encoder subnetwork.

## Data Types: single|double|int8|int16|int32|int64|uint8|uint16| uint32 | uint64

## NumFirstEncoderFilters - Number of output channels for first convolution layer <br> 32 (default) | positive integer

Number of output channels for the first convolution layer in the first encoder stage, specified as a positive integer. The number of output channels for the second convolution layer and the convolution layers in the subsequent encoder stages is set based on this value.

Given stage $=\{1,2, \ldots$, EncoderDepth $\}$, the number of output channels for the first convolution layer in each encoder stage is equal to $2^{\text {stage-1 }}$ NumFirstEncoderFilters

The number of output channels for the second convolution layer in each encoder stage is equal to
$2^{\text {stage }}$ NumFirstEncoderFilters
The unet3dLayers function sets the number of output channels for convolution layers in the decoder stages to match the number in the corresponding encoder stage.

Data Types: single|double|int8|int16|int32|int64|uint8|uint16| uint32|uint64

## FilterSize - Size of 3-D convolution filter

3 (default) | positive scalar integer | three-element row vector of positive integers
Size of the 3-D convolution filter, specified as a positive scalar integer or a three-element row vector of positive integers of the form $\left[f_{h} f_{w} f_{d}\right.$ ]. Typical values for filter dimensions are in the range $[3,7]$.

If you specify 'FilterSize' as a positive scalar integer of value $a$, then the convolution kernel is of uniform size [a a a].

Data Types: single|double|int8|int16|int32|int64|uint8|uint16| uint32 | uint64

## ConvolutionPadding - Type of padding

'same' (default)|'valid'
Type of padding, specified as 'same' or 'valid'. The type of padding specifies the padding style for the convolution3dLayer in the encoder and the decoder
subnetworks. The spatial size of the output feature map depends on the type of padding. Specify one of these options:

- 'same' - Zero padding is applied to the inputs to convolution layers such that the output and input feature maps are the same size.
- 'valid' - Zero padding is not applied to the inputs to convolution layers. The convolution layer returns only values of the convolution that are computed without zero padding. The output feature map is smaller than the input feature map.

Note To ensure that the height, width, and depth values of the inputs to max-pooling layers are even, choose the network input image size to confirm to any one of these criteria:

- If you specify 'ConvolutionPadding' as 'same', then the height, width, and depth of the input volumetric image must be a multiple of $2^{D}$.
- If you specify 'ConvolutionPadding' as 'valid', then the height, width, and depth of the input volumetric image must be chosen such that height $-\sum_{i=1}^{D} 2^{i}\left(f_{h}-1\right)$, width $-\sum_{i=1}^{D} 2^{i}\left(f_{w}-1\right)$, and depth $-\sum_{i=1}^{D} 2^{i}\left(f_{d}-1\right)$ are multiples of $2^{\text {D }}$.
where $f_{h}, f_{w}$ and $f_{d}$ are the height, width, and depth of the three-dimensional convolution kernel, respectively. $D$ is the encoder depth.


## Data Types: char|string

## Output Arguments

## lgraph - Layers

layerGraph object
Layers that represent the 3-D U-Net network architecture, returned as a layerGraph object.

## outputSize - Network output image size

## four-element vector

Network output image size, returned as a four-element vector of the form [height, width, depth, channels]. channels is the number of output channels and is equal to the number of classes specified at the input. The height, width, and depth of the output image from the network depend on the type of padding convolution.

- If you specify 'ConvolutionPadding' as 'same', then the height, width, and depth of the network output image are the same as that of the network input image.
- If you specify 'ConvolutionPadding' as 'valid', then the height, width, and depth of the network output image are less than that of the network input image.


## Data Types: double

## More About

## 3-D U-Net Architecture

- The 3-D U-Net architecture consists of an encoder subnetwork and decoder subnetwork that are connected by a bridge section.
- The encoder and decoder subnetworks in the 3-D U-Net architecture consist of multiple stages. EncoderDepth, which specifies the depth of the encoder and decoder subnetworks, sets the number of stages.
- Each encoder stage in the 3-D U-Net network consists of two sets of convolutional, batch normalization, and ReLU layers. The ReLU layer is followed by a 2-by-2-by-2 max pooling layer. Likewise, each decoder stage consists of a transposed convolution layer for upsampling, followed by two sets of convolutional, batch normalization, and ReLU layers.
- The bridge section consists of two sets of convolution, batch normalization, and ReLU layers.
- The bias term of all convolution layers is initialized to zero.
- Convolution layer weights in the encoder and decoder subnetworks are initialized using the ' He ' weight initialization method.


## Tips

- Use ' same ' padding in convolution layers to maintain the same data size from input to output and enable the use of a broad set of input image sizes.
- Use patch-based approaches for seamless segmentation of large images. You can extract image patches by using the randomPatchExtractionDatastore function in Image Processing Toolbox.
- Use 'valid' padding in convolution layers to prevent border artifacts while you use patch-based approaches for segmentation.


## References

[1] Çiçek, Ö., A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger. "3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation." Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science. Vol. 9901, pp. 424-432. Springer, Cham.

## See Also

## Objects

DAGNetwork | dicePixelClassificationLayer | layerGraph | pixelClassificationLayer

## Functions

deeplabv3plusLayers | evaluateSemanticSegmentation|fcnLayers | segnetLayers|semanticseg|trainNetwork|unetLayers

## Topics

"Getting Started With Semantic Segmentation Using Deep Learning"
"Deep Learning in MATLAB" (Deep Learning Toolbox)

## Introduced in R2019b

## countEachLabel

Count occurrence of pixel or box labels

## Syntax

counts = countEachLabel(ds)

## Description

counts = countEachLabel(ds) returns a table containing information about the pixel or box labels and count for the input datastore, ds .

## Examples

## Count Unique Labels in Datastore

Load a table that contains bounding boxes with labels for vehicles.
load('vehicleTrainingData.mat');
Load a table that contains bounding boxes with labels for stop signs and cars.
load('stopSignsAndCars.mat');
Combine ground truth boxes and labels, excluding the image filenames in the first column.

```
vehiclesTbl = vehicleTrainingData(:,2:end);
stopSignsTbl = stopSignsAndCars(:,2:end);
```

Create a boxLabelDatastore using 2 tables, one with vehicle label data and the other with stop signs label data.
blds = boxLabelDatastore(vehiclesTbl,stopSignsTbl);
tbl = countEachLabel(blds)

| tbl $=4 \times 3$ table <br> Label | Count | ImageCount |
| :---: | :---: | :---: | :---: |
|   <br>   <br> vehicle 336 <br> stopSign 42 | 295 |  |
| carRear | 10 | 41 |
| carFront | 9 | 9 |

Create a histogram plot using the labels and the respective label counts.
histogram('Categories',tbl.Label, 'BinCounts',tbl.Count);
Create another histogram overlaying the respective image counts.
hold on;
histogram('Categories',tbl.Label,'BinCounts',tbl.ImageCount);


## Pass Class Weights to Pixel Classification Layer

Set the location of image and pixel label data.

```
dataDir = fullfile(toolboxdir('vision'),'visiondata');
imDir = fullfile(dataDir,'building');
pxDir = fullfile(dataDir,'buildingPixelLabels');
```

Create a pixel label image datastore using the ground truth images in imds and the pixel labeled images in pxds.

```
imds = imageDatastore(imDir);
classNames = ["sky" "grass" "building" "sidewalk"];
pixelLabelID = [1 2 2 3 4];
pxds = pixelLabelDatastore(pxDir,classNames,pixelLabelID);
pximds = pixelLabelImageDatastore(imds,pxds);
```

Tabulate pixel label counts in dataset.

```
tbl = countEachLabel(pximds)
```

```
tbl=4\times3 table
 Name
```

                                    PixelCount
                                    ImagePixelCount
    \{'sky' \} \(3.1485 \mathrm{e}+05 \quad 1.536 \mathrm{e}+06\)
    \{'grass' \} \(1.5979 \mathrm{e}+05 \quad 1.536 \mathrm{e}+06\)
    \{'building'\} \(1.0312 \mathrm{e}+06 \quad 1.536 \mathrm{e}+06\)
    \(\begin{array}{ll}\text { \{'sidewalk'\} } & 25313 \\ 9.216 e+05\end{array}\)
    Balance classes using uniform prior weighting.

```
prior = 1/numel(classNames);
uniformClassWeights = prior./tbl.PixelCount
uniformClassWeights = 4×1
10-5}
 0.0794
 0.1565
 0.0242
 0.9876
```

Balance classes using inverse frequency weighting.
totalNumberOfPixels = sum(tbl.PixelCount);
frequency = tbl.PixelCount / totalNumberOfPixels;
invFreqClassWeights = 1./frequency
invFreqClassWeights $=4 \times 1$
4.8632
9.5827
1.4848
60.4900

Balance classes using median frequency weighting.

```
freq = tbl.PixelCount ./ tbl.ImagePixelCount
freq = 4×1
 0.2050
 0.1040
 0.6714
 0.0275
medFreqClassWeights = median(freq) ./ freq
medFreqClassWeights = 4×1
 0.7538
 1.4852
 0.2301
 5.6252
```

Pass the class weights using median frequency weighting to the pixel classification layer.
layer = pixelClassificationLayer('Classes',tbl.Name, ...
ClassWeights', medFreqClassWeights)
layer =
PixelClassificationLayer with properties:
Name: ' '
Classes: [sky grass building sidewalk]
ClassWeights: [4×1 double]
OutputSize: 'auto'
Hyperparameters
LossFunction: 'crossentropyex'

## Input Arguments

## ds - Datastore with labeled data

PixelLabelDatastore object|pixelLabelImageDatastore object | boxLabelDatastore object

Datastore with labeled data for training a semantic segmentation network or an object detection network, specified as a pixelLabelDatastore, pixelLabelImageDatastore, or boxLabelDatastore object.

## Output Arguments

## counts - Label information

table
Label information, returned as a table. The labeled data table contain three variables.
For pixelLabelDatastore and pixelLabelImageDatastore inputs, the counts output contains:

| Pixel Count Variables | Description |
| :--- | :--- |
| Name | Pixel label class name |
| PixelCount | Number of pixels in class |
| ImagePixelCount | Total number of pixels in images that had <br> an instance of the class |

For boxLabelDatastore inputs, the counts output table contains:

| Box Count Variables | Description |
| :--- | :--- |
| Label | Box label class name |
| Count | Total number of labels of the class across <br> all images |
| ImageCount | Total number of images that contain one or <br> more instances of the class |

## Tips

The output of countEachLabel can be used to calculate class weights for class balancing. For example, for labeled pixel data information in tbl :

- Uniform class balancing weights each class such that each contains a uniform prior probability:

```
numClasses = height(tbl)
prior = 1/numClasses;
classWeights = prior./tbl.PixelCount
```

- Inverse frequency balancing weights each class such that underrepresented classes are given higher weight:

```
totalNumberOfPixels = sum(tbl.PixelCount)
frequency = tbl.PixelCount / totalNumberOfPixels;
classWeights = 1./frequency
```

- Median frequency balancing weights each class using the median frequency. The weight for each class is defined as median(imageFreq)/imageFreq(c), where imageFreq(c) represents the number of pixels of the class divided by the total number of pixels in images that had an instance of the class (c):

```
imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount
classWeights = median(imageFreq) ./ imageFreq
```

The calculated class weights can be passed to the pixelClassificationLayer.

## See Also

## Functions

trainNetwork

## Objects

boxLabelDatastore|pixelClassificationLayer|pixelLabelImageDatastore

## Introduced in R2017b

## reset

Reset datastore to initial state

## Syntax

```
reset(ds)
```


## Description

reset ( ds ) resets the label datastore specified by ds to the state where no data has been read from it. Resetting the datastore enables you to read from it again.

## Input Arguments

ds - Datastore with labeled data
PixelLabelDatastore object | pixelLabelImageDatastore object | boxLabelDatastore object

Datastore with labeled data for training a semantic segmentation network or an object detection network, specified as a pixelLabelDatastore, pixelLabelImageDatastore, or boxLabelDatastore object.

## See Also

boxLabelDatastore|pixelClassificationLayer|pixelLabelImageDatastore |trainNetwork

Introduced in R2017b

## readimage

Read specified pixel label data file

## Syntax

$\mathrm{C}=$ readimage $(\mathrm{pxds}, \mathrm{k})$
[C,info] = readimage(pxds,k)

## Description

$C=$ readimage $(p x d s, k)$ returns the kth file in the pixel label datastore specified by pxds.
[C,info] = readimage $(\mathrm{pxds}, \mathrm{k})$ also returns information about the extracted data in info, including metadata.

## Input Arguments

## pxds - Input pixel label datastore

PixelLabelDatastore object
Input pixel label datastore, specified as a PixelLabelDatastore object.
k - File number
positive integer
File number to read from the pixel label datastore, specified as a positive integer.

## Output Arguments

## C - Output data

categorical matrix
Output data, returned as a categorical matrix.

## info - Information about read data <br> structure array

Information about read data, returned as a structure array. The structure array can contain the following fields.

| Field Name | Description |
| :--- | :--- |
| Filename | Fully resolved path containing the path string, <br> name of the file, and file extension. |
| FileSize | Total file size, in bytes. |

## See Also

datastore

Introduced in R2017b

## readall

Read all data in datastore

## Syntax

data $=$ readall(ds)

## Description

data $=$ readall(ds) returns all the data contained in the label datastore specified by ds.

If all the data in the datastore does not fit in memory, then readall returns an error.

## Input Arguments

## ds - Datastore with labeled data

PixelLabelDatastore object| pixelLabelImageDatastore object | boxLabelDatastore object

Datastore with labeled data for training a semantic segmentation network or an object detection network, specified as a pixelLabelDatastore, pixelLabelImageDatastore, or boxLabelDatastore object.

## Output Arguments

## data - Output data

cell array of categorical matrices | M-by-2 cell array | table
Output data, returned as an $M$-by-2 cell array, cell array of categorical matrices, or a table.


## See Also

boxLabelDatastore|pixelClassificationLayer|pixelLabelImageDatastore |trainNetwork

## Introduced in R2017b

## preview

Reads first image from pixel label datastore

## Syntax

C = preview(pxds)

## Description

$C=p r e v i e w(p x d s)$ reads first pixel labeled from datastore $p x d s$ without changing the current position.

## Input Arguments

## pxds - Input pixel label datastore

PixelLabelDatastore object
Input pixel label datastore, specified as a PixelLabelDatastore object.

## Output Arguments

## C - First pixel label image

categorical matrix
First pixel label image, returned as a categorical matrix.

## See Also

datastore

Introduced in R2017b

## partition

Partition a label datastore

## Syntax

```
subds = partition(ds,N,index)
subds = partition(ds,'Files',fileIndex)
subds = partition(ds,'Files',filename)
```


## Description

subds $=$ partition(ds, $N$, index) partitions a datastore ds into $N$ parts and returns the partition corresponding to index.
subds = partition(ds,'Files',fileIndex) partitions the PixelLabelDatastore or pixelLabelImageDatastore by files. The partitioned datastore corresponds to the index in the Files property of the datastore.
subds = partition(ds,'Files',filename) partitions the PixelLabelDatastore or pixelLabelImageDatastore by files. The partitioned datastore corresponds to the file specified by filename.

## Examples

## Partition a Datastore

Load training data that contains bounding boxes with labels for vehicles.

```
data = load('vehicleTrainingData.mat');
trainingData = data.vehicleTrainingData;
blds = boxLabelDatastore(trainingData(:,2:end));
```

Use the partition function to partition the box label datastore. The output contains the first 5 rows of the training data.

```
subds = partition(blds,59,5);
```

Read the data. Use the hasdata function to check for data.

```
while hasdata(subds)
 % Read one row of box labels at a time
 bxLabels = read(subds);
end
```


## Input Arguments

## ds - Datastore with labeled data

## PixelLabelDatastore object | pixelLabelImageDatastore object | boxLabelDatastore object

Datastore with labeled data for training a semantic segmentation network or an object detection network, specified as a pixelLabelDatastore, pixelLabelImageDatastore, or boxLabelDatastore object.

## N - Number of partitions

## positive integer

Number of partitions to divide datastore, specified as a positive integer. To obtain an estimate for a reasonable number of partitions, use the numpartitions function.

```
numWorkers = 3;
p = parpool('local',numWorkers);
n = numpartitions(ds,p);
parfor ii=1:n
 subds = partition(ds,n,ii);
 while hasdata(subds)
 data = read(subds);
 end
end
```

Example: 3
Data Types: double

## index - Index

positive integer

Index, specified as an integer. The index points to a partitioned datastore of the $N$ number of partitioned datastores.

## Example: 1

Data Types: double

## fileIndex - File index

positive integer
File index of a file stored within the Files property of a pixelLabelDatastore or pixelLabelImageDatastore, specified as a positive integer.

## Example: 1

Data Types: double

## filename - file name

character vector
File name, specified as a character vector.
Example: 'file1.csv'
Example: '../dir/data/file1.csv'
Example: 'hdfs://myserver:7867/data/file1.txt'
Data Types: char

## Output Arguments

## subds - Output datastore

datastore object
Output datastore, returned as a datastore object. The output datastore is of the same type as the input datastore, ds.

## See Also

boxLabelDatastore|pixelClassificationLayer|pixelLabelImageDatastore |trainNetwork

## Introduced in R2017b

## numpartitions

Number of partitions for a datastore

## Syntax

$\mathrm{N}=$ numpartitions(ds)
$N=$ numpartitions(ds, pool)

## Description

$\mathrm{N}=$ numpartitions(ds) returns the default number of partitions for a label datastore ds.
$\mathrm{N}=$ numpartitions(ds, pool) returns the number of partitions needed to parallelize datastore access over the parallel pool specified by pool. To parallelize datastore access, you must have Parallel Computing Toolbox installed.

## Input Arguments

ds - Datastore with labeled data
PixelLabelDatastore object | pixelLabelImageDatastore object | boxLabelDatastore object

Datastore with labeled data for training a semantic segmentation network or an object detection network, specified as a pixelLabelDatastore, pixelLabelImageDatastore, or boxLabelDatastore object.
pool - Parallel pool
parallel pool object
Parallel pool object.
Example: gcp

## See Also

Functions<br>datastore|numpartitions<br>Objects<br>boxLabelDatastore|pixelLabelDatastore|pixelLabelImageDatastore<br>Introduced in R2017b

## hasdata

Determine if data is available to read from datastore

## Syntax

tf = hasdata(ds)

## Description

$t f=$ hasdata (ds) returns logical 1 (true) if there is data available to read from the datastore specified by ds. Otherwise, it returns logical 0 (false).

## Examples

## Determine Pixel Data Available to Read

Check if pixel label data can be read from a datastore.
Set the location of the image and pixel label data.

```
dataDir = fullfile(toolboxdir('vision'),'visiondata');
imDir = fullfile(dataDir,'building');
pxDir = fullfile(dataDir,'buildingPixelLabels');
```

Create an image and pixel label datastore.

```
imds = imageDatastore(imDir);
classNames = ["sky" "grass" "building" "sidewalk"];
pixelLabelID = [l 2 3 4];
pxds = pixelLabelDatastore(pxDir,classNames,pixelLabelID);
```

While data is available in the datastore, read the data.

```
while hasdata(pxds)
 T = read(pxds);
end
```


## Input Arguments

## ds - Datastore with labeled data

## PixelLabelDatastore object | pixelLabelImageDatastore object | boxLabelDatastore object

Datastore with labeled data for training a semantic segmentation network or an object detection network, specified as a pixelLabelDatastore, pixelLabelImageDatastore, or boxLabelDatastore object.

## Output Arguments

## tf - Datastore data status <br> 1 | 0

Datastore data status, returned as a logical 1 (true) if there is data available to read from the datastore specified by ds. Otherwise, it returns logical 0 (false).

See Also<br>boxLabelDatastore|datastore|pixelLabelDatastore<br>\section*{Introduced in R2017b}

## semanticseg

Semantic image segmentation using deep learning

## Syntax

```
C = semanticseg(I,network)
[C,score,allScores] = semanticseg(I,network)
[___] = semanticseg(I,network,roi)
pxds = semanticseg(ds,network)
[____] = semanticseg(___ ,Name,Value)
```


## Description

$C=$ semanticseg(I, network) returns a semantic segmentation of the input image using deep learning. The input network must be either a SeriesNetwork or DAGNetwork object.
[C,score,allScores] = semanticseg(I, network) returns a semantic segmentation of the input image with the classification scores for each categorical label in C. The function returns the scores in an array that corresponds to each pixel or voxel in the input image. allScores contains the scores for all label categories that the input network can classify.
[___ ] = semanticseg (I, network, roi) returns a semantic segmentation for a rectangular subregion of the input image.
pxds = semanticseg(ds, network) returns the semantic segmentation for a collection of images in ds, a datastore object ds.

The function supports parallel computing using multiple MATLAB workers. You can enable parallel computing using the "Computer Vision Toolbox Preferences" dialog.
[___] = semanticseg (__ ,Name, Value) returns semantic segmentation with additional options specified by one or more name-value pair arguments.

## Examples

## Semantic Image Segmentation

Overlay segmentation results on an image and display the results.
Load a pretrained network.

```
data = load('triangleSegmentationNetwork');
net = data.net
net =
 SeriesNetwork with properties:
 Layers: [10x1 nnet.cnn.layer.Layer]
 InputNames: {'imageinput'}
 OutputNames: {'classoutput'}
```

List the network layers.

```
net.Layers
ans =
 10x1 Layer array with layers:
```

| 1 | 'imageinput' | Image Input | $32 \times 32 \times 1$ images with 'zerocen |
| :--- | :--- | :--- | :--- |
| 2 | 'conv_1' | Convolution | $643 \times 3 \times 1$ convolutions with |
| 3 | 'relu_1' | ReLU | ReLU |
| 4 | 'maxpool' | Max Pooling | $2 \times 2$ max pooling with stride |
| 5 | 'conv_2' | Convolution | $643 \times 3 \times 64$ convolutions with |
| 6 | 'relu_2' | ReLU | ReLU |
| 7 | 'transposed-conv' | Transposed Convolution | $644 \times 4 \times 64$ transposed convolu |
| 8 | 'conv3' | Convolution | $21 \times 1 \times 64$ convolutions with s |
| 9 | 'softmax' | Softmax | softmax |
| 10 | 'classoutput' | Pixel Classification Layer | Class weighted cross-entropy |

Read and display the test image.

```
I = imread('triangleTest.jpg');
figure
imshow(I)
```



Perform semantic image segmentation.
[C ,scores] = semanticseg(I, net);
Overlay segmentation results on the image and display the results.
B = labeloverlay(I, C);
figure
imshow(B)


Display the classification scores.

```
figure
imagesc(scores)
axis square
colorbar
```



Create a binary mask with only the triangles.
$\mathrm{BW}=\mathrm{C}==$ 'triangle';
figure
imshow(BW)


## Evaluate Semantic Segmentation Test Set

Run semantic segmentation on a test set of images and compare the results against ground truth data.

Load a pretrained network.

```
data = load('triangleSegmentationNetwork');
net = data.net;
```

Load test images using imageDatastore.

```
dataDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
testImageDir = fullfile(dataDir,'testImages');
imds = imageDatastore(testImageDir)
imds =
 ImageDatastore with properties:
```

```
 Files: {
 ...\toolbox\vision\visiondata\triangleImages\testImage
 ...\toolbox\vision\visiondata\triangleImages\testImage
 ...\toolbox\vision\visiondata\triangleImages\testImages
 and 97 more
}
AlternateFileSystemRoots: {}
 ReadSize: 1
 Labels: {}
 ReadFcn: @readDatastoreImage
```

Load ground truth test labels.
testLabelDir = fullfile(dataDir,'testLabels');
classNames = ["triangle" "background"];
pixelLabelID = [255 0];
pxdsTruth = pixelLabelDatastore(testLabelDir,classNames,pixelLabelID);

Run semantic segmentation on all of the test images.

```
pxdsResults = semanticseg(imds,net,'MiniBatchSize',32,'WriteLocation',tempdir);
Running semantic segmentation network
* Processed 100 images.
```

Compare the results against the ground truth.

```
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth)
```

Evaluating semantic segmentation results

```
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 100 images.
* Finalizing... Done.
* Data set metrics:
```

| GlobalAccuracy | MeanAccuracy | MeanIoU | WeightedIoU | MeanBFScore |
| :---: | :---: | :---: | :---: | :---: |
| 0.90624 |  |  |  |  |

metrics =
semanticSegmentationMetrics with properties:

```
 ConfusionMatrix: [2x2 table]
NormalizedConfusionMatrix: [2x2 table]
 DataSetMetrics: [1x5 table]
 ClassMetrics: [2x3 table]
 ImageMetrics: [100x5 table]
```


## Define Custom Pixel Classification Layer with Dice Loss

Define and create a custom pixel classification layer that uses Dice loss.
You can use this layer to train semantic segmentation networks. To learn more about creating custom deep learning layers, see "Define Custom Deep Learning Layers" (Deep Learning Toolbox).

## Dice Loss

The Dice loss is based on the Sørensen-Dice similarity coefficient for measuring the overlap between two segmented images. The generalized Dice loss [1,2] $L$ for between one image $Y$ and the corresponding ground truth $T$ is given by
$L=1-\frac{2 \sum_{k=1}^{K} w_{k} \sum_{m=1}^{M} Y_{k m} T_{k m}}{\sum_{k=1}^{K} w_{k} \sum_{m}^{M}={ }_{1} Y_{k m}^{2}+T_{k m}^{2}}$,
where $K$ is the number of classes, $M$ is the number of elements along the first two dimensions of $Y$, and $w_{k}$ is a class-specific weighting factor that controls the contribution each class makes to the loss. $w_{k}$ is typically the inverse area of the expected region:

$$
w_{k}=\frac{1}{\left(\sum_{m=1}^{M} T_{k m}\right)^{2}}
$$

This weighting helps counter the influence of larger regions on the Dice score and makes it easier for the network to learn how to segment smaller regions.

## Classification Layer Template

Copy the classification layer template into a new file in MATLAB®. This template outlines the structure of a classification layer and includes the functions that define the layer
behavior. The rest of the example shows how to complete the dicePixelClassificationLayer.
classdef dicePixelClassificationLayer < nnet.layer.ClassificationLayer
properties
\% Optional properties
end
methods
function loss = forwardLoss(layer, Y, T)
\% Layer forward loss function goes here.
end
function dLdY = backwardLoss(layer, Y, T)
\% Layer backward loss function goes here.
end
end
end

## Declare Layer Properties

By default, custom output layers have the following properties:

- Name - Layer name, specified as a character vector or a string scalar. To include this layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with this layer and Name is set to ' ' ' then the software automatically assigns a name at training time.
- Description - One-line description of the layer, specified as a character vector or a string scalar. This description appears when the layer is displayed in a Layer array. If you do not specify a layer description, then the software displays the layer class name.
- Type - Type of the layer, specified as a character vector or a string scalar. The value of Type appears when the layer is displayed in a Layer array. If you do not specify a layer type, then the software displays 'Classification layer' or 'Regression layer'.

Custom classification layers also have the following property:

- Classes - Classes of the output layer, specified as a categorical vector, string array, cell array of character vectors, or 'auto'. If Classes is 'auto', then the software automatically sets the classes at training time. If you specify a string array or cell
array of character vectors str, then the software sets the classes of the output layer to categorical(str,str). The default value is 'auto'.

If the layer has no other properties, then you can omit the properties section.
The Dice loss requires a small constant value to prevent division by zero. Specify the property, Epsilon, to hold this value.

```
classdef dicePixelClassificationLayer < nnet.layer.ClassificationLayer
 properties(Constant)
 % Small constant to prevent division by zero.
 Epsilon = 1e-8;
 end
```

end

## Create Constructor Function

Create the function that constructs the layer and initializes the layer properties. Specify any variables required to create the layer as inputs to the constructor function.

Specify an optional input argument name to assign to the Name property at creation.

```
function layer = dicePixelClassificationLayer(name)
 % layer = dicePixelClassificationLayer(name) creates a Dice
 % pixel classification layer with the specified name.
 % Set layer name.
 layer.Name = name;
 % Set layer description.
 layer.Description = 'Dice loss';
end
```


## Create Forward Loss Function

Create a function named forwardLoss that returns the weighted cross entropy loss between the predictions made by the network and the training targets. The syntax for forwardLoss is loss = forwardLoss(layer, $\mathrm{Y}, \mathrm{T}$ ), where Y is the output of the previous layer and T represents the training targets.

For semantic segmentation problems, the dimensions of $T$ match the dimension of $Y$, where Y is a 4-D array of size H -by-W-by-K-by- N , where K is the number of classes, and N is the mini-batch size.

The size of $Y$ depends on the output of the previous layer. To ensure that $Y$ is the same size as T , you must include a layer that outputs the correct size before the output layer. For example, to ensure that $Y$ is a 4-D array of prediction scores for $K$ classes, you can include a fully connected layer of size K or a convolutional layer with K filters followed by a softmax layer before the output layer.

```
function loss = forwardLoss(layer, Y, T)
 % loss = forwardLoss(layer, Y, T) returns the Dice loss between
 % the predictions Y and the training targets T.
 % Weights by inverse of region size.
 W = 1 ./ sum(sum(T,1),2).^2;
 intersection = sum(sum(Y.*T,1),2);
 union = sum(sum(Y.^2 + T.^2, 1),2);
 numer = 2*sum(W.*intersection,3) + layer.Epsilon;
 denom = sum(W.*union,3) + layer.Epsilon;
 % Compute Dice score.
 dice = numer./denom;
 % Return average Dice loss.
 N = size(Y,4);
 loss = sum((1-dice))/N;
end
```


## Create Backward Loss Function

Create the backward loss function that returns the derivatives of the Dice loss with respect to the predictions Y . The syntax for backwardLoss is loss = backwardLoss (layer, $\mathrm{Y}, \mathrm{T}$ ), where Y is the output of the previous layer and T represents the training targets.

The dimensions of $Y$ and $T$ are the same as the inputs in forwardLoss.

```
function dLdY = backwardLoss(layer, Y, T)
 % dLdY = backwardLoss(layer, Y, T) returns the derivatives of
 % the Dice loss with respect to the predictions Y.
```

```
 % Weights by inverse of region size.
 W = 1 ./ sum(sum(T,1),2).^2;
 intersection = sum(sum(Y.*T,1),2);
 union = sum(sum(Y.^2 + T.^2, 1),2);
 numer = 2*sum(W.*intersection,3) + layer.Epsilon;
 denom = sum(W.*union,3) + layer.Epsilon;
 N = size(Y,4);
 dLdY = (2*W.*Y.*numer./denom.^2 - 2*W.*T./denom)./N;
end
```


## Completed Layer

The completed layer is provided in dicePixelClassificationLayer.m.

```
classdef dicePixelClassificationLayer < nnet.layer.ClassificationLayer
 % This layer implements the generalized Dice loss function for training
 % semantic segmentation networks.
```

    properties(Constant)
        \% Small constant to prevent division by zero.
        Epsilon = 1e-8;
    end
    methods
    ```
function layer = dicePixelClassificationLayer(name)
 % layer = dicePixelClassificationLayer(name) creates a Dice
 % pixel classification layer with the specified name.
 % Set layer name.
 layer.Name = name;
 % Set layer description.
 layer.Description = 'Dice loss';
end
function loss = forwardLoss(layer, Y, T)
```

```
 % Weights by inverse of region size.
 W = 1 ./ sum(sum(T,1),2).^2;
 intersection = sum(sum(Y.*T,1),2);
 union = sum(sum(Y.^2 + T.^2, 1),2);
 numer = 2*sum(W.*intersection,3) + layer.Epsilon;
 denom = sum(W.*union,3) + layer.Epsilon;
 % Compute Dice score.
 dice = numer./denom;
 % Return average Dice loss.
 N = size(Y,4);
 loss = sum((1-dice))/N;
 end
 function dLdY = backwardLoss(layer, Y, T)
 % dLdY = backwardLoss(layer, Y, T) returns the derivatives of
 % the Dice loss with respect to the predictions Y.
 % Weights by inverse of region size.
 W = 1 ./ sum(sum(T,1),2).^2;
 intersection = sum(sum(Y.*T,1),2);
 union = sum(sum(Y.^2 + T.^2, 1),2);
 numer = 2*sum(W.*intersection,3) + layer.Epsilon;
 denom = sum(W.*union,3) + layer.Epsilon;
 N = size(Y,4);
 dLdY = (2*W.*Y.*numer./denom.^2 - 2*W.*T./denom)./N;
 end
 end
end
```


## GPU Compatibility

For GPU compatibility, the layer functions must support inputs and return outputs of type gpuArray. Any other functions used by the layer must do the same.

The MATLAB functions used in forwardLoss and backwardLoss in dicePixelClassificationLayer all support gpuArray inputs, so the layer is GPU compatible.

## Check Output Layer Validity

Create an instance of the layer.

```
layer = dicePixelClassificationLayer('dice');
```

Check the layer validity of the layer using checkLayer. Specify the valid input size to be the size of a single observation of typical input to the layer. The layer expects a H -by-W-byK -by-N array inputs, where K is the number of classes and N is the number of observations in the mini-batch.

```
numClasses = 2;
validInputSize = [4 4 numClasses];
checkLayer(layer,validInputSize, 'ObservationDimension',4)
Running nnet.checklayer.OutputLayerTestCase
Done nnet.checklayer.OutputLayerTestCase
```

```
Test Summary:
 17 Passed, 0 Failed, 0 Incomplete, 0 Skipped.
 Time elapsed: 1.6227 seconds.
```

The test summary reports the number of passed, failed, incomplete, and skipped tests.

## Use Custom Layer in Semantic Segmentation Network

Create a semantic segmentation network that uses the dicePixelClassificationLayer.

```
layers = [
 imageInputLayer([32 32 1])
 convolution2dLayer(3,64,'Padding',1)
 reluLayer
 maxPooling2dLayer(2,'Stride',2)
 convolution2dLayer(3,64,'Padding',1)
 reluLayer
 transposedConv2dLayer(4,64,'Stride',2,'Cropping',1)
 convolution2dLayer(1,2)
```

```
 softmaxLayer
dicePixelClassificationLayer('dice')]
layers =
 10x1 Layer array with layers:
\begin{tabular}{|c|c|c|}
\hline 1 & ' ' & Image Input \\
\hline 2 & '' & Convolution \\
\hline 3 & '' & ReLU \\
\hline 4 & '' & Max Pooling \\
\hline 5 & '' & Convolution \\
\hline 6 & '' & ReLU \\
\hline 7 & '' & Transposed Convolution \\
\hline 8 & '' & Convolution \\
\hline 9 & '' & Softmax \\
\hline
\end{tabular}
```

```
32\times32\times1 images with 'zerocenter' normalizat
```

32\times32\times1 images with 'zerocenter' normalizat
64 3x3 convolutions with stride [1 1] and
64 3x3 convolutions with stride [1 1] and
ReLU
ReLU
2x2 max pooling with stride [2 2] and padd
2x2 max pooling with stride [2 2] and padd
6 4 ~ 3 \times 3 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e ~ [ 1 ~ 1 ] ~ a n d ~
6 4 ~ 3 \times 3 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e ~ [ 1 ~ 1 ] ~ a n d ~
ReLU
ReLU
6 4 ~ 4 x 4 ~ t r a n s p o s e d ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e
6 4 ~ 4 x 4 ~ t r a n s p o s e d ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e
2 ~ 1 x 1 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e ~ [ 1 ~ 1 ] ~ a n d ~ p a ~
2 ~ 1 x 1 ~ c o n v o l u t i o n s ~ w i t h ~ s t r i d e ~ [ 1 ~ 1 ] ~ a n d ~ p a ~
softmax
softmax
Dice loss

```
Dice loss
```

Load training data for semantic segmentation using imageDatastore and pixelLabelDatastore.

```
dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
labelDir = fullfile(dataSetDir,'trainingLabels');
imds = imageDatastore(imageDir);
classNames = ["triangle" "background"];
labelIDs = [255 0];
pxds = pixelLabelDatastore(labelDir, classNames, labelIDs);
```

Associate the image and pixel label data using pixelLabelImageDatastore.

```
ds = pixelLabelImageDatastore(imds,pxds);
```

Set the training options and train the network.

```
options = trainingOptions('sgdm', ...
 'InitialLearnRate',1e-2, ...
 'MaxEpochs',100, ...
 'LearnRateDropFactor',1e-1, ...
 'LearnRateDropPeriod',50, ...
 'LearnRateSchedule','piecewise', ...
 'MiniBatchSize',128);
net = trainNetwork(ds,layers,options);
```

Training on single GPU.
Initializing image normalization.

Epoch	Iteration	Time Elapsed   (hh:mm:ss)	Mini-batch Accuracy	Mini-batch Loss	Base Learnin Rate
1	1	00:00:03	27.89\%	0.8346	0.01
50	50	00:00:34	89.67\%	0.6384	0.01
100	100	00:01:09	94.35\%	0.5024	0.00

Evaluate the trained network by segmenting a test image and displaying the segmentation result.

```
I = imread('triangleTest.jpg');
[C,scores] = semanticseg(I,net);
B = labeloverlay(I,C);
figure
imshow(imtile({I,B}))
```



## Semantic Segmentation Using Dilated Convolutions

Train a semantic segmentation network using dilated convolutions.
A semantic segmentation network classifies every pixel in an image, resulting in an image that is segmented by class. Applications for semantic segmentation include road segmentation for autonomous driving and cancer cell segmentation for medical diagnosis. To learn more, see "Getting Started With Semantic Segmentation Using Deep Learning".

Semantic segmentation networks like DeepLab [1] make extensive use of dilated convolutions (also known as atrous convolutions) because they can increase the receptive field of the layer (the area of the input which the layers can see) without increasing the number of parameters or computations.

## Load Training Data

The example uses a simple dataset of 32-by-32 triangle images for illustration purposes. The dataset includes accompanying pixel label ground truth data. Load the training data using an imageDatastore and a pixelLabelDatastore.

```
dataFolder = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageFolderTrain = fullfile(dataFolder,'trainingImages');
labelFolderTrain = fullfile(dataFolder,'trainingLabels');
```

Create an imageDatastore for the images.

```
imdsTrain = imageDatastore(imageFolderTrain);
```

Create a pixelLabelDatastore for the ground truth pixel labels.

```
classNames = ["triangle" "background"];
labels = [255 0];
pxdsTrain = pixelLabelDatastore(labelFolderTrain,classNames,labels)
pxdsTrain =
 PixelLabelDatastore with properties:
```

            Files: \{200×1 cell\}
            ClassNames: \{2×1 cell\}
                        ReadSize: 1
                            ReadFcn: @readDatastoreImage
    AlternateFileSystemRoots: \{\}

## Create Semantic Segmentation Network

This example uses a simple semantic segmentation network based on dilated convolutions.

Create a data source for training data and get the pixel counts for each label.

```
pximdsTrain = pixelLabelImageDatastore(imdsTrain,pxdsTrain);
tbl = countEachLabel(pximdsTrain)
tbl=2\times3 table
 Name PixelCount ImagePixelCount
 'triangle' 10326 2.048e+05
 'background' 1.9447e+05 2.048e+05
```

The majority of pixel labels are for background. This class imbalance biases the learning process in favor of the dominant class. To fix this, use class weighting to balance the classes. You can use several methods to compute class weights. One common method is
inverse frequency weighting where the class weights are the inverse of the class frequencies. This method increases the weight given to under represented classes. Calculate the class weights using inverse frequency weighting.

```
numberPixels = sum(tbl.PixelCount);
frequency = tbl.PixelCount / numberPixels;
classWeights = 1 ./ frequency;
```

Create a network for pixel classification by using an image input layer with an input size corresponding to the size of the input images. Next, specify three blocks of convolution, batch normalization, and ReLU layers. For each convolutional layer, specify 32 3-by-3 filters with increasing dilation factors and pad the inputs so they are the same size as the outputs by setting the 'Padding ' option to ' same '. To classify the pixels, include a convolutional layer with $K$ 1-by- 1 convolutions, where $K$ is the number of classes, followed by a softmax layer and a pixelClassificationLayer with the inverse class weights.

```
inputSize = [32 32 1];
filterSize = 3;
numFilters = 32;
numClasses = numel(classNames);
layers = [
 imageInputLayer(inputSize)
 convolution2dLayer(filterSize,numFilters,'DilationFactor',1,'Padding','same')
 batchNormalizationLayer
 reluLayer
 convolution2dLayer(filterSize,numFilters,'DilationFactor',2,'Padding','same')
 batchNormalizationLayer
 reluLayer
 convolution2dLayer(filterSize,numFilters,'DilationFactor',4,'Padding','same')
 batchNormalizationLayer
 reluLayer
 convolution2dLayer(1,numClasses)
 softmaxLayer
 pixelClassificationLayer('Classes',classNames,'ClassWeights',classWeights)];
```


## Train Network

Specify the training options.

```
options = training0ptions('sgdm', ...
 'MaxEpochs', 100, ...
 'MiniBatchSize', 64, ...
 'InitialLearnRate', 1e-3);
```

Train the network using trainNetwork.

```
net = trainNetwork(pximdsTrain,layers,options);
```

Training on single GPU.
Initializing image normalization.

Epoch	Iteration	Time Elapsed   (hh:mm:ss)	Mini-batch Accuracy	$\begin{aligned} & \text { Mini-batch } \\ & \text { Loss } \end{aligned}$	Base Learnin Rate
1	1	00:00:00	67.54\%	0.7098	0.00
17	50	00:00:03	84.60\%	0.3851	0.00
34	100	00:00:06	89.85\%	0.2536	0.00
50	150	00:00:09	93.39\%	0.1959	0.00
67	200	00:00:11	95.89\%	0.1559	0.00
84	250	00:00:14	97.29\%	0.1188	0.00
100	300	00:00:18	98.28\%	0.0970	0.00

## Test Network

Load the test data. Create an imageDatastore for the images. Create a pixelLabelDatastore for the ground truth pixel labels.

```
imageFolderTest = fullfile(dataFolder,'testImages');
imdsTest = imageDatastore(imageFolderTest);
labelFolderTest = fullfile(dataFolder,'testLabels');
pxdsTest = pixelLabelDatastore(labelFolderTest,classNames,labels);
```

Make predictions using the test data and trained network.

```
pxdsPred = semanticseg(imdsTest,net,'WriteLocation',tempdir);
Running semantic segmentation network
* Processing 100 images.
* Progress: 100.00%
```

Evaluate the prediction accuracy using evaluateSemanticSegmentation.
metrics = evaluateSemanticSegmentation(pxdsPred,pxdsTest);

```
Evaluating semantic segmentation results
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processing 100 images...
[== 1 100%
Elapsed time: 00:00:00
Estimated time remaining: 00:00:00
* Finalizing... Done.
* Data set metrics:
```

GlobalAccuracy	MeanAccuracy	MeanIoU	WeightedIoU	MeanBFScore
0.98334	0.99107	0.85869	0.97109	0.68197

For more information on evaluating semantic segmentation networks, see evaluateSemanticSegmentation.

## Segment New Image

Read and display the test image triangleTest.jpg.

```
imgTest = imread('triangleTest.jpg');
figure
imshow(imgTest)
```



Segment the test image using semanticseg and display the results using labeloverlay.

```
C = semanticseg(imgTest,net);
B = labeloverlay(imgTest,C);
figure
imshow(B)
```



## Input Arguments

## I - Input image

numeric array
Input image, specified as one of the following.

Image Type	Data Format
Single 2-D grayscale image	2-D matrix of size $H$-by- $W$
Single 2-D color image or 2-   D multispectral image	3-D array of size $H$-by- $W$-by- $C$. The number of color   channels $C$ is 3 for color images.
Series of $P$ 2-D images	4-D array of size $H$-by- $W$-by- $C$-by- $P$. The number of color   channels $C$ is 1 for grayscale images and 3 for color   images.


Image Type	Data Format
Single 3-D grayscale image   with depth $D$	3-D array of size $H$-by- $W$-by- $D$
Single 3-D color image or 3-   D multispectral image	4-D array of size $H$-by- $W$-by- $D$-by- $C$. The number of color   channels $C$ is 3 for color images.
Series of $P$ 3-D images	5-D array of size $H$-by- $W$-by- $D$-by- $C$-by- $P$

The input image can also be a gpuArray containing one of the preceding image types (requires Parallel Computing Toolbox).

Data Types: uint8|uint16|int16|double | single|logical

## network - Network

SeriesNetwork object | DAGNetwork object
Network, specified as either a SeriesNetwork or a DAGNetwork object.

## roi - Region of interest

4-element numeric vector | 6-element vector
Region of interest, specified as one of the following.

Image Type	ROI Format
2-D image	4-element vector of the form $[x, y$, width,height $]$
3-D image	6-element vector of the form $[x, y, z$, width,height,depth]

The vector defines a rectangular or cuboidal region of interest fully contained in the input image. Image pixels outside the region of interest are assigned the <undefined> categorical label. If the input image consists of a series of images, then semanticseg applies the same roi to all images in the series.

## ds - Collection of images

datastore object
Collection of images, specified as a datastore. The read function of the datastore must return a numeric array, cell array, or table. For cell arrays or tables with multiple columns, the function processes only the first column.

For more information, see "Datastores for Deep Learning" (Deep Learning Toolbox).

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: 'ExecutionEnvironment','gpu'

## OutputType - Returned segmentation type

'categorical' (default)|'double'|'uint8'
Returned segmentation type, specified as 'categorical', 'double', or 'uint8'. When you specify 'double' or 'uint8', the function returns the segmentation results as a label array containing label IDs. The IDs are integer values that correspond to the class names defined in the classification layer used in the input network.

You cannot use the OutputType property with an ImageDatastore object input.

## MiniBatchSize - Group of images

128 (default) | integer
Group of images, specified as an integer. Images are grouped and processed together as a batch. Batches are used for processing a large collection of images and they improve computational efficiency. Increasing the 'MiniBatchSize' value increases the efficiency, but it also takes up more memory.

## ExecutionEnvironment - Hardware resource 'auto' (default)|'gpu'|'cpu'

Hardware resource for processing images with a network, specified as 'auto', 'gpu', or 'cpu'.

ExecutionEnvironment	Description
'auto '	Use a GPU if available. Otherwise, use the CPU. The   use of GPU requires Parallel Computing Toolbox and a   CUDA enabled NVIDIA GPU with compute capability   3.0 or higher.
'gpu'	Use the GPU. If a suitable GPU is not available, the   function returns an error message.


ExecutionEnvironment	Description
' cpu'	Use the CPU.

## Acceleration - Performance optimization

'auto' (default)|'mex' | 'none'
Performance optimization, specified as 'auto', 'mex', or 'none'.

Acceleration	Description
'auto '	Automatically apply a number of optimizations   suitable for the input network and hardware resource.
'mex'	Compile and execute a MEX function. This option is   available when using a GPU only. Using a GPU   requires Parallel Computing Toolbox and a CUDA   enabled NVIDIA GPU with compute capability 3.0 or   higher. If Parallel Computing Toolbox or a suitable   GPU is not available, then the function returns an   error.
'none '	Disable all acceleration.

The default option is 'auto '. If you use the 'auto' option, MATLAB does not ever generate a MEX function.

Using the 'Acceleration' options 'auto' and 'mex' can offer performance benefits, but at the expense of an increased initial run time. Subsequent calls with compatible parameters are faster. Use performance optimization when you plan to call the function multiple times using new input data.

The 'mex' option generates and executes a MEX function based on the network and parameters used in the function call. You can have several MEX functions associated with a single network at one time. Clearing the network variable also clears any MEX functions associated with that network.

The 'mex ' option is only available when you are using a GPU. You must also have a C/C+ + compiler installed. For setup instructions, see "MEX Setup" (GPU Coder).
'mex ' acceleration does not support all layers. For a list of supported layers, see "Supported Layers" (GPU Coder).

## WriteLocation - Folder location <br> pwd (current working folder) (default) | string scalar | character vector

Folder location, specified as pwd (your current working folder), a string scalar, or a character vector. The specified folder must exist and have write permissions.

This property applies only when using an ImageDatastore object input.

## NamePrefix - Prefix applied to output file names <br> 'pixelLabel' (default) | string scalar | character vector

Prefix applied to output file names, specified as a string scalar or character vector. The image files are named as follows:

- prefix_N.png, where $N$ corresponds to the index of the input image file, imds.Files(N).

This property applies only when using an ImageDatastore object input.

## Verbose - Display progress information

'true' (default)|'false'
Display progress information, specified as 'true' or 'false'.
This property applies only when using an ImageDatastore object input.

## Output Arguments

## C - Categorical labels

categorical array
Categorical labels, returned as a categorical array. The categorical array relates a label to each pixel or voxel in the input image. The images returned by readall(datastore) have a one-to-one correspondence with the categorical matrices returned by readall(pixelLabelDatastore). The elements of the label array correspond to the pixel or voxel elements of the input image. If you select an ROI, then the labels are limited to the area within the ROI. Image pixels and voxels outside the region of interest are assigned the <undefined> categorical label.

Image Type	Categorical Label Format
Single 2-D image	2-D matrix of size $H$-by- $W$. Element $\mathrm{C}(i, j)$ is the categorical   label assigned to the pixel I $(i, j)$.
Series of $P$ 2-D images	3-D array of size $H$-by- $W$-by- $P$. Element $\mathrm{C}(i, j, p)$ is the   categorical label assigned to the pixel I $(i, j, p)$.
Single 3-D image	3-D array of size $H$-by- $W$-by- $D$. Element $\mathrm{C}(i, j, k)$ is the   categorical label assigned to the voxel I $(i, j, k)$.
Series of $P$ 3-D images	4-D array of size $H$-by- $W$-by- $D$-by- $P$. Element $\mathrm{C}(i, j, k, p)$ is the   categorical label assigned to the voxel I $(i, j, k, p)$.

## score - Confidence scores

categorical array
Confidence scores for each categorical label in C, returned as an array of values between 0 and 1. The scores represents the confidence in the predicted labels C. Higher score values indicate a higher confidence in the predicted label.

Image Type	Score Format
Single 2-D image	2-D matrix of size $H$-by- $W$. Element score $(i, j)$ is the   classification score of the pixel I $(i, j)$.
Series of $P$ 2-D images	3-D array of size $H$-by- $W$-by- $P$. Element score $(i, j, p)$ is the   classification score of the pixel I $(i, j, p)$.
Single 3-D image	3-D array of size $H$-by- $W$-by- $D$. Element score $(i, j, k)$ is the   classification score of the voxel I $(i, j, k)$.
Series of $P$ 3-D images	4-D array of size $H$-by- $W$-by- $D$-by- $P$. Element score $(i, j, k, p)$   is the classification score of the voxel I $(i, j, k, p)$.

## allScores - Scores for all label categories

numeric array
Scores for all label categories that the input network can classify, returned as a numeric array. The format of the array is described in the following table. $L$ represents the total number of label categories.

Image Type	All Scores Format
Single 2-D image	3-D array of size $H$-by- $W$-by- $L$. Element allScores $(i, j, q)$ is   the score of the $q$ th label at the pixel I $(i, j)$.
Series of $P$ 2-D images	4-D array of size $H$-by- $W$-by- $L$-by- $P$. Element   all   $\mathrm{I}(i, j, p$ cores $(i, j, q, p)$ is the score of the $q$ th label at the pixel
Single 3-D image	4-D array of size $H$-by- $W$-by- $D$-by- $L$. Element   all   $\mathrm{I}(i, j, k$ cores $(i, j, k, q)$ is the score of the $q$ th label at the voxel
Series of $P$ 3-D images	5-D array of size $H$-by- $W$-by- $D$-by- $L$-by- $P$. Element   allScores $(i, j, k, q, p)$ is the score of the $q$ th label at the   voxel I $(i, j, k, p)$.

## pxds - Semantic segmentation results

PixelLabelDatastore object
Semantic segmentation results, returned as a pixelLabelDatastore object. The object contains the semantic segmentation results for all the images contained in the ds input object. The result for each image is saved as separate uint8 label matrices of PNG images. You can use read(pxds) to return the categorical labels assigned to the images in ds.

The images in the output of readall(ds) have a one-to-one correspondence with the categorical matrices in the output of readall(pxds).

## Extended Capabilities

## Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox ${ }^{\mathrm{TM}}$.

To run in parallel, set 'UseParallel' to true or enable this by default using the Computer Vision Toolbox preferences.

For more information, see "Parallel Computing Toolbox Support".

## See Also

Functions<br>evaluateSemanticSegmentation| labeloverlay|trainNetwork<br>\section*{Apps}<br>Image Labeler | Video Labeler<br>\section*{Objects}<br>ImageDatastore|pixelLabelDatastore<br>\section*{Topics}<br>"Getting Started With Semantic Segmentation Using Deep Learning"<br>"Deep Learning in MATLAB" (Deep Learning Toolbox)<br>"Datastores for Deep Learning" (Deep Learning Toolbox)<br>\section*{External Websites}<br>What is Semantic Segmentation?<br>Introduced in R2017b

## detectKAZEFeatures

Detect KAZE features

## Syntax

```
points = detectKAZEFeatures(I)
```

points $=$ detectKAZEFeatures(I,Name,Value)

## Description

points $=$ detectKAZEFeatures (I) returns a KAZEPoints object containing information about KAZE keypoints detected in a 2-D grayscale image. The function uses nonlinear diffusion to construct a scale space for the given image. It then detects multiscale corner features from the scale space.
points $=$ detectKAZEFeatures (I,Name, Value) returns a KAZEPoints object with additional options specified by one or more Name,Value pair arguments

## Examples

## Detect KAZE Feature Points in Image

Detect and plot KAZE feature points.
Read an image.
I = imread('cameraman.tif');
Detect KAZE points in the image.

```
points = detectKAZEFeatures(I);
```

Plot the 20 strongest points.
imshow(I)
hold on
plot(selectStrongest(points,20))
hold off


## Detect KAZE Features and Display Specific Points

Detect KAZE features and display set the specific KAZE points you want to plot.
Read an image.
I = imread('cameraman.tif');
Detect KAZE features in the image.
points = detectKAZEFeatures(I);
Select and display the last 5 points detected.

```
imshow(I);
hold on;
plot(points(end-4:end));
hold off;
```



## Input Arguments

## I - Input image

2-D grayscale image
Input image, specified as a 2-D grayscale image.
Data Types: single|double | int16|uint8|uint16|logical

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Example: 'Diffusion','region'

## Diffusion - Method to compute conductivity <br> 'region' (default)|'sharpedge' | 'edge'

Method to compute conductivity, specified as 'region', 'sharpedge', or 'edge'. The computation is based on first-order derivatives of a layer in scale space.

Method	Selected Features
' region'	Large regions. Uses the Perona and Malik conductivity   coefficient, $1 /\left(1+d L^{\wedge} 2 / k^{\wedge} 2\right)$.
' sharpedge '	High-contrast edges. Uses the Perona and Malik   conductivity coefficient, $\exp (-\|d L\| \wedge 2 / k \wedge 2)$.
' edge'	Smoothing on both sides of an edge rather than across it.   Uses the Weickert conductivity coefficent.

## Threshold - Local extrema

0.0001 (default) | scalar

Local extrema, specified as a scalar greater than or equal to 0 . Increase this value to exclude less significant local extrema.

## NumOctaves - Multiscale detection factor

3 (default) | positive integer
Multiscale detection factor, specified as a positive integer. Increase this value to detect larger features. To disable multiscale detection, set Num0ctaves to 1 . When you set the value to 1 , the function detects at the scale as the input image. Recommended values are between 1 and 4 .

## NumScaleLevels - Scale levels

4 (default) | integer

Scale levels, specified as an integer in the range [3,10]. Increase this value to achieve smoother scale changes. Increasing this value also provides additional intermediate scales between octaves. Recommended values are between 1 and 4.

## ROI - Rectangular region size

[1 1 size(I,2) size(I,1)] (default)| 4-element vector
Rectangular region size for corner detection, specified as a 4 -element vector in the format [ $y \times$ width height]. The $[y x$ ] values are measured from the upper left corner of the rectangle.

## Output Arguments

## points - KAZE points object

KAZEpoints object
KAZE points, returned as a KAZEPoints object. The object contains information about the feature points detected in the 2-D grayscale input image.

## References

[1] Alcantarilla, P.F., A. Bartoli, and A.J. Davison. "KAZE Features." ECCV 2012, Part VI, LNCS 7577. 2012, p. 214

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries. See "Portable C Code Generation for Functions That Use OpenCV Library".


## See Also

KAZEPoints |MSERRegions | SURFPoints | cornerPoints | detectBRISKFeatures | detectFASTFeatures | detectHarrisFeatures | detectMSERFeatures | detectMinEigenFeatures | detectSURFFeatures | extractFeatures | matchFeatures

Introduced in R2017b

## selectUniform

Select uniformly distributed subset of feature points

## Syntax

```
pointsOut = selectUniform(points,N,imageSize)
```


## Description

pointsOut $=$ selectUniform(points, $N$,imageSize) returns $N$ uniformly distributed points from pointsIn points of an image of size imageSize.

## Examples

## Select Uniformly Distributed Subset of KAZE Features

Detect and plot a subset of uniformly distributed KAZE features from an image.
Read an image.

```
im = imread('yellowstone_left.png');
```

Detect and display KAZE features.

```
points1 = detectKAZEFeatures(rgb2gray(im))
points1 =
 7070x1 KAZEPoints array with properties:
 Location: [7070x2 single]
 Metric: [7070x1 single]
 Count: 7070
 Scale: [7070x1 single]
 Orientation: [7070x1 single]
```

```
subplot(1,2,1)
imshow(im)
hold on
plot(points1)
hold off
title('Original Points')
```

Select a uniformly distributed subset of points.
numPoints = 100;
points2 = selectUniform(points1,numPoints,size(im))
points2 =
100x1 KAZEPoints array with properties:
Location: [100x2 single]
Metric: [100x1 single]
Count: 100
Scale: [100x1 single]
Orientation: [100x1 single]

```
subplot(1,2,2)
imshow(im)
hold on
plot(points2)
hold off
title('Uniformly Distributed Points')
```



Uniformly Distributed Points


## Select A Uniformly Distributed Subset of Features From an Image

Load an image.

```
im = imread('yellowstone_left.png');
```

Detect many corners by reducing the quality threshold.
points1 = detectHarrisFeatures(rgb2gray(im), 'MinQuality', 0.05);
Plot image with detected corners.

```
subplot(1,2,1);
imshow(im);
hold on
plot(points1);
hold off
title('Original points');
```



Select a uniformly distributed subset of points.

```
numPoints = 100;
points2 = selectUniform(points1,numPoints,size(im));
```

Plot images showing original and subset of points.

```
subplot(1, 2, 2);
imshow(im);
hold on
plot(points2);
hold off
title('Uniformly distributed points');
```



## Select A Uniformly Distributed Subset of Features From an Image

Load an image.

```
im = imread('yellowstone_left.png');
```

Detect many corners by reducing the quality threshold.

```
points1 = detectBRISKFeatures(rgb2gray(im), 'MinQuality', 0.05);
```

Plot image with detected corners.

```
subplot(1,2,1);
imshow(im);
hold on
plot(points1);
hold off
title('Original points');
```


## Original points



Select a uniformly distributed subset of points.

```
numPoints = 100;
points2 = selectUniform(points1,numPoints,size(im));
```

Plot images showing original and subset of points.

```
subplot(1, 2, 2);
imshow(im);
hold on
plot(points2);
hold off
title('Uniformly distributed points');
```



Uniformly distributed points


## Select A Uniformly Distributed Subset of Features From an Image

Load an image.

```
im = imread('yellowstone_left.png');
```

Detect and display SURF features.
points1 = detectSURFFeatures(rgb2gray(im));
subplot(1,2,1);
imshow(im);
hold on
plot(points1);
hold off
title('Original points');

Original points


Select a uniformly distributed subset of points.

```
numPoints = 100;
points2 = selectUniform(points1,numPoints,size(im));
```

Plot images showing original and subset of points.

```
subplot(1, 2, 2);
imshow(im);
hold on
plot(points2);
hold off
title('Uniformly distributed points');
```

Original points


Uniformly distributed points


## Input Arguments

## points - Points object

KAZEPoints object | CornerPoints object| BRISKPoints object| SURFPoints object | ORBPoints object

Points object, specified as a points object. The object contains information about the feature points detected in the input image. To obtain points, use the appropriate detect function.

## N - Number of points

integer
Number of uniformly distributed points to select, specified as an integer.

## imageSize - Size of image

2-element vector | 3-element vector
Size of image, specified as a 2-element vector for grayscale images or a 3-element vector for truecolor images.

## See Also

BRISKPoints |KAZEPoints | MSERRegions | ORBPoints | SURFPoints | cornerPoints | detectBRISKFeatures | detectFASTFeatures | detectHarrisFeatures | detectKAZEFeatures | detectMinEigenFeatures | detectORBFeatures | detectSURFFeatures |extractFeatures |matchFeatures

Introduced in R2012a

## size

Return the size of a points object

## Syntax

```
size(points)
sz = size(points)
sz = size(points,1)
sz = size(points,dimension)
[M,N] = size(points)
```


## Description

size(points) returns the size of the points object.
$s z=s i z e($ points $)$ returns the vector [length(points), 1].
$s z=s i z e($ points,1) returns the length of points.
$s z=$ size(points,dimension) returns the length of the dimension.
$[M, N]=\operatorname{size}($ points $)$ returns length(points) for $M$ and 1 for $N$

## Examples

## Find Size of Points Object

Read an image.
I = imread('cameraman.tif');
Detect corner features.
featurePoints = detectHarrisFeatures(I);

Find the size of the feature points object.
sz = size(featurePoints)
$s z=1 \times 2$
1841

Plot feature image with detected features.
imshow(I); hold on; plot(featurePoints);


## Input Arguments

## points - Points object

KAZEPoints object | CornerPoints object | BRISKPoints object | SURFPoints object | MSERRegions object | ORBPoints object

Points object, specified as a points object. The object contains information about the feature points detected in the input image. To obtain points, use the appropriate detect function.

## dimension - Dimension

## integer

Dimension, returned as an integer. For dim $>=2$, the object returns 1 .

## See Also

BRISKPoints |KAZEPoints | MSERRegions | ORBPoints | SURFPoints | binaryFeatures|cornerPoints

Introduced in R2012a

## selectStrongest

Select points with strongest metrics

## Syntax

```
strongestPoints = selectStrongest(points,N)
```


## Description

strongestPoints $=$ selectStrongest(points, $N$ ) returns $N$ number of points that have the strongest metrics.

## Examples

## Select Strongest KAZE Features

Create a KAZEPoints object holding 50 points.

```
points = KAZEPoints(ones(50,2),'Metric',1:50);
```

Keep the two strongest features.

```
points = selectStrongest(points,2)
points =
 2x1 KAZEPoints array with properties:
 Location: [2x2 single]
 Metric: [2x1 single]
 Count: 2
 Scale: [2x1 single]
 Orientation: [2xl single]
```


## Input Arguments

## points - Points <br> KAZEPoints object | CornerPoints object | BRISKPoints object | SURFPoints object | ORBPoints object

Points, specified as a points object. The object contains information about the feature points detected in the 2-D grayscale input image.

## N - Number of points

integer
Number of strongest points to select, specified as an integer.

## See Also

BRISKPoints |KAZEPoints |MSERRegions | ORBPoints | SURFPoints | binaryFeatures|cornerPoints

Introduced in R2017b

## plot

Plot points

## Syntax

```
plot(points)
plot(points,ax)
plot(points,ax,Name,Value)
```


## Description

plot(points) plots points in the current axis.
plot (points, ax) plots points in the specified axis.
plot (points, ax, Name, Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, plot('ShowOrientation' , true)

## Examples

## Plot KAZE Points

Detect, extract, and plot KAZE points, including their orientation.
Read an image.

```
I = imread('cameraman.tif');
```

Detect KAZE points from the image.
points = detectKAZEFeatures(I);
Extract KAZE features from the detected points.
[features,valid_points] = extractFeatures(I,points);

Plot the 10 strongest points and show their orientations.

```
imshow(I)
hold on
strongestPoints = selectStrongest(valid_points,10);
plot(strongestPoints,'showOrientation',true)
hold off
```



## Plot SURF features

Extract SURF features from an image.
I = imread('cameraman.tif');
points = detectSURFFeatures(I);
[features, valid_points] = extractFeatures(I,points);

Visualize 10 strongest SURF features, including their scales and orientation which were determined during the descriptor extraction process.

```
imshow(I);
hold on;
strongestPoints = valid_points.selectStrongest(10);
strongestPoints.plot('showOrientation',true);
```



## Plot Corner Features

Read an image.

```
I = imread('cameraman.tif');
```

Detect corner features.

```
featurePoints = detectHarrisFeatures(I);
```

Plot feature image with detected features.
imshow(I); hold on; plot(featurePoints);


## Input Arguments

## points - Points

KAZEPoints object | CornerPoints object | BRISKPoints object | SURFPoints object | MSERRegions object | ORBPoints object

Points, specified as a points object. The object contains information about the feature points detected in the 2-D grayscale input image.

## ax - Axes handle

## handle

Handle to use for display. You can set the handle using gca.

## Name-Value Pair Arguments

## Example: 'ShowOrientation','true'

## ShowScale - Display scaled circle <br> true (default) | false

Display scaled circle, specified as true or false. When you set this value to true, the object draws a circle proportional to the scale of the detected feature, with the feature point located at its center. When you set this value to false, the object turns the display of the circle off.

The algorithm represents the scale of the feature with a circle of 6*Scale radius. The algorithm uses this equivalent size of circular area to compute the orientation of the feature.

## ShowOrientation - Display orientation line true (default) | false

Display feature point orientation, specified as true or false. When you set this value to true, the object draws a line corresponding to the point's orientation. The object draws the line from the feature point location to the edge of the circle, indicating the scale.

## See Also

BRISKPoints |KAZEPoints |KAZEPoints |MSERRegions | ORBPoints | SURFPoints | binaryFeatures|cornerPoints

## Introduced in R2011b

## length

Number of stored points

## Syntax

length(points)

## Description

length(points) returns the number of stored points in the points object.

## Examples

## Check Number of Stored Points

Read an image.

```
I = imread('cameraman.tif');
```

Detect KAZE points from the image.
points = detectKAZEFeatures(I);
Find number of stored points.
numPoints $=$ length(points)
numPoints $=702$
Extract KAZE features from the detected points.
[features,validPoints] = extractFeatures(I,points);
Plot the ten strongest valid extracted points and show their orientations.

```
imshow(I)
hold on
```

```
strongestPoints = selectStrongest(validPoints,10);
plot(strongestPoints,'showOrientation',true)
hold off
```



## Input Arguments

## points - Points object

KAZEPoints object | CornerPoints object | BRISKPoints object | SURFPoints object | MSERRegions object | ORBPoints object

Points object, specified as a points object. The object contains information about the feature points detected in the input image. To obtain points, use the appropriate detect function.

## See Also <br> BRISKPoints | KAZEPoints | MSERRegions | ORBPoints | SURFPoints | cornerPoints | detectBRISKFeatures | detectFASTFeatures | detectHarrisFeatures | detectKAZEFeatures | detectMSERFeatures | detectMinEigenFeatures | detectORBFeatures | detectSURFFeatures | extractFeatures|matchFeatures <br> Introduced in R2017b

## isempty

Determine if points object is empty

## Syntax

isempty(points)

## Description

isempty (points) returns a true value, if the points object is empty.

## Examples

## Check if Points Object is Empty

Read an image.

```
I = imread('cameraman.tif');
```

Detect KAZE points from the image.
points = detectKAZEFeatures(I);
Check for points.
if isempty(points) return;
end
Extract KAZE features from the detected points.
[features,validPoints] = extractFeatures(I,points);
Plot the ten strongest valid extracted points and show their orientations.

```
imshow(I)
hold on
strongestPoints = selectStrongest(validPoints,10);
plot(strongestPoints,'showOrientation',true)
hold off
```



## Input Arguments

## points - Points object

KAZEPoints object | CornerPoints object | BRISKPoints object | SURFPoints object | MSERRegions object | ORBPoints object

Points object, specified as a points object. The object contains information about the feature points detected in the input image. To obtain points, use the appropriate detect function.

## See Also

BRISKPoints |KAZEPoints |MSERRegions | ORBPoints | SURFPoints | cornerPoints | detectBRISKFeatures | detectFASTFeatures | detectHarrisFeatures|detectKAZEFeatures | detectMSERFeatures | detectMinEigenFeatures | detectORBFeatures | detectSURFFeatures | extractFeatures|matchFeatures
Introduced in R2017b

## gather

Retrieve cornerPoints from the GPU

## Syntax

pointsCPU = gather(pointsGPU)

## Description

pointsCPU $=$ gather( pointsGPU) returns a cornerPoints object with data gathered from the GPU for the Location and Metric properties.

## Examples

## Find and Plot Corner Points in Image

Read an image.

```
I = imread('cameraman.tif')
I = 256\times256 uint8 matrix
```

156	159	158	155	158	156	159	158	157	158	158	159	160	160
160	154	157	158	157	159	158	158	158	160	155	156	159	158
156	159	158	155	158	156	159	158	157	158	158	159	160	160
160	154	157	158	157	159	158	158	158	160	155	156	159	158
156	153	155	159	159	155	156	155	155	157	155	154	154	158
155	155	155	157	156	159	152	158	156	158	152	153	159	156
156	153	157	156	153	155	154	155	157	156	155	156	155	157
159	159	156	158	156	159	157	161	162	157	157	159	161	156
158	155	158	154	156	160	162	155	159	161	156	161	160	155
155	154	157	158	160	160	159	160	158	161	160	160	158	161

Create a GPU array object.

```
I = gpuArray(I);
```

Find and display Harris features in the image.

```
pointsGPU = detectHarrisFeatures(I);
imshow(I);
hold on;
plot(pointsGPU.selectStrongest(50));
```



Copy the corner points to the CPU for further processing.

```
pointsCPU = gather(pointsGPU);
```


## Input Arguments

## pointsGPU - GPU points

points object (default)
GPU points, specified as a points object.

See Also<br>cornerPoints<br>Introduced in R2012a

## plot

Plot MSER regions

## Syntax

plot(points)
plot (points,ax)
plot(points, ax, Name, Value)

## Description

plot (points) plots points in the current axis.
plot (points, ax) plots points in the specified axis.
plot (points, ax, Name, Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, plot('ShowOrientation' , true)

## Examples

Plot MSER Regions
Extract MSER features and plot the regions.
Read image and extract MSER features.

```
I = imread('cameraman.tif');
regions = detectMSERFeatures(I);
imshow(I); hold on;
plot(regions);
```



Plot MSER Regions.
figure; imshow(I); hold on;
plot(regions,'showPixelList',true,'showEllipses',false); hold off;


## Input Arguments

points - Points

MSERRegions object
Points, specified as a points object. The object contains information about the feature points detected in the 2-D grayscale input image.

## ax - Axes handle

## handle

Handle to use for display. You can set the handle using gca.

## Name-Value Pair Arguments

Example: 'ShowOrientation','true'

## showEllipses - Display ellipsis <br> true (default) | false

Display ellipsis around feature, specified as true or false. When you set this value to true, the object draws an ellipse with the same 2nd order moments as the region. When you set this value to false, only the ellipses centers are plotted.

## ShowOrientation - Display orientation line true (default) | false

Display feature point orientation, specified as true or false. When you set this value to true, the object draws a line corresponding to the point's orientation. The object draws the line from the feature point location to the edge of the circle, indicating the scale.

## showPixelList - Display regions using JET colormap

true (default) | false
Display regions using JET colormap, specified as true or false.

See Also<br>detectMSERFeatures<br>Introduced in R2012a

## assignDetectionsToTracks

Assign detections to tracks for multiobject tracking

## Syntax


#### Abstract

[assignments,unassignedTracks,unassignedDetections] = assignDetectionsToTracks(costMatrix, costOfNonAssignment) [assignments,unassignedTracks,unassignedDetections] = assignDetectionsToTracks(costMatrix, unassignedTrackCost, unassignedDetectionCost)


## Description

[assignments,unassignedTracks,unassignedDetections] = assignDetectionsToTracks(costMatrix,costOfNonAssignment) assigns detections to tracks in the context of multiple object tracking using the James Munkres's variant of the Hungarian assignment algorithm. It also determines which tracks are missing and which detections should begin new tracks. It returns the indices of assigned and unassigned tracks, and unassigned detections. The costMatrix must be an $M$-by- $N$ matrix. In this matrix, $M$ represents the number of tracks, and $N$ is the number of detections. Each value represents the cost of assigning the $N^{\text {th }}$ detection to the $M^{\text {th }}$ track. The lower the cost, the more likely that a detection gets assigned to a track. The costOfNonAssignment scalar input represents the cost of a track or a detection remaining unassigned.
[assignments,unassignedTracks,unassignedDetections] = assignDetectionsToTracks(costMatrix, unassignedTrackCost, unassignedDetectionCost) specifies the cost of unassigned tracks and detections separately. The unassignedTrackCost must be a scalar value, or an $M$-element vector, where $M$ represents the number of tracks. For the $M$-element vector, each element represents the cost of not assigning any detection to that track. The unassignedDetectionCost must be a scalar value or an $N$-element vector, where $N$ represents the number of detections.

## Examples

## Assign Detections to Tracks in a Single Video Frame

This example shows you how to assign a detection to a track for a single video frame.
Set the predicted locations of objects in the current frame. Obtain predictions using the Kalman filter System object.

```
predictions = [1,1;2,2];
```

Set the locations of the objects detected in the current frame. For this example, there are 2 tracks and 3 new detections. Thus, at least one of the detections is unmatched, which can indicate a new track.

```
detections = [1.1,1.1;2.1,2.1;1.5,3];
```

Preallocate a cost matrix.

```
cost = zeros(size(predictions,1),size(detections,1));
```

Compute the cost of each prediction matching a detection. The cost here, is defined as the Euclidean distance between the prediction and the detection.

```
for i = 1:size(predictions, 1)
 diff = detections - repmat(predictions(i,:),[size(detections,1),1]);
 cost(i, :) = sqrt(sum(diff .^ 2,2));
end
```

Associate detections with predictions. Detection 1 should match to track 1, and detection 2 should match to track 2. Detection 3 should be unmatched.

```
[assignment,unassignedTracks,unassignedDetections] = ...
 assignDetectionsToTracks(cost,0.2);
 figure;
 plot(predictions(:,1),predictions(:,2),'*',detections(:,1),...
 detections(:,2),'ro');
 hold on;
 legend('predictions','detections');
 for i = 1:size(assignment,1)
 text(predictions(assignment(i, 1),1)+0.1,...
 predictions(assignment(i,1),2)-0.1,num2str(i));
 text(detections(assignment(i, 2),1)+0.1,...
```

detections(assignment(i,2),2)-0.1,num2str(i));
end
for i = 1:length(unassignedDetections)
text(detections(unassignedDetections(i),1)+0.1,...
detections(unassignedDetections(i),2)+0.1, 'unassigned');
end
$x \lim ([0,4])$;
ylim([0,4]);


## Input Arguments

## costMatrix - Cost of assigning detection to track

## $M$-by- $N$ matrix

Cost of assigning a detection to a track, specified as an $M$-by- $N$ matrix, where $M$ represents the number of tracks, and $N$ is the number of detections. The cost matrix value must be real, nonsparse, and numeric. The lower the cost, the more likely that a detection gets assigned to a track. Each value represents the cost of assigning the $N^{\text {th }}$ detection to the $M^{\text {th }}$ track. If there is no likelihood of an assignment between a detection and a track, the costMatrix input is set to Inf. Internally, this function pads the cost matrix with dummy rows and columns to account for the possibility of unassigned tracks and detections. The padded rows represent detections not assigned to any tracks. The padded columns represent tracks not associated with any detections. The function applies the Hungarian assignment algorithm to the padded matrix.
costMatrix:
The cost of assigning a detection to a track


## Data Types: int8|uint8|int16|uint16| int32|uint32| single|double

## costOfNonAssignment - Cost of not assigning detection to any track or track to any detection

scalar | finite
Cost of not assigning detection to any track or track to detection. You can specify this value as a scalar value representing the cost of a track or a detection remaining unassigned. An unassigned detection may become the start of a new track. If a track is unassigned, the object does not appear. The higher the costOfNonAssignment value, the higher the likelihood that every track will be assigned a detection.

Internally, this function pads the cost matrix with dummy rows and columns to account for the possibility of unassigned tracks and detections. The padded rows represent detections not assigned to any tracks. The padded columns represent tracks not associated with any detections. To apply the same value to all elements in both the rows and columns, use the syntax with the cost0fNonAssignment input. To vary the values for different detections or tracks, use the syntax with the unassignedTrackCost and unassignedDetectionCost inputs.


Data Types: int8|uint8|int16|uint16|int32|uint32| single|double
unassignedTrackCost - Cost or likelihood of an unassigned track
$M$-element vector | scalar | finite

Cost or likelihood of an unassigned track. You can specify this value as a scalar value, or an $M$-element vector, where $M$ represents the number of tracks. For the $M$-element vector, each element represents the cost of not assigning any detection to that track. A scalar input represents the same cost of being unassigned for all tracks. The cost may vary depending on what you know about each track and the scene. For example, if an object is about to leave the field of view, the cost of the corresponding track being unassigned should be low.

Internally, this function pads the cost matrix with dummy rows and columns to account for the possibility of unassigned tracks and detections. The padded rows represent detections not assigned to any tracks. The padded columns represent tracks not associated with any detections. To vary the values for different detections or tracks, use the syntax with the unassignedTrackCost and unassignedDetectionCost inputs. To apply the same value to all elements in both the rows and columns, use the syntax with the costOfNonAssignment input.


Data Types: int8|uint8|int16|uint16|int32|uint32| single | double

## unassignedDetectionCost - Cost of unassigned detection

$N$-element vector | scalar | finite
Cost of unassigned detection, specified as a scalar value or an $N$-element vector, where $N$ represents the number of detections. For the $N$ - element vector, each element represents the cost of starting a new track for that detection. A scalar input represents the same cost of being unassigned for all tracks. The cost may vary depending on what you know about each detection and the scene. For example, if a detection appears close to the edge of the image, it is more likely to be a new object.

Internally, this function pads the cost matrix with dummy rows and columns to account for the possibility of unassigned tracks and detections. The padded rows represent detections not assigned to any tracks. The padded columns represent tracks not
associated with any detections. To vary the values for different detections or tracks, use the syntax with the unassignedTrackCost and unassignedDetectionCost inputs. To apply the same value to all elements in both the rows and columns, use the syntax with the costOfNonAssignment input.


Data Types: int8|uint8|int16|uint16|int32|uint32|single|double

## Output Arguments

## assignments - Index pairs of tracks and corresponding detections

L-by-2 matrix
Index pairs of tracks and corresponding detections. This value is returned as an $L$-by-2 matrix of index pairs, with $L$ number of pairs. The first column represents the track index and the second column represents the detection index.

Data Types: uint32

## unassignedTracks - Unassigned tracks

$P$-element vector
Unassigned tracks, returned as a $P$-element vector. $P$ represents the number of unassigned tracks. Each element represents a track to which no detections are assigned.

Data Types: uint32

## unassignedDetections - Unassigned detections

$Q$-element vector
Unassigned detections, returned as a $Q$-element vector, where $Q$ represents the number of unassigned detections. Each element represents a detection that was not assigned to any tracks. These detections can begin new tracks.

Data Types: uint32

## References

[1] Miller, Matt L., Harold S. Stone, and Ingemar J. Cox, "Optimizing Murty's Ranked Assignment Method," IEEE Transactions on Aerospace and Electronic Systems, 33(3), 1997.
[2] Munkres, James, "Algorithms for Assignment and Transportation Problems," Journal of the Society for Industrial and Applied Mathematics, Volume 5, Number 1, March, 1957.

# Extended Capabilities 

C/C++ Code Generation<br>Generate $C$ and $C++$ code using MATLAB® Coder $^{\text {TM }}$.

See Also<br>configureKalmanFilter|vision.KalmanFilter<br>\section*{Topics}<br>"Multiple Object Tracking"<br>\section*{External Websites}<br>Munkres' Assignment Algorithm Modified for Rectangular Matrices<br>Introduced in R2012b

## bbox2points

Convert rectangle to corner points list

## Syntax

```
points = bbox2points(rectangle)
```


## Description

points $=$ bbox2points (rectangle) converts the input rectangle, specified as $[x y$ width height] into a list of four $[x y]$ corner points. The rectangle input must be either a single bounding box or a set of bounding boxes.

## Examples

## Convert Bounding Box to List of Points and Apply Rotation

Define a bounding box.

```
bbox = [10, 20,50,60];
```

Convert the bounding box to a list of four points.

```
points = bbox2points(bbox);
```

Define a rotation transformation.

```
theta = 10;
tform = affine2d([cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]);
```

Apply the rotation.

```
points2 = transformPointsForward(tform,points);
```

Close the polygon for display.

```
points2(end+1,:) = points2(1,:);
```

Plot the rotated box.

```
plot(points2(:,1),points2(:,2), '*-');
```



## Input Arguments

rectangle - Bounding box

4-element vector | M-by-4 matrix

Bounding box, specified as a 4 -element vector, [ $x y$ width height], or a set of bounding boxes, specified as an $M$-by- 4 matrix.

```
Data Types: single|double|int16| int32|uint16|uint32
```


## Output Arguments

## points - Rectangle corner coordinates

4-by-2 matrix | 4-by-2-by-M array
List of rectangle corners, returned as a 4-by-2 matrix of $[x, y]$ coordinates, or a 4-by-2-by$M$ array of $[x, y]$ coordinates. The output points for the rectangle are listed counterclockwise starting from the upper-left corner.

- For a single input bounding box, the function returns the 4-by-2 matrix.
- For multiple input bounding boxes, the function returns the 4 -by-2- $M$ array for $M$ bounding boxes.


## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.

## See Also

affine2d|projective2d

Introduced in R2014b

## bboxcrop

Crop bounding boxes

## Syntax

```
bboxB = bboxcrop(bboxA,window)
[bboxB,indices] = bboxcrop(bboxA,window)
[___] = bboxcrop(
```

$\qquad$

``` ,'OverlapThreshold',threshold)
```


## Description

bboxB = bboxcrop(bboxA, window) crops bounding boxes from a set of input bounding boxes, bboxA, located in the cropping window.
[bboxB,indices] = bboxcrop(bboxA,window) additionally returns a vector of indices that indicate which bounding boxes in bboxA are within the cropping window, window.
[___] = bboxcrop( $\qquad$ ,'OverlapThreshold',threshold) additionally sets an overlap threshold.

## Examples

## Center Crop Image and Corresponding Bounding Boxes

Read an image.

```
I = imread('peppers.png');
```

Define bounding boxes and labels.

```
bboxA = [
 410 230 100 90
 186 78 80 60
]
```

```
bboxA = 2\times4
 410}2300100 9
 186 78 80 60
labelsA = [
 "garlic"
 "onion"
];
```

Create a center cropping window.
targetSize = [256 256];
win = centerCropWindow2d(size(I),targetSize);
Center crop the image.

```
[r,c] = deal(win.YLimits(1):win.YLimits(2),win.XLimits(1):win.XLimits(2));
```

J = I(r,c,:);

Center crop boxes and labels. Boxes outside the cropping window are removed.

```
[bboxB,indices] = bboxcrop(bboxA,win);
```

labelsB = labelsA(indices);

Display the results.

```
figure
I = insertObjectAnnotation(I,'Rectangle',bboxA,labelsA);
J = insertObjectAnnotation(J,'Rectangle',bboxB,labelsB);
imshowpair(I,J,'montage')
```



## Input Arguments

## bboxA - Bounding boxes

M-by-4 matrix (default) | nonsparse numeric
Bounding boxes, specified as an $M$-by- 4 matrix of $M$ bounding boxes. Each row, $M$, of the matrix defines a bounding box as a four-element vector [ $x, y$, width,height] in pixel coordinates.

## window - Crop window

four-element vector (default) | images.spatialref.Rectangle | numeric | image
Crop window, specified as a four-element vector [ $x, y$, width, height], an image, or an images.spatialref.Rectangle object.
threshold - Overlap threshold
1 (default) | positive scalar less than or equal to 1
Overlap threshold, specified positive scalar less than or equal to 1. The amount of overlap between transformed boxes and the area defined by the output view is defined as:
area(bbox intersect bounding rectangle) / area(bbox)

- bounding rectangle - Defined by the input spatial reference object, ref.
- bbox - Result of transforming boxes in bboxA.

If the computed overlap value is greater than the value of the threshold property, then the transformed boxes are clipped to the bounding rectangle border. Otherwise, the boxes are discarded. Lowering the threshold can result in parts of the object getting discarded.

## Output Arguments

## bboxB - Cropped bounding boxes

$N$-by-4 matrix | nonsparse numeric
Cropped bounding boxes, returned as an $N$-by- 4 matrix of $N$ bounding boxes. The number of bounding boxes returned is less than the number of bounding boxes in the input. Each row, $N$, of the matrix defines one bounding box in pixel coordinates, as a four-element vector $[x, y$,width,height]. The location of the output bounding boxes are relative to the cropping window.

## indices - Indices

vector of integers
Indices, returned as a vector of integers. The indices indicate which bounding boxes in the input, bboxA, are within the cropping window.

## See Also

bboxresize|bboxwarp|imcrop

## Introduced in R2019b

## bboxresize

Resize bounding boxes

## Syntax

```
bboxB = bboxresize(bboxA,scale)
```


## Description

bboxB $=$ bboxresize (bboxA, scale) returns bounding boxes, bboxB, resized by the amount specified by scale.

## Examples

## Resize Image and Corresponding Bounding Boxes

Read an image.

```
I = imread('peppers.png');
```

Define bounding boxes and labels.

```
bboxA = [
```

    41023010090
    \(18678 \quad 80 \quad 60\)
    ]
    bboxA $=2 \times 4$
$410 \quad 230 \quad 100 \quad 90$
$186 \quad 78 \quad 80 \quad 60$
labelsA = [

```
"garlic"
"onion"
];
```

Resize the image and the bounding boxes.

```
scale = 1.5;
J = imresize(I,scale);
bboxB = bboxresize(bboxA,scale);
```

Display the results.
figure
I = insertObjectAnnotation(I,'Rectangle',bboxA,labelsA); J = insertObjectAnnotation(J,'Rectangle',bboxB,labelsA); imshowpair(I, J,'montage')


## Input Arguments

## bboxA - Bounding boxes

$M$-by-4 matrix (default) | nonsparse numeric

Bounding boxes, specified as an $M$-by- 4 matrix of $M$ bounding boxes. Each row, $M$, of the matrix defines a bounding box as a four-element vector [ $x, y$, width,height] in pixel coordinates.

```
scale - Scale
scalar (default) | row vector
```

Scale, specified as a scalar or a row vector. When you specify a scalar, the function applies the same scale factor to the height and width of the bounding boxes in bboxA. When you specify a row vector, the function applies the factor in the first element of the vector to resize the height and the second element to resize the width of the bounding boxes.

## Output Arguments

## bboxB - Resized bounding boxes

$M$-by-4 matrix | nonsparse numeric
Resized bounding boxes, returned as an $M$-by- 4 matrix of $M$ bounding boxes. Each row, $M$, of the matrix defines one bounding box in pixel coordinates, as a four-element vector [ $x, y$, width,height].

## See Also

bboxcrop| bboxwarp|imresize

## Introduced in R2019b

## bboxwarp

Apply geometric transformation to bounding boxes

## Syntax

```
bboxB = bboxwarp(bboxA,tform,ref)
[bboxB,indices] = bboxwarp(bboxA,tform,ref)
[____] = bboxwarp(___,'OverlapThreshold',threshold)
```


## Description

bboxB = bboxwarp(bboxA,tform,ref) transforms bounding boxes in bboxA according to the geometric transformation defined by tform. The spatial reference object, ref, defines the output view into which the boxes are transformed.
[bboxB,indices] = bboxwarp(bboxA,tform,ref) additionally returns a vector of indices that indicate which bounding boxes in bboxA correspond to the warped versions in the output, bboxB.
[___] = bboxwarp( $\qquad$ ,'OverlapThreshold',threshold) additionally sets an overlap threshold.

## Examples

## Transform Images and Corresponding Bounding Boxes

Read an image.

```
I = imread('peppers.png');
```

Define bounding boxes and labels.

```
bboxA = [
```

    41023010090
    ```
 186 78 80 60
]
bboxA = 2\times4
```



```
 186 78 80 60
labelsA = [
 "garlic"
 "onion"
];
```

Define a transform to horizontally flip and translate the image.
tform = affine2d([-1 0 0; $010 ; 5050$ 1]);
Create an output view for imwarp.
rout = affineOutputView(size(I),tform);
Warp the image.

```
J = imwarp(I,tform,'OutputView',rout);
```

Warp the boxes.

```
[bboxB,indices] = bboxwarp(bboxA,tform,rout);
```

labelsB = labelsA(indices);

Display the results.

```
annotatedI = insertObjectAnnotation(I,'Rectangle',bboxA,labelsA);
annotatedJ = insertObjectAnnotation(J,'Rectangle',bboxB,labelsB);
figure
montage({annotatedI, annotatedJ})
```



## Input Arguments

## bboxA - Bounding boxes

$M$-by-4 matrix | nonsparse numeric
Bounding boxes, specified as an $M$-by- 4 matrix of $M$ bounding boxes. Each row, $M$, of the matrix defines a bounding box as a four-element vector [ $x, y$, width,height] in pixel coordinates.
tform - Geometric transformation
affine2d object (default)
Geometric transformation, specified in an affine2d object.
ref - Spatial reference
imref2d object
Spatial reference, specified as an imref2d object returned by the imwarp or affineOutputView function. The object defines the output view to transform boxes. Boxes that are transformed completely outside of the output view defined by ref are discarded.

```
[J,rout] = imwarp(I,tform);
[bboxB,indices] = bboxwarp(bboxA,tform,rout);
rout = affineOutputView(size(I),tform)
J = imwarp(I,tform,'OutputView',rout);
[bboxB,indices] = bboxwarp(bboxA,tform,rout);
```


## threshold - Overlap threshold

```
1 (default) | positive scalar less than or equal to 1
```

Overlap threshold, specified positive scalar less than or equal to 1. The amount of overlap between transformed boxes and the area defined by the output view is defined as:
area(bbox intersect bounding rectangle) / area(bbox)

- bounding rectangle - Defined by the input spatial reference object, ref.
- bbox - Result of transforming boxes in bboxA.

If the computed overlap value is greater than the value of the threshold property, then the transformed boxes are clipped to the bounding rectangle border. Otherwise, the boxes are discarded. Lowering the threshold can result in parts of the object getting discarded.

## Output Arguments

## bboxB - Warped bounding boxes

N -by-4 matrix | nonsparse numeric
Warped bounding boxes, returned as an $N$-by- 4 matrix of $N$ bounding boxes. The number of bounding boxes returned is less than the number of bounding boxes in the input. Each row, $N$, of the matrix defines one axis-aligned bounding box in pixels coordinates, as a four-element vector [ $x, y$,width,height] in pixel coordinates.

## indices - Indices

vector of integers
Indices, returned as a vector of integers. The indices indicate which bounding boxes in the input, bboxA, that correspond to the warped versions in the output, bboxB.

## See Also

bboxcrop| bboxresize|imcrop|imwarp

## Introduced in R2019b

## bboxOverlapRatio

Compute bounding box overlap ratio

## Syntax

```
overlapRatio = bboxOverlapRatio(bboxA,bboxB)
overlapRatio = bboxOverlapRatio(bboxA, bboxB, ratioType)
```


## Description

overlapRatio $=$ bbox0verlapRatio (bboxA, bboxB) returns the overlap ratio between each pair of bounding boxes bboxA and bboxB. The function returns the overlapRatio value between 0 and 1 , where 1 implies a perfect overlap.
overlapRatio = bboxOverlapRatio(bboxA, bboxB, ratioType) additionally lets you specify the method to use for computing the ratio. You must set the ratioType to either 'Union' or 'Min'.

## Examples

## Compute the Overlap Ratio Between Two Bounding Boxes

Define two bounding boxes in the format [x y width height].

```
bboxA = [150,80,100,100];
bboxB = bboxA + 50;
```

Display the bounding boxes on an image.

```
I = imread('peppers.png');
RGB = insertShape(I,'FilledRectangle',bboxA,'Color','green');
RGB = insertShape(RGB,'FilledRectangle',bboxB,'Color','yellow');
imshow(RGB)
```



Compute the overlap ratio between the two bounding boxes.
overlapRatio $=$ bbox0verlapRatio(bboxA, bboxB)
overlapRatio $=0.0833$

## Compute Overlap Ratio Between Each Pair of Bounding Boxes

Randomly generate two sets of bounding boxes.
bboxA $=10 *$ rand $(5,4)$;
bboxB $=10 *$ rand $(10,4)$;

Ensure that the width and height of the boxes are positive.

```
bboxA(:,3:4) = bboxA(:,3:4) + 10;
bboxB(:,3:4) = bboxB(:,3:4) + 10;
```

Compute the overlap ratio between each pair.

```
overlapRatio = bboxOverlapRatio(bboxA,bboxB)
overlapRatio = 5×10
```

| 0.2431 | 0.2329 | 0.3418 | 0.5117 | 0.7972 | 0.1567 | 0.1789 | 0.4339 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.3420 | 0.1655 | 0.7375 | 0.5188 | 0.2786 | 0.3050 | 0.2969 | 0.4350 |
| 0.4844 | 0.3290 | 0.3448 | 0.1500 | 0.1854 | 0.4976 | 0.5629 | 0.4430 |
| 0.3681 | 0.0825 | 0.3499 | 0.0840 | 0.0658 | 0.5921 | 0.6498 | 0.1930 |
| 0.3752 | 0.1114 | 0.3114 | 0.0696 | 0.0654 | 0.5408 | 0.6234 | 0.2046 |

## Input Arguments

## bboxA - Bounding box

$M$-by-4 matrix
Bounding box, specified as an $M$-by- 4 matrix. Each row of bboxA contains a vector in the format [ $x y$ width height], where $x$ and $y$ correspond to the upper left corner of the bounding box. Bounding boxes inputs bboxA and bboxB must be real, finite, and nonsparse.
Data Types: single | double | int8|int16|int32|uint8|uint16|uint32

## bboxB - Bounding box

$M$-by-4 matrix
Bounding box, specified as an $M$-by- 4 matrix. Each row of bboxB contains a vector in the format [ $x y$ width height], where $x$ and $y$ correspond to the upper left corner of the bounding box. Bounding boxes inputs bboxA and bboxB must be real, finite, and nonsparse.

```
Data Types: single| double| int8| int16| int32|uint8|uint16|uint32
```


## ratioType - Ratio type

'Union' (default)|'Min'

Ratio type, specified as the character vector 'Union' or 'Min'.

- Set the ratio type to 'Union ' to compute the ratio as the area of intersection between bboxA and bboxB, divided by the area of the union of the two.
- Set the ratio type to 'Min' to compute the ratio as the area of intersection between bboxA and bboxB, divided by the minimum area of the two bounding boxes.

| bboxA | Union: $\frac{\operatorname{area}(A \cap B)}{\operatorname{area}(A \cup B)}$ |
| ---: | :--- |
| bboxB | Min: $\frac{\operatorname{area}(A \cap B)}{m i n(\operatorname{area}(A), \operatorname{area}(B))}$ |

## Data Types: char

## Output Arguments

## overlapRatio - Overlap ratio between two bounding boxes

$M$-by- $N$ matrix
Overlap ratio between two bounding boxes, returned as an $M$-by- $N$ matrix. Each ( $I, J$ ) element in the output matrix corresponds to the overlap ratio between row $I$ in bboxA and row $J$ in bboxB. The function returns overlapRatio in the between 0 and 1 , where 1 implies a perfect overlap. If either bboxA or bboxB is double, then the function returns overlapRatio as double. Otherwise, the function returns it as single.

The function computes the overlap ratio based on the ratio type. You can set ratioType to 'Union' or 'Min':


Data Types: single | double

## Extended Capabilities

C/C++ Code Generation<br>Generate $C$ and $C++$ code using MATLAB® $\operatorname{Coder}^{\text {TM }}$.

See Also<br>bboxPrecisionRecall| selectStrongestBbox

## Topics

"Multiple Object Tracking"
Introduced in R2014b

## bboxPrecisionRecall

Compute bounding box precision and recall against ground truth

## Syntax

[precision,recall] = bboxPrecisionRecall(bboxes,groundTruthBboxes) [precision,recall] = bboxPrecisionRecall(bboxes,groundTruthBboxes, threshold)

## Description

[precision,recall] = bboxPrecisionRecall(bboxes,groundTruthBboxes) measures the accuracy of bounding box overlap between bboxes and groundTruthBboxes. Precision is a ratio of true positive instances to all positive instances of objects in the detector, based on the ground truth. Recall is a ratio of true positive instances to the sum of true positives and false negatives in the detector, based on the ground truth.

If the bounding box is associated with a class label, precision and recall contain metrics for each class. If the bounding box is also associated with a confidence score for ranking, use the evaluateDetectionPrecision function.
[precision,recall] = bboxPrecisionRecall(bboxes,groundTruthBboxes, threshold) specifies the overlap threshold for assigning a given box to a ground truth box.

## Examples

## Evaluate Bounding Box Overlap Accuracy

Create two ground truth boxes.

```
groundTruthBoxes = [2 2 10 20; 80 80 30 40];
```

Create three boxes for evaluation.
boundingBoxes $=[441020 ; 505030$ 10; 909040 50];
Plot the boxes.
figure
hold on
for $\mathrm{i}=1: 2$
rectangle('Position',groundTruthBoxes(i,:),'EdgeColor','r');
end
for $i=1: 3$
rectangle('Position', boundingBoxes(i,:),'EdgeColor','b');
end


```
Evaluate the overlap accuracy against the ground truth data.
[precision,recall] = bboxPrecisionRecall(boundingBoxes,groundTruthBoxes)
precision = 0.3333
recall = 0.5000
```


## Evaluate Bounding Box Overlap For Three Classes

Define class names.

```
classNames = ["A","B","C"];
```

Create bounding boxes for evaluation.

```
predictedLabels = {...
 categorical("A",classNames); ...
 categorical(["C";"B"],classNames)};
bboxes = {...
 [10 10 20 30]; ...
 [60 18 20 10; 120 120 5 10]};
boundingBoxes = table(bboxes,predictedLabels,'VariableNames',....
 {'PredictedBoxes','PredictedLabels'});
```

Create ground truth boxes.
A = \{[10 102028$] ;$ []\};
$B=\{[] ;[1181205$ 10]\};
C = \{[]; [59 1920 10]\};
groundTruthData $=\operatorname{table}(A, B, C)$;
Evaluate overlap accuracy against ground truth data.
[precision,recall] = bboxPrecisionRecall(boundingBoxes,groundTruthData)
precision = 3×1
1
0
1

```
recall = 3\times1
```

1
0
1

## Input Arguments

## bboxes - Bounding boxes

$M$-by-4 matrix | table with $M$ rows
Bounding boxes, specified as one of the following. $M$ is the number of bounding boxes.

- For single-class bounding boxes, bboxes can be an M-by-4 matrix, or a table with $M$ rows and one column. Each row of the matrix or element in the table represents a bounding box, specified in the format [ $x y$ width height], where $x$ and $y$ correspond to the upper left corner of the bounding box.
- For multi-class bounding boxes, bboxes is a table with $M$ rows and two columns. Each element in the first column represents a bounding box, specified in the format [xy width height]. The second column contains the predicted label for each box. The label must be a categorical type defined by the variable (column) names of the groundTruthBboxes table.

Data Types: single|double|int8|int16|int32|uint8|uint16|uint32

## groundTruthBboxes - Ground truth bounding boxes

$M$-by-4 matrix | table with $M$ rows
Ground truth bounding boxes, specified as one of the following. $M$ is the number of ground truth bounding boxes.

- For single-class bounding boxes, groundTruthBboxes can be an M-by-4 matrix, or a table with $M$ rows and one column. Each row of the matrix or element in the table represents a bounding box, specified in the format [ $x$ y width height], where $x$ and $y$ correspond to the upper left corner of the bounding box.
- For multi-class bounding boxes, groundTruthBboxes is a table with $M$ rows and multiple columns. Each column represents a different class, and the column name specifies the class label. Each element in the table has the format [ $x$ y width height].


## Data Types: single |double | int8| int16| int32|uint8|uint16|uint32

## threshold - Overlap threshold

0.5 | numeric scalar

Overlap threshold for assigned a detection to a ground truth box, specified as a numeric scalar. The overlap ratio is computed as the intersection over union.

## Output Arguments

## precision - Precision values from each detection

numeric scalar | numeric vector
Precision values from each detection, returned as a numeric scalar for single-class bounding boxes. For multi-class bounding boxes, precision is returned as a numeric vector consisting of metrics for each class. The class order follows the same column order as the groundTruthBboxes table.

## recall - Recall values from each detection

numeric scalar | numeric vector
Recall values from each detection, returned as a numeric scalar for single-class bounding boxes. For multi-class bounding boxes, recall is returned as a numeric vector consisting of metrics for each class. The class order follows the same column order as the groundTruthBboxes table.

## See Also

bbox0verlapRatio|evaluateDetectionPrecision

## Introduced in R2018a

## bundleAdjustment

Refine camera poses and 3-D points

## Syntax

[xyzRefinedPoints,refinedPoses] = bundleAdjustment(xyzPoints, pointTracks,cameraPoses,intrinsics)
[__, reprojectionErrors] = bundleAdjustment( $\qquad$ )
[ $\qquad$ ] = bundleAdjustment( $\qquad$ , Name, Value)

## Description

[xyzRefinedPoints,refinedPoses] = bundleAdjustment(xyzPoints, pointTracks, cameraPoses,intrinsics) returns the refined 3-D points and camera poses that minimize reprojection errors. The refinement procedure is a variant of the Levenberg-Marquardt algorithm. 3-D points and camera poses are placed in the same global reference coordinate system.
$\qquad$ ,reprojectionErrors] = bundleAdjustment( $\qquad$ ) additionally returns an $N$-element vector containing the mean reprojection error for each 3-D world point using the arguments from the previous syntax.
$\qquad$ ] = bundleAdjustment( $\qquad$ , Name, Value) uses additional options specified by one or more Name, Value pair arguments. Unspecified properties have default values.

## Examples

## Refine Camera Poses and 3-D Points From a Single Camera

Load data for initialization.
data = load('sfmGlobe');
Refine the camera poses and points.
[xyzRefinedPoints,refinedPoses] =
bundleAdjustment(data.xyzPoints,data. pointTracks,data.cameraPoses,data.intrinsics) Display the refined camera poses and 3-D world points.
pcshow(xyzRefinedPoints,'VerticalAxis','y','VerticalAxisDir',...
down', 'MarkerSize',45);
hold on
plotCamera(refinedPoses, 'Size',0.1);
hold off
grid on


## Input Arguments

xyzPoints - Unrefined 3-D points<br>M-by-3 matrix

Unrefined 3-D points, specified as an $M$-by-3 matrix of $[x, y, z]$ locations.

## pointTracks - Matching points across multiple images

$N$-element array of pointTrack objects
Matching points across multiple images, specified as an $N$-element array of pointTrack objects. Each element contains two or more matching points across multiple images.

## cameraPoses - Camera pose information

three-column table
Camera pose ViewId, Orientation, and Location information, specified as a threecolumn table. The view IDs relate to the IDs in the pointTracks object. The orientations are specified as 3-by-3 rotation matrices. The locations are specified as a three-element vectors.

## intrinsics - Camera intrinsics

scalar | M-element array of cameraIntrinsics objects
Camera intrinsics, specified as a scalar or an $M$-element array of cameraIntrinsics objects. $M$ is the number of camera poses. Use a scalar value when images are captured using the same camera. Use a vector when images are captured by different cameras.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'MaxIterations', '50'
MaxIterations - Maximum number of iterations
50 (default) | positive integer

Maximum number of iterations before the Levenberg-Marquardt algorithm stops, specified as the comma-separated pair consisting of 'MaxIterations' and a positive integer.

## AbsoluteTolerance - Absolute termination tolerance

1.0 (default) | positive scalar

Absolute termination tolerance of the mean squared reprojection error in pixels, specified as the comma-separated pair consisting of 'AbsoluteTolerance' and a positive scalar.

## RelativeTolerance - Relative termination tolerance

```
1e-5 (default)| positive scalar
```

Relative termination tolerance of the reduction in reprojection error between iterations, specified as the comma-separated pair consisting of 'RelativeTolerance' and a positive scalar.

## PointsUndistorted - Flag to indicate lens distortion false (default)| true

Flag to indicate lens distortion, specified as the comma-separated pair consisting of 'PointsUndistorted' and either false or true. When you set PointsUndistorted to false, the 2-D points in pointTracks must be from images with lens distortion. To use undistorted points, use the undistortImage function first, then set PointsUndistorted to true.

## FixedViewIDs - View IDs for fixed camera pose <br> [ ] (default) | vector of nonnegative integers

View IDs for fixed camera pose, specified as the comma-separated pair consisting of 'FixedViewIDs' and a vector of nonnegative integers. Each ID corresponds to the ViewId of a fixed camera pose in cameraPoses. An empty value for FixedViewIDs means that all camera poses are optimized.

## Verbose - Display progress information

False (default) |true
Display progress information, specified as the comma-separated pair consisting of 'Verbose' and either false or true.

## Output Arguments

## xyzRefinedPoints - 3-D locations of refined world points

M-by-3 matrix
3-D locations of refined world points, returned as an $M$-by-3 matrix of $[x, y, z]$ locations.
Data Types: single | double
refinedPoses - Refined camera poses
three-column table
Refined camera poses, returned as a table. The table contains three columns for 'ViewId', 'Orientation', and 'Location'.

## reprojectionErrors - Reprojection errors

M-by-1 vector
Reprojection errors, returned as an $M$-by-1 vector. The function projects each world point back into each camera. Then in each image, the function calculates the reprojection error as the distance between the detected and the reprojected point. The reprojectionErrors vector contains the average reprojection error for each world point.


## References

[1] Lourakis, M.I.A., and A.A. Argyros. "SBA: A Software Package for Generic Sparse Bundle Adjustment." ACM Transactions on Mathematical Software. 2009.
[2] Hartley, R., and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, 2003.
[3] Triggs, B., P. McLauchlan, R. Hartley, and A. Fitzgibbon. "Bundle Adjustment: A Modern Synthesis." Proceedings of the International Workshop on Vision Algorithms. Springer-Verlag. 1999, pp. 298-372.

## See Also

## Functions

cameraMatrix|relativeCameraPose|triangulateMultiview|undistortImage | undistortPoints

Objects<br>cameraIntrinsics|cameraParameters| pointTrack|viewSet

## Topics

"Structure From Motion From Two Views"
"Structure From Motion From Multiple Views"
"Code Generation for Depth Estimation From Stereo Video"
"Structure from Motion"

## Introduced in R2016a

## OCR Trainer

Train an optical character recognition model to recognize a specific set of characters

## Description

The OCR Trainer app allows you to label character data for OCR training interactively and to generate an OCR language data file for use with the ocr function.

## Open the OCR Trainer App

- MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the app icon.
- MATLAB command prompt: Enter ocrTrainer.


## Programmatic Use

ocrTrainer opens the OCR Trainer app.
ocrTrainer(sessionFile) opens the app and loads a saved OCR training session. sessionFile is the path to the MAT file containing the saved session.

## See Also

ocr

Topics<br>"Train Optical Character Recognition for Custom Fonts"<br>Introduced in R2016a

## listTrueTypeFonts

List available TrueType fonts

## Syntax

```
fontNames = listTrueTypeFonts
```


## Description

fontNames $=$ listTrueTypeFonts returns a cell array of sorted TrueType font names installed on the system.

## Examples

## List Available TrueType Fonts

```
listTrueTypeFonts
```

```
ans = 386x1 cell array
 {'Agency FB' }
```

    \{'Agency FB Bold'
    \{'Algerian'
    \{'Arial'
    \{'Arial Black'
    \{'Arial Bold'
    \{'Arial Bold Italic'
    \{'Arial Italic'
    \{'Arial Narrow'
    \{'Arial Narrow Bold'
    \{'Arial Narrow Bold Italic'\}
    \{'Arial Narrow Italic' \}
    \{'Arial Rounded MT Bold' \}
    \{'Baskerville Old Face' \}
    \{'Bauhaus 93'
    \{'Bell MT'
    ```
{'Bell MT Bold' }
{'Bell MT Italic' }
{'Berlin Sans FB' }
{'Berlin Sans FB Bold' }
{'Berlin Sans FB Demi Bold'}
{'Bernard MT Condensed' }
{'Blackadder ITC' }
{'Bodoni MT' }
{'Bodoni MT Black' }
{'Bodoni MT Black Italic' }
{'Bodoni MT Bold' }
{'Bodoni MT Bold Italic' }
{'Bodoni MT Condensed' }
{'Bodoni MT Condensed Bold'}
```


## List All TrueType 'Lucida' Fonts

```
fontNames = listTrueTypeFonts;
LucidaFonts = fontNames(~cellfun(@isempty,regexp(fontNames,'^Lucida')))
LucidaFonts = 28x1 cell array
 {'Lucida Bright' }
 {'Lucida Bright Demibold' }
 {'Lucida Bright Demibold Italic' }
 {'Lucida Bright Italic' }
 {'Lucida Calligraphy Italic' }
 {'Lucida Console' }
 {'Lucida Fax Demibold' }
 {'Lucida Fax Demibold Italic' }
 {'Lucida Fax Italic' }
 {'Lucida Fax Regular' }
 {'Lucida Handwriting Italic' }
 {'Lucida Sans Demibold Italic' }
 {'Lucida Sans Demibold Roman' }
 {'Lucida Sans Italic' }
 {'Lucida Sans Regular' }
 {'Lucida Sans Typewriter Bold' }
 {'Lucida Sans Typewriter Bold Oblique'}
 {'Lucida Sans Typewriter Oblique' }
 {'Lucida Sans Typewriter Regular' }
```

```
{'Lucida Sans Unicode'
}
{'LucidaBrightDemiBold'
{'LucidaBrightDemiItalic'
{'LucidaBrightItalic'
{'LucidaBrightRegular' }
{'LucidaSansDemiBold' }
{'LucidaSansRegular'
{'LucidaTypewriterBold'
{'LucidaTypewriterRegular'
}
}
}
}
}
{LucidaTypwriterRegular', }
```


## Output Arguments

## fontNames - Available TrueType fonts on system <br> cell array

Available TrueType fonts on system, returned as a cell array of sorted TrueType font names.

## See Also

insert0bjectAnnotation|insertText|listfonts

## Introduced in R2015b

## pcfromkinect

Point cloud from Kinect for Windows

## Syntax

ptCloud = pcfromkinect(depthDevice, depthImage)
ptCloud = pcfromkinect(depthDevice, depthImage, colorImage)
ptCloud = pcfromkinect(depthDevice,depthImage,colorImage,alignment)

## Description

ptCloud $=$ pcfromkinect (depthDevice, depthImage) returns a point cloud from a Kinect depth image. The depthDevice input can be either a videoinput object or an imaq. VideoDevice object configured for Kinect (Versions 1 and 2) for Windows.

This function requires the Image Acquisition Toolbox ${ }^{\mathrm{TM}}$ software, which supports Kinect for Windows.
ptCloud = pcfromkinect (depthDevice, depthImage, colorImage) adds color to the returned point cloud, specified by the colorImage input.

The Kinect for Windows system, designed for gaming, produces depthImage and colorImage as mirror images of the scene. The returned point cloud is corrected to match the actual scene.
ptCloud = pcfromkinect(depthDevice,depthImage,colorImage,alignment) additionally returns the color point cloud with the origin specified at the center of the depth camera.

## Examples

## Plot Color Point Cloud from Kinect for Windows

Plot a color point cloud from Kinect images. This example requires the Image Acquisition Toolbox software and the Kinect camera and a connection to the camera.

Create a System object for the color device.

```
colorDevice = imaq.VideoDevice('kinect',1)
```

Create a System object for the depth device.
depthDevice = imaq.VideoDevice('kinect',2)
Initialize the camera.

```
step(colorDevice);
step(depthDevice);
```

Load one frame from the device.

```
colorImage = step(colorDevice);
depthImage = step(depthDevice);
```

Extract the point cloud.

```
ptCloud = pcfromkinect(depthDevice,depthImage,colorImage);
```

Initialize a point cloud player to visualize 3-D point cloud data. The axis is set appropriately to visualize the point cloud from Kinect.

```
player = pcplayer(ptCloud.XLimits,ptCloud.YLimits,ptCloud.ZLimits,...
 'VerticalAxis','y','VerticalAxisDir','down');
xlabel(player.Axes,'X (m)');
ylabel(player.Axes,'Y (m)');
zlabel(player.Axes,'Z (m)');
```

Acquire and view 500 frames of live Kinect point cloud data.

```
for i = 1:500
 colorImage = step(colorDevice);
 depthImage = step(depthDevice);
 ptCloud = pcfromkinect(depthDevice,depthImage,colorImage);
```

```
 view(player,ptCloud);
end
```

Figure 1
File Edit View Insert Iools Desktop Window Help




Release the objects.

```
release(colorDevice);
release(depthDevice);
```


## Input Arguments

## depthDevice - Input video object

videoinput object | imaq. VideoDevice object
Input video object, specified as either a videoinput object or an imaq. VideoDevice object configured for Kinect for Windows.

## depthImage - Depth image

$M$-by- $N$ matrix
Depth image, specified as an $M$-by- $N$ pixel matrix. The original images, depthImage and colorImage, from Kinect are mirror images of the scene.

The Kinect depth camera has limited range. The limited range of the Kinect depth camera can cause pixel values in the depth image to not have corresponding 3-D coordinates. These missing pixel values are set to NaN in the Location property of the returned point cloud.

Data Types: uint16
colorImage - Color image
M-by- $N$-by-3 RGB truecolor image
Color image, specified as an $M$-by- $N$-by-3 RGB truecolor image that the Kinect returns. The original images, depthImage and colorImage, from Kinect are mirror images of the scene.

## Data Types: uint8

## alignment - Direction of the image coordinate system

'colorCentric' (default)|'depthCentric'
Direction of the image coordinate system, specified as the character vector ' colorCentric' or 'depthCentric'. Set this value to 'colorCentric' to align depthImage with colorImage. Set alignment to 'depthCentric' to align colorImage with depthImage.

The origin of a right-handed world coordinate system is at the center of the depth camera. The $x$-axis of the coordinate system points to the right, the $y$-axis points downward, and the $z$-axis points from the camera.


Note For consistency across Computer Vision Toolbox use of coordinates systems, the coordinate system defined by this function is different from the one defined by Kinect Skeletal metadata.

## Output Arguments

ptCloud - Point cloud
pointCloud object
Point cloud, returned as a pointCloud object. The origin of the coordinate system of the returned point cloud is at the center of the depth camera.

## See Also

pcdenoise | pcdownsample | pcfitplane | pcmerge|pcplayer|pcread| pcregistericp|pcshow|pcwrite|planeModel|plot3|pointCloud| reconstructScene|scatter3|triangulate

Topics<br>"Structure From Motion From Two Views"<br>"Depth Estimation From Stereo Video"<br>"Coordinate Systems"

Introduced in R2015b

## Camera Calibrator

Estimate geometric parameters of a single camera

## Description

The Camera Calibrator app allows you to estimate camera intrinsics, extrinsics, and lens distortion parameters. You can use these camera parameters for various computer vision applications. These applications include removing the effects of lens distortion from an image, measuring planar objects, or reconstructing 3-D scenes from multiple cameras.

## Open the Camera Calibrator App

- MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the app icon.
- MATLAB command prompt: Enter cameraCalibrator.


## Examples

## Open Camera Calibrator App

This example shows you the two ways to open the Camera Calibrator app.
Type cameraCalibrator on the MATLAB command line or select it from the MATLAB desktop Apps tab.

- "Evaluating the Accuracy of Single Camera Calibration"
- "Measuring Planar Objects with a Calibrated Camera"
- "Structure From Motion From Two Views"
- "Structure From Motion From Multiple Views"
- "Depth Estimation From Stereo Video"


## Programmatic Use

cameraCalibrator opens the Camera Calibrator app, which enables you to compute parameters needed to remove the effects of lens distortion from an image.
cameraCalibrator(imageFolder, squareSize) invokes the camera calibration app and loads calibration images from the imageFolder. The squareSize input must be a scalar in millimeters that specifies the size of the checkerboard square in the calibration pattern.
cameraCalibrator(sessionFile) invokes the app and loads a saved camera calibration session. Set the sessionFile to the name of the saved session file. The name must include the path to the MAT file containing the saved session.

## See Also

## Apps

Stereo Camera Calibrator

## Classes

cameraParameters|stereoParameters

## Functions

detectCheckerboardPoints|estimateCameraParameters|extrinsics| generateCheckerboardPoints|rectifyStereoImages|showExtrinsics | showReprojectionErrors|triangulate|undistortImage

## Topics

"Evaluating the Accuracy of Single Camera Calibration"
"Measuring Planar Objects with a Calibrated Camera"
"Structure From Motion From Two Views"
"Structure From Motion From Multiple Views"
"Depth Estimation From Stereo Video"
"What Is Camera Calibration?"
"Single Camera Calibrator App"
"Stereo Camera Calibrator App"
Introduced in R2013b

## Stereo Camera Calibrator

Estimate geometric parameters of a stereo camera

## Description

The Stereo Camera Calibrator app allows you to estimate the intrinsic and extrinsic parameters of each camera in a stereo pair. You can also use the app to estimate the translation and rotation between the two cameras.

## Open the Stereo Camera Calibrator App

- MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the app icon.
- MATLAB command prompt: Enter stereoCameraCalibrator.


## Examples

## Open Stereo Camera Calibrator App

This example shows you the two ways to open the Stereo Camera Calibrator app.
Type stereocameraCalibrator on the MATLAB command line or select it from the MATLAB desktop Apps tab.

- "Evaluating the Accuracy of Single Camera Calibration"
- "Measuring Planar Objects with a Calibrated Camera"
- "Structure From Motion From Two Views"
- "Structure From Motion From Multiple Views"
- "Depth Estimation From Stereo Video"


## Programmatic Use

stereoCameraCalibrator opens the Stereo Camera Calibrator app. You can use this app to estimate the intrinsic and extrinsic parameters of each camera in a stereo pair. You can also use the app to estimate the translation and rotation between the two cameras.
stereoCameraCalibrator(folder1,folder2,squareSize) opens the Stereo Camera Calibrator app and loads the stereo calibration images. The app uses the checkerboard square size specified by the squareSize input. It also uses folder1 images for camera 1 and folder2 for camera 2.
stereoCameraCalibrator(folder1,folder2,squareSize, squareSizeUnits) additionally specifies the units of the square size. If you do not specify units, the app sets squareSizeUnits to 'millimeters'. Units can be 'millimeters', 'centimeters', or 'inches'.
stereoCameraCalibrator(sessionFile) opens the app and loads a saved stereo calibration session. Set the sessionFile to the name of the saved session MAT-file.

## See Also

Camera Calibrator | cameraParameters | detectCheckerboardPoints estimateCameraParameters | generateCheckerboardPoints | showExtrinsics | showReprojectionErrors|stereoParameters|undistortImage

## Topics

"Evaluating the Accuracy of Single Camera Calibration"
"Measuring Planar Objects with a Calibrated Camera"
"Structure From Motion From Two Views"
"Structure From Motion From Multiple Views"
"Depth Estimation From Stereo Video"
"What Is Camera Calibration?"
"Single Camera Calibrator App"
"Stereo Camera Calibrator App"

Introduced in R2014b

## cameraMatrix

Camera projection matrix

## Syntax

```
camMatrix = cameraMatrix(cameraParams,rotationMatrix,
translationVector)
```


## Description

camMatrix = cameraMatrix(cameraParams, rotationMatrix, translationVector) returns a 4-by-3 camera projection matrix. You can use this matrix to project 3-D world points in homogeneous coordinates into an image.

## Examples

## Compute Camera Matrix

Create a set of calibration images.

```
images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
 calibration','slr'));
```

Detect the checkerboard corners in the images.
[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);
Generate the world coordinates of the checkerboard corners in the pattern-centric coordinate system, with the upper-left corner at ( 0,0 ). The square size is in millimeters.

```
squareSize = 29;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);
```

Calibrate the camera.

```
I = readimage(images,1);
imageSize = [size(I,1),size(I,2)];
cameraParams = estimateCameraParameters(imagePoints,worldPoints, ...
 'ImageSize',imageSize);
```

Load image at new location.

```
imOrig = imread(fullfile(matlabroot,'toolbox','vision','visiondata', ...
 'calibration','slr','image9.jpg'));
figure; imshow(imOrig);
title('Input Image');
```



Undistort image.
im = undistortImage(imOrig,cameraParams);

Find reference object in new image.

```
[imagePoints,boardSize] = detectCheckerboardPoints(im);
Compute new extrinsics.
[rotationMatrix,translationVector] = extrinsics(...
 imagePoints,worldPoints,cameraParams);
Calculate camera matrix
```

```
P = cameraMatrix(cameraParams,rotationMatrix,translationVector)
```

P = cameraMatrix(cameraParams,rotationMatrix,translationVector)
P = 4\times3
105 x

0.0157	-0.0271	0.0000
0.0404	-0.0046	-0.0000
0.0199	0.0387	0.0000
8.9399	9.4399	0.0072

```

\section*{Input Arguments}

\section*{cameraParams - Object for storing camera parameters \\ cameraParameters object| cameraIntrinsics object}

Camera parameters, specified as a cameraParameters or cameraIntrinsics object. You can return the cameraParameters object using the estimateCameraParameters function. The cameraParameters object contains the intrinsic, extrinsic, and lens distortion parameters of a camera.

\section*{rotationMatrix - Rotation of camera}

3-by-3 matrix
Rotation of camera, specified as a 3-by-3 matrix. You can obtain this matrix using the extrinsics function. You can also obtain the matrix using the relativeCameraPose function by transposing its orientation output. The rotationMatrix and translationVector inputs must be real, nonsparse, and of the same class.

\section*{translationVector - Translation of camera}

1-by-3 vector

Translation of camera, specified as a 1-by-3 vector. The translation vector describes the transformation from the world coordinates to the camera coordinates. You can obtain this vector using the extrinsics function. You can also obtain the vector using the location and orientation outputs of the relativeCameraPose function:
- translationVector = -relativeLocation * relativeOrientation'

The translationVector inputs must be real, nonsparse, and of the same class.

\section*{Output Arguments}

\section*{camMatrix - Camera projection matrix}

4-by-3 matrix
Camera projection matrix, returned as a 4-by-3 matrix. The matrix contains the 3-D world points in homogenous coordinates that are projected into the image. When you set rotationMatrix and translationVector to double, the function returns camMatrix as double. Otherwise it returns camMatrix as single.

The function computes camMatrix as follows:
```

camMatrix = [rotationMatrix; translationVector] x K.
K: the intrinsic matrix

```

Then, using the camera matrix and homogeneous coordinates, you can project a world point onto the image.
\(w \quad \times \quad[x, y, 1] \quad[X, Y, Z, 1] \quad \times \quad\) camMatrix.
(\(X, Y, Z\)): world coordinates of a point
\((x, y)\) : coordinates of the corresponding image point
\(w\) : arbitrary scale factor
Data Types: single | double

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).
Usage notes and limitations:
- Use in a MATLAB Function block is not supported.

\section*{See Also \\ Camera Calibrator | estimateCameraMatrix | estimateCameraParameters | extrinsics|relativeCameraPose|triangulate}

\section*{Topics}
"Evaluating the Accuracy of Single Camera Calibration"
"Structure From Motion From Two Views"
"Structure From Motion From Multiple Views"
"Depth Estimation From Stereo Video"
"Code Generation for Depth Estimation From Stereo Video"
"What Is Camera Calibration?"
"Single Camera Calibrator App"
"Stereo Camera Calibrator App"

Introduced in R2014b

\section*{cameraPose}

Compute relative rotation and translation between camera poses

\section*{Syntax}
cameraPose

\section*{Description}
cameraPose returns the camera extrinsics.

Note cameraPose was renamed to relativeCameraPose. Please use the new function in place of cameraPose.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
Usage notes and limitations:
- Use in a MATLAB Function block is not supported.

Introduced in R2015b

\section*{relativeCameraPose}

Compute relative rotation and translation between camera poses

\section*{Syntax}
[relativeOrientation,relativeLocation] = relativeCameraPose(M, cameraParams,inlierPoints1,inlierPoints2)
[relativeOrientation,relativeLocation] = relativeCameraPose(M, cameraParams1, cameraParams2,inlierPoints1,inlierPoints2)
[relativeOrientation, relativeLocation, validPointsFraction] = relativeCameraPose(M, \(\qquad\)

\section*{Description}
[relativeOrientation,relativeLocation] = relativeCameraPose(M, cameraParams,inlierPoints1,inlierPoints2) returns the orientation and location of a calibrated camera relative to its previous pose. The two poses are related by M, which must be either a fundamental, essential, or projective2d matrix. The function computes the camera location up to scale and returns relativeLocation as a unit vector.
[relativeOrientation,relativeLocation] = relativeCameraPose(M, cameraParams1, cameraParams2,inlierPoints1,inlierPoints2) returns the orientation and location of the second camera relative to the first one.
[relativeOrientation,relativeLocation,validPointsFraction] = relativeCameraPose(M, \(\qquad\)) additionally returns the fraction of the inlier points that project in front of both cameras.

\section*{Input Arguments}

\author{
M - Fundamental, essential, or homography matrix \\ 3-by-3 matrix
}

Fundamental, essential matrix, or a homography matrix, specified as a 3-by-3 matrix or a projective2d object containing a homography matrix. You can obtain the 3-by-3 matrix using one of the following functions:
- estimateFundamentalMatrix for the fundamental matrix.
- estimateEssentialMatrix for the essential matrix
- estimateGeometricTransform for the projective 2-D object.

\section*{Data Types: single | double}

\section*{cameraParams - Object for storing camera parameters}

\section*{cameraParameters object| cameraIntrinsics object}

Camera parameters, specified as a cameraParameters or cameraIntrinsics object. You can return the cameraParameters object using the estimateCameraParameters function. The cameraParameters object contains the intrinsic, extrinsic, and lens distortion parameters of a camera.

\section*{cameraParams1 - Camera parameters for camera 1 \\ cameraParameters object| cameraIntrinsics object}

Camera parameters for camera 1, specified as a cameraParameters or cameraIntrinsics object. You can return the cameraParameters object using the estimateCameraParameters function. The cameraParameters object contains the intrinsic, extrinsic, and lens distortion parameters of a camera.

\section*{cameraParams2 - Camera parameters for camera 2 \\ cameraParameters object| cameraIntrinsics object}

Camera parameters for camera 2, specified as a cameraParameters or cameraIntrinsics object. You can return the cameraParameters object using the estimateCameraParameters function. The cameraParameters object contains the intrinsic, extrinsic, and lens distortion parameters of a camera.

\section*{inlierPoints1 - Coordinates of corresponding points in view 1 SURFPoints | cornerPoints | MSERRegions | M-by-2 matrix of [x,y] coordinates}

Coordinates of corresponding points in view 1, specified as an \(M\)-by-2 matrix of \(M\) number of \([x, y]\) coordinates, or as a SURFPoints, MSERRegions, or cornerPoints object. You can obtain these points using the estimateFundamentalMatrix function or the estimateEssentialMatrix.

\section*{inlierPoints2 - Coordinates of corresponding points in view 2 \\ SURFPoints | cornerPoints | MSERRegions | M-by-2 matrix of \([x, y]\) coordinates}

Coordinates of corresponding points in view 2, specified as an \(M\)-by- 2 matrix of \(M\) number of \([x, y]\) coordinates, or as a SURFPoints, MSERRegions, or cornerPoints object. You can obtain these points using the estimateFundamentalMatrix function or the estimateEssentialMatrix.

\section*{Output Arguments}

\section*{relativeOrientation - Orientation of camera}

3-by-3 matrix
Orientation of camera, returned as a 3-by-3 matrix. If you use only one camera, the matrix describes the orientation of the second camera pose relative to the first camera pose. If you use two cameras, the matrix describes the orientation of camera 2 relative to camera 1.

Data Types: single | double
relativeLocation - Location of camera
1-by-3 vector
Location of camera, returned as a 1-by-3 unit vector. If you use only one camera, the vector describes the location of the second camera pose relative to the first camera pose. If you use two cameras, the vector describes the location of camera 2 relative to camera 1.

Data Types: single | double
validPointsFraction - Fraction of valid inlier points
scalar
Fraction of valid inlier points that project in front of both cameras, returned as a scalar. If validPointsFraction is too small, e.g. less than 0.9 , it can indicate that the fundamental matrix is incorrect.

\section*{Tips}
- You can compute the camera extrinsics, rotationMatrix and translationVector, corresponding to the camera pose, from relativeOrientation and relativeLocation:
[rotationMatrix,translationVector] = cameraPoseToExtrinsics(relativeOrientation, rela
The orientation of the previous camera pose is the identity matrix, eye(3), and its location is, \([0,0,0]\).
- You can then use rotationMatrix and translationVector as inputs to the cameraMatrix function.
- You can compute four possible combinations of orientation and location from the input fundamental matrix. Three of the combinations are not physically realizable, because they project 3-D points behind one or both cameras. The relativeCameraPose function uses inlierPoints1 and inlierPoints2 to determine the realizable combination.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
Usage notes and limitations:
- Use in a MATLAB Function block is not supported.

\section*{See Also}

Camera Calibrator | cameraMatrix | cameraPoseToExtrinsics | estimateCameraParameters|estimateEssentialMatrix| estimateFundamentalMatrix|estimateWorldCameraPose|plotCamera| triangulate|triangulateMultiview

\section*{Topics}
"Structure From Motion From Two Views"

\author{
"Structure From Motion From Multiple Views" \\ "Point Feature Types" \\ "Single Camera Calibrator App" \\ "Stereo Camera Calibrator App" \\ "Structure from Motion" \\ Introduced in R2016b
}

\section*{estimateCameraMatrix}

Estimate camera projection matrix from world-to-image point correspondences

\section*{Syntax}
```

camMatrix = estimateCameraMatrix(imagePoints,worldPoints)
[camMatrix,reprojectionErrors] = estimateCameraMatrix(imagePoints,
worldPoints)

```

\section*{Description}
camMatrix = estimateCameraMatrix(imagePoints,worldPoints) returns the camera projection matrix determined from known world points and their corresponding image projections by using the direct linear transformation (DLT) approach.
[camMatrix,reprojectionErrors] = estimateCameraMatrix(imagePoints, worldPoints) also returns the reprojection error that quantifies the accuracy of the projected image coordinates.

\section*{Examples}

\section*{Estimate Camera Projection Matrix}

Load a 3-D point cloud data captured by an RGB-D sensor into the workspace.
```

ld = load('object3d.mat');

```
ptCloud = ld.ptCloud;

Remove points with Inf or NaN coordinates from the point cloud.
```

[validPtCloud,validIndices] = removeInvalidPoints(ptCloud);

```

Read the valid world point coordinates. Each entry specifies the \(x, y, z\) coordinates of a point in the point cloud.
```

worldPoints = validPtCloud.Location;

```

Define the corresponding image point coordinates as a orthographic projection of point cloud data onto the \(y z\)-plane.
```

indices = 1:ptCloud.Count;
[y,z] = ind2sub([size(ptCloud.Location,1),size(ptCloud.Location,2)],indices);
imagePoints = [y(validIndices)' z(validIndices)'];

```

Generate the 2-D image projection by using the image point coordinates and their color values.
```

projImage = zeros(max(imagePoints(:,1)),max(imagePoints(:,2)),3);
rgb = validPtCloud.Color;
for j = 1:length(rgb)
projImage(imagePoints(j,1),imagePoints(j,2),:) = rgb(j,:);
end

```

Display the point cloud data and the corresponding 2-D image projection.
```

figure
subplot(1,2,1)
pcshow(ptCloud)
xlabel('X');
ylabel('Y');
zlabel('Z');
title('Point Cloud Data','Color',[1 1 1])
subplot(1,2,2)
imshow(uint8(projImage))
title('2-D Image Projection','Color',[1 1 1])

```


Estimate the camera projection matrix and reprojection error by using the known world points and the image points.
[camMatrix, reprojectionErrors] = estimateCameraMatrix(imagePoints,worldPoints);
Use the estimated camera projection matrix as input to the findNearestNeighbors function and find the nearest neighbors of a query point.
```

point = [0.4 0.3 0.2]; % Specify the query point

```
K = 50; \% Specify the number of nearest neighbors to be determined
[indices,dists] = findNearestNeighbors(ptCloud,point, K,camMatrix); \% Get the indices
Use the select function to get the point cloud data of nearest neighbors.
ptCloudB = select(ptCloud,indices);

Display the input point cloud and its nearest neighbors.
figure,
pcshow(ptCloud)
hold on
pcshow(ptCloudB. Location, 'ob')
hold off
legend('Point Cloud','Nearest Neighbors','Location','southoutside','Color',[111])

\section*{Input Arguments}

\section*{imagePoints - Coordinates of image projection points}
\(M\)-by-2 matrix of (\(x, y\)) coordinates
Coordinates of image projection points, specified as an \(M\)-by-2 matrix of (\(x, y\)) coordinates. \(M\) is the number of points and it must be greater than or equal to 6 .

\section*{Note}
- The input image points must correspond to an undistorted image plane.

\section*{Data Types: single | double}

\section*{worldPoints - 3-D world points}

M-by-3 matrix of (\(x, y, z\)) coordinates
3-D world points, specified as an \(M\)-by-3 matrix of (\(x, y, z\)) coordinates. \(M\) is the number of points and it must be greater than or equal to 6 .

\section*{Note}
- The input world coordinates must be non-coplanar points.

\section*{Data Types: single | double}

\section*{Output Arguments}

\section*{camMatrix - Camera projection matrix}

\section*{4-by-3 matrix}

Camera projection matrix, returned as a 4-by-3 matrix. The matrix maps the 3-D world points, in homogenous coordinates to the 2-D image coordinates of the projections onto the image plane.

Data Types: double

\section*{reprojectionErrors - Reprojection errors}

M-by-1 vector
Reprojection errors, returned as a \(M\)-by-1 vector. The reprojection error is the error between the reprojected image points and the input image points. For more information on the computation of reprojection errors, see "Algorithms" on page 3-289.

\section*{Data Types: double}

\section*{Tips}

You can use the estimateCameraMatrix function to estimate a camera projection matrix:
- If the world-to-image point correspondences are known, and the camera intrinsics and extrinsics parameters are not known.
- For use with the findNearestNeighbors object function of the pointCloud object. The use of a camera projection matrix speeds up the nearest neighbors search in a point cloud generated by an RGB-D sensor, such as Microsoft Kinect.

\section*{Algorithms}

Given the world points \(\boldsymbol{X}\) and the image points \(\boldsymbol{x}\), the camera projection matrix \(C\), is obtained by solving the equation
\(\lambda x=C X\).
The equation is solved using the direct linear transformation (DLT) approach [1]. This approach formulates a homogeneous linear system of equations, and the solution is obtained through generalized eigenvalue decomposition.

Because the image point coordinates are given in pixel values, the approach for computing the camera projection matrix is sensitive to numerical errors. To avoid numerical errors, the input image point coordinates are normalized, so that their centroid is at the origin. Also, the root mean squared distance of the image points from the origin is \(\sqrt{2}\). These steps summarize the process for estimating the camera projection matrix.

1 Normalize the input image point coordinates with transform \(T\).
2 Estimate camera projection matrix \(C^{N}\) from the normalized input image points.

3 Compute the denormalized camera projection matrix \(C\) as \(C^{N} T^{-1}\).
4 Compute the reprojected image point coordinates \(\boldsymbol{x}^{\boldsymbol{E}}\) as \(C \boldsymbol{X}\).
5 Compute the reprojection errors as reprojectionErrors \(=\left|\mathbf{x}-\mathbf{x}^{\boldsymbol{E}}\right|\).

\section*{References}
[1] Richard, H. and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge: Cambridge University Press, 2000.

\section*{See Also}
cameraMatrix|estimateCameraParameters|estimateEssentialMatrix| estimateFundamentalMatrix|estimateWorldCameraPose| findNearestNeighbors

Introduced in R2019a

\section*{extractLBPFeatures}

Extract local binary pattern (LBP) features

\section*{Syntax}
```

features = extractLBPFeatures(I)
features = extractLBPFeatures(I,Name,Value)

```

\section*{Description}
features = extractLBPFeatures(I) returns extracted uniform local binary pattern (LBP) from a grayscale image. The LBP features encode local texture information.
features = extractLBPFeatures(I,Name,Value) uses additional options specified by one or more Name, Value pair arguments.

\section*{Examples}

\section*{Using LBP Features to Differentiate Images by Texture}

Read images that contain different textures.
```

brickWall = imread('bricks.jpg');
rotatedBrickWall = imread('bricksRotated.jpg');
carpet = imread('carpet.jpg');

```

Display the images.
figure
imshow(brickWall)
title('Bricks')

Bricks

figure
imshow(rotatedBrickWall) title('Rotated Bricks')

Rotated Bricks

figure
imshow(carpet)
title('Carpet')

Extract LBP features from the images to encode their texture information.
```

lbpBricks1 = extractLBPFeatures(brickWall,'Upright',false);
lbpBricks2 = extractLBPFeatures(rotatedBrickWall,'Upright',false);
lbpCarpet = extractLBPFeatures(carpet,'Upright',false);

```

Gauge the similarity between the LBP features by computing the squared error between them.
```

brickVsBrick = (lbpBricks1 - lbpBricks2).^2;
brickVsCarpet = (lbpBricks1 - lbpCarpet).^2;

```

Visualize the squared error to compare bricks versus bricks and bricks versus carpet. The squared error is smaller when images have similar texture.
figure
bar([brickVsBrick; brickVsCarpet]','grouped')
title('Squared Error of LBP Histograms')
xlabel('LBP Histogram Bins')
legend('Bricks vs Rotated Bricks','Bricks vs Carpet')

\section*{Apply L1 Normalization to LBP Features}

Read in a sample image and convert it to grayscale.
I = imread('gantrycrane.png');
I = rgb2gray(I);

Extract unnormalized LBP features so that you can apply a custom normalization.
```

lbpFeatures = extractLBPFeatures(I,'CellSize',[32 32],'Normalization','None');

```

Reshape the LBP features into a number of neighbors -by- number of cells array to access histograms for each individual cell.
```

numNeighbors = 8;
numBins = numNeighbors*(numNeighbors-1)+3;
lbpCellHists = reshape(lbpFeatures,numBins,[]);

```

Normalize each LBP cell histogram using L1 norm.
lbpCellHists = bsxfun(@rdivide,lbpCellHists,sum(lbpCellHists));
Reshape the LBP features vector back to 1-by- \(N\) feature vector.
lbpFeatures = reshape(lbpCellHists,1,[]);

\section*{Input Arguments}

\section*{I - Input image}

M-by-N 2-D grayscale image
Input image, specified as an \(M\)-by- \(N\) 2-D grayscale image that is real, and non-sparse.
Data Types: logical|single | double | int16|uint8|uint16

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: 'NumNeighbors',8

\section*{Algorithm Parameters}

The LBP algorithm parameters control how local binary patterns are computed for each pixel in the input image.

\section*{NumNeighbors - Number of neighbors \\ 8 (default) | positive integer}

Number of neighbors used to compute the LBP for each pixel in the input image, specified as the comma-separated pair consisting of 'NumNeighbors' and a positive integer. The set of neighbors is selected from a circularly symmetric pattern around each pixel. Increase the number of neighbors to encode greater detail around each pixel. Typical values range from 4 to 24 .

\section*{Radius - Radius of circular pattern to select neighbors}

\section*{1 (default) | positive integer}

Radius of circular pattern used to select neighbors for each pixel in the input image, specified as the comma-separated pair consisting of 'Radius' and a positive integer. To capture detail over a larger spatial scale, increase the radius. Typical values range from 1 to 5 .

\section*{Upright - Rotation invariance flag \\ true | logical scalar}

Rotation invariance flag, specified as the comma-separated pair consisting of 'Upright' and a logical scalar. When you set this property to true, the LBP features do not encode rotation information. Set 'Upright' to false when rotationally invariant features are required.

\section*{Interpolation - Interpolation method 'Linear' (default)|'Nearest'}

Interpolation method used to compute pixel neighbors, specified as the comma-separated pair consisting of 'Interpolation' and either 'Linear' or 'Nearest'. Use ' Nearest ' for faster computation, but with less accuracy.

\section*{Histogram Parameters}

The histogram parameters determine how the distribution of binary patterns is aggregated over the image to produce the output features.

\section*{CellSize - Cell size}
size(I) (default)|2-element vector
Cell size, specified as the comma-separated pair consisting of 'CellSize' and a 2-element vector. The number of cells is calculated as floor(size(I)/CellSize).

\section*{Normalization - Type of normalization \\ 'L2' (default)|'None'}

Type of normalization applied to each LBP cell histogram, specified as the commaseparated pair consisting of 'Normalization' and either 'L2' or 'None'. To apply a custom normalization method as a post-processing step, set this value to 'None'.

\section*{Output Arguments}

\section*{features - LBP feature vector}

\author{
1 -by- \(N\) vector
}

LBP feature vector, returned as a 1-by- \(N\) vector of length \(N\) representing the number of features. LBP features encode local texture information, which you can use for tasks such as classification, detection, and recognition. The function partitions the input image into non-overlapping cells. To collect information over larger regions, select larger cell sizes . However, when you increase the cell size, you lose local detail. \(N\), depends on the number of cells in the image, numCells, the number of neighbors, \(P\), and the Upright parameter.

The number of cells is calculated as:
numCells \(=\operatorname{prod}(f l o o r(s i z e(I) / C e l l S i z e))\)
The figure shows an image with nine cell histograms. Each histogram describes an LBP feature.

Image

The size of the histogram in each cell is \([1, B]\), where \(B\) is the number of bins in the histogram. The number of bins depends on the Upright property and the number of neighbors, \(P\).
\begin{tabular}{|l|l|}
\hline Upright & Number of Bins \\
\hline true & \((\mathrm{P} \times P-1)+3)\) \\
\hline false & \((P+2)\) \\
\hline
\end{tabular}

The overall LBP feature length, \(N\), depends on the number of cells and the number of bins, \(B\) :
\(N=\) numCells x \(B\)

\section*{LBP features \(=\operatorname{size}(\mathrm{Lyx})=[1, B]\)}

\section*{References}
[1] Ojala, T., M. Pietikainen, and T. Maenpaa. "Multiresolution Gray Scale and Rotation Invariant Texture Classification With Local Binary Patterns." IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 24, Issue 7, July 2002, pp. 971-987.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathrm{Coder}^{\mathrm{TM}}\).
Usage notes and limitations:
- Does not generate a platform-dependent library.

\section*{See Also}

MSERRegions | SURFPoints | detectBRISKFeatures | detectFASTFeatures | detectHarrisFeatures | detectMSERFeatures | detectMinEigenFeatures | detectSURFFeatures |extractFeatures|extractHOGFeatures|matchFeatures

\author{
Topics \\ "Local Feature Detection and Extraction" \\ Introduced in R2015b
}

\title{
configureKalmanFilter
}

Create Kalman filter for object tracking

\section*{Syntax}
kalmanFilter = configureKalmanFilter(MotionModel,InitialLocation, InitialEstimateError,MotionNoise,MeasurementNoise)

\section*{Description}
kalmanFilter = configureKalmanFilter(MotionModel,InitialLocation, InitialEstimateError, MotionNoise, MeasurementNoise) returns a vision. KalmanFilter object configured to track a physical object. This object moves with constant velocity or constant acceleration in an \(M\)-dimensional Cartesian space. The function determines the number of dimensions, \(M\), from the length of the InitialLocation vector.

This function provides a simple approach for configuring the vision. KalmanFilter object for tracking a physical object in a Cartesian coordinate system. The tracked object may move with either constant velocity or constant acceleration. The statistics are the same along all dimensions. If you need to configure a Kalman filter with different assumptions, use the vision.KalmanFilter object directly.

\section*{Examples}

\section*{Track an Occluded Object}

Detect and track a ball using Kalman filtering, foreground detection, and blob analysis.
Create System objects to read the video frames, detect foreground physical objects, and display results.
```

videoReader = vision.VideoFileReader('singleball.mp4');
videoPlayer = vision.VideoPlayer('Position',[100,100,500,400]);

```
```

foregroundDetector = vision.ForegroundDetector('NumTrainingFrames',10,...
'InitialVariance',0.05);
blobAnalyzer = vision.BlobAnalysis('AreaOutputPort',false,...
'MinimumBlobArea',70);

```

Process each video frame to detect and track the ball. After reading the current video frame, the example searches for the ball by using background subtraction and blob analysis. When the ball is first detected, the example creates a Kalman filter. The Kalman filter determines the ball?s location, whether it is detected or not. If the ball is detected, the Kalman filter first predicts its state at the current video frame. The filter then uses the newly detected location to correct the state, producing a filtered location. If the ball is missing, the Kalman filter solely relies on its previous state to predict the ball's current location.
```

kalmanFilter = []; isTrackInitialized = false;
while ~isDone(videoReader)
colorImage = step(videoReader);
foregroundMask = step(foregroundDetector, rgb2gray(colorImage));
detectedLocation = step(blobAnalyzer,foregroundMask);
isObjectDetected = size(detectedLocation, 1) > 0;
if ~isTrackInitialized
if isObjectDetected
kalmanFilter = configureKalmanFilter('ConstantAcceleration',...
detectedLocation(1,:), [1 1 1]*1e5, [25, 10, 10], 25);
isTrackInitialized = true;
end
label = ''; circle = zeros(0,3);
else
if isObjectDetected
predict(kalmanFilter);
trackedLocation = correct(kalmanFilter, detectedLocation(1,:));
label = 'Corrected';
else
trackedLocation = predict(kalmanFilter);
label = 'Predicted';
end
circle = [trackedLocation, 5];
end
colorImage = insertObjectAnnotation(colorImage,'circle',...
circle,label,'Color','red');

```
```

        step(videoPlayer,colorImage);
    end
    ```


Release resources.
release(videoPlayer);
release(videoReader);

\section*{Input Arguments}

\section*{MotionModel - Motion model}
'ConstantVelocity' | 'ConstantAcceleration'

Motion model, specified as 'ConstantVelocity' or 'ConstantAcceleration'. The motion model you select applies to all dimensions. For example, for the 2-D Cartesian coordinate system. This mode applies to both \(X\) and \(Y\) directions.

Data Types: char

\section*{InitialLocation - Initial location of object \\ vector}

Initial location of object, specified as a numeric vector. This argument also determines the number of dimensions for the coordinate system. For example, if you specify the initial location as a two-element vector, \(\left[x_{0}, y_{0}\right]\), then a 2-D coordinate system is assumed.

Data Types: double | single | int8|int16|int32|int64|uint8|uint16 uint32|uint64

\section*{InitialEstimateError - Initial estimate uncertainty variance}

2-element vector | 3-element vector
Initial estimate uncertainty variance, specified as a two- or three-element vector. The initial estimate error specifies the variance of the initial estimates of location, velocity, and acceleration of the tracked object. The function assumes a zero initial velocity and acceleration for the object, at the location you set with the InitialLocation property. You can set the InitialEstimateError to an approximated value: (assumed values - actual values) \({ }^{2}+\) the variance of the values

The value of this property affects the Kalman filter for the first few detections. Later, the estimate error is determined by the noise and input data. A larger value for the initial estimate error helps the Kalman filter to adapt to the detection results faster. However, a larger value also prevents the Kalman filter from removing noise from the first few detections.

Specify the initial estimate error as a two-element vector for constant velocity or a threeelement vector for constant acceleration:
\begin{tabular}{|l|l|}
\hline MotionModel & InitialEstimateError \\
\hline ConstantVelocity & [LocationVariance, VelocityVariance] \\
\hline ConstantAcceleration & [LocationVariance, VelocityVariance, AccelerationVariance] \\
\hline
\end{tabular}

Data Types: double | single

\section*{MotionNoise - Deviation of selected and actual model \\ 2 -element vector | 3-element vector}

Deviation of selected and actual model, specified as a two- or three-element vector. The motion noise specifies the tolerance of the Kalman filter for the deviation from the chosen model. This tolerance compensates for the difference between the object's actual motion and that of the model you choose. Increasing this value may cause the Kalman filter to change its state to fit the detections. Such an increase may prevent the Kalman filter from removing enough noise from the detections. The values of this property stay constant and therefore may affect the long-term performance of the Kalman filter.
\begin{tabular}{|l|l|}
\hline MotionModel & InitialEstimateError \\
\hline ConstantVelocity & [LocationVariance, VelocityVariance] \\
\hline ConstantAcceleration & [LocationVariance, VelocityVariance, AccelerationVariance] \\
\hline
\end{tabular}

Data Types: double | single

\section*{MeasurementNoise - Variance inaccuracy of detected location}
scalar
Variance inaccuracy of detected location, specified as a scalar. It is directly related to the technique used to detect the physical objects. Increasing the MeasurementNoise value enables the Kalman filter to remove more noise from the detections. However, it may also cause the Kalman filter to adhere too closely to the motion model you chose, putting less emphasis on the detections. The values of this property stay constant, and therefore may affect the long-term performance of the Kalman filter.
Data Types: double \| single

\section*{Output Arguments}

\section*{kalmanFilter - Configured Kalman filter tracking}
object
Configured Kalman filter, returned as a vision. KalmanFilter object for tracking.

\section*{Algorithms}

This function provides a simple approach for configuring the vision.KalmanFilter object for tracking. The Kalman filter implements a discrete time, linear State-Space System. The configureKalmanFilter function sets the vision. KalmanFilter object properties.

The InitialLocation property corresponds to the measurement vector used in the Kalman filter state-space model. This table relates the measurement vector, \(M\), to the state-space model for the Kalman filter.

\section*{State transition model, \(A\), and Measurement model, \(H\)}

The state transition model, \(A\), and the measurement model, \(H\) of the state-space model, are set to block diagonal matrices made from \(M\) identical submatrices \(A\) s and \(H\) s, respectively:
\(A=\mathrm{blkdiag}\left(A \mathrm{~s} _1, A \mathrm{~s} _2, \ldots, A \mathrm{~s} _M\right)\)
\(H=\mathrm{blkdiag}\left(H s _1, H s _2, \ldots, H_{-} \quad M\right)\)
The submatrices As and Hs are described below:
\begin{tabular}{|c|c|c|}
\hline MotionModel & As & Hs \\
\hline 'ConstantVelocity' & [1 1; 0 1] & [1 0] \\
\hline ', ConstantAcceleration & [1 1 0.5; 011 1; 0001\(]\) & \(\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]\) \\
\hline \multicolumn{3}{|l|}{The Initial State, x :} \\
\hline MotionModel & \multicolumn{2}{|l|}{Initial state, \(\boldsymbol{x}\)} \\
\hline 'ConstantVelocity' & \multicolumn{2}{|l|}{[InitialLocation(1), 0, ..., InitialLocation(M), 0]} \\
\hline 'ConstantAcceleration & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { [InitialLocation(1), } 0,0, \ldots, \text { InitialLocation(} M \text {), } \\
& 0,0]
\end{aligned}
\]} \\
\hline
\end{tabular}

The initial state estimation error covariance matrix, \(P\) :
\(P=\operatorname{diag}(r e p m a t(\) InitialError, \([1, M])\))
```

The process noise covariance, Q:
Q = diag(repmat(MotionNoise, [1,M]))

```
The measurement noise covariance, \(R\) :
\(R=\operatorname{diag}(r e p m a t(M e a s u r e m e n t N o i s e,[1, M])\)).

\section*{See Also}
vision. BlobAnalysis|vision.ForegroundDetector|vision.KalmanFilter

\section*{Topics}
"Using Kalman Filter for Object Tracking"
"Multiple Object Tracking"

Introduced in R2012b

\section*{detectBRISKFeatures}

Detect BRISK features and return BRISKPoints object

\section*{Syntax}
```

points = detectBRISKFeatures(I)
points = detectBRISKFeatures(I,Name,Value)

```

\section*{Description}
points \(=\) detectBRISKFeatures(I) returns a BRISKPoints object, points. The object contains information about BRISK features detected in a 2-D grayscale input image, I. The detectBRISKFeatures function uses a Binary Robust Invariant Scalable Keypoints (BRISK) algorithm to detect multiscale corner features.
points = detectBRISKFeatures(I,Name, Value) uses additional options specified by one or more Name, Value pair arguments.

\section*{Examples}

\section*{Detect BRISK Points in an Image and Mark Their Locations}

\section*{Read the image.}
```

I = imread('cameraman.tif');

```

\section*{Find the BRISK points.}
```

points = detectBRISKFeatures(I);

```

\section*{Display the results.}
```

imshow(I); hold on;
plot(points.selectStrongest(20));

```


\section*{Input Arguments}

\section*{I - Input image}

M-by-N 2-D grayscale image
Input image, specified in 2-D grayscale. The input image must be real and nonsparse.

\section*{Example:}

Data Types: single | double | int16|uint8|uint16|logical

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Example: 'MinQuality' \(, 0.1,{ }^{\prime}\) ROI ' , \([50,150,100,200]\) specifies that the detector must use a \(10 \%\) minimum accepted quality of corners within the designated region of interest. This region of interest is located at \(x=50, y=150\). The ROI has a width of 100 pixels and a height of 200 pixels.

\section*{MinContrast - Minimum intensity difference}
0.2 (default) | scalar

Minimum intensity difference between a corner and its surrounding region, specified as the comma-separated pair consisting of 'MinContrast' and a scalar in the range (01). The minimum contrast value represents a fraction of the maximum value of the image class. Increase this value to reduce the number of detected corners.

\section*{MinQuality - Minimum accepted quality of corners}
0.1 (default) | scalar

Minimum accepted quality of corners, specified as the comma-separated pair consisting of 'MinQuality' and a scalar value in the range [0,1]. The minimum accepted quality of corners represents a fraction of the maximum corner metric value in the image. Increase this value to remove erroneous corners.

\section*{NumOctaves - Number of octaves}

\section*{4 (default) | scalar}

Number of octaves to implement, specified as a comma-separated pair consisting of 'Num0ctaves' and an integer scalar, greater than or equal to 0 . Increase this value to detect larger blobs. Recommended values are between 1 and 4 . When you set Num0ctaves to 0 , the function disables multiscale detection. It performs the detection at the scale of the input image, I.

\section*{ROI - Rectangular region}

\section*{[1 1 size(I,2) size(I,1)] (default) | vector}

Rectangular region for corner detection, specified as a comma-separated pair consisting of 'ROI' and a vector of the format [\(x y\) width height]. The first two integer values [\(x y\)] represent the location of the upper-left corner of the region of interest. The last two integer values represent the width and height.

\section*{Output Arguments}

\section*{points - Brisk points}

BRISKPoints object
Brisk points, returned as a BRISKPoints object. The object contains information about the feature points detected in the 2-D grayscale input image.

\section*{References}
[1] Leutenegger, S., M. Chli and R. Siegwart. "BRISK: Binary Robust Invariant Scalable Keypoints", Proceedings of the IEEE International Conference, ICCV, 2011.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathbb{C o d e r}^{\mathrm{TM}}\).
Usage notes and limitations:
- Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries. See "Portable C Code Generation for Functions That Use OpenCV Library".

\section*{See Also}

BRISKPoints | MSERRegions | SURFPoints | binaryFeatures |cornerPoints | detectFASTFeatures| detectHarrisFeatures |detectMSERFeatures| detectMinEigenFeatures | detectORBFeatures | detectSURFFeatures | extractFeatures|extractHOGFeatures | matchFeatures

\section*{Topics}
"Point Feature Types"

Introduced in R2014a

\section*{detectCheckerboardPoints}

Detect checkerboard pattern in image

\section*{Syntax}
[imagePoints,boardSize] = detectCheckerboardPoints(I)
[imagePoints,boardSize,imagesUsed] = detectCheckerboardPoints(imageFileNames)
[imagePoints,boardSize,imagesUsed] = detectCheckerboardPoints(images)
[imagePoints,boardSize,pairsUsed] = detectCheckerboardPoints(imageFileNames1,imageFileNames2)
[imagePoints,boardSize,pairsUsed] = detectCheckerboardPoints(images1,images2)
[imagePoints,boardSize,pairsUsed] = detectCheckerboardPoints(\(\qquad\) ,'MinCornerMetric',0.15)

\section*{Description}
[imagePoints,boardSize] = detectCheckerboardPoints(I) detects a black and white checkerboard of size greater than 4-by-4 squares in a 2-D truecolor or grayscale image. The function returns the detected points and dimensions of the checkerboard.
[imagePoints,boardSize,imagesUsed] = detectCheckerboardPoints(imageFileNames) detects a checkerboard pattern in a set of input images, provided as an array of file names.
[imagePoints,boardSize,imagesUsed] = detectCheckerboardPoints(images) detects a checkerboard pattern in a set of input images, provided as an array of grayscale or truecolor images.
[imagePoints,boardSize,pairsUsed] = detectCheckerboardPoints(imageFileNames1,imageFileNames2) detects a checkerboard pattern in stereo pairs of images, provided as cell arrays of file names.
[imagePoints,boardSize,pairsUsed] = detectCheckerboardPoints(images1,images2) detects a checkerboard pattern in stereo pairs of images, provided as arrays of grayscale or truecolor images.
[imagePoints,boardSize,pairsUsed] = detectCheckerboardPoints(\(\qquad\) ,'MinCornerMetric', 0.15) sets the corner metric threshold, specified as a nonnegative scalar. When the image is noisy or highly textured, increase this value to reduce the number of false corners.

\section*{Examples}

\section*{Detect Checkerboard in a Set of Image Files}

Create a cell array of file names of calibration images.
```

for i = 1:5
imageFileName = sprintf('image%d.tif', i);
imageFileNames{i} = fullfile(matlabroot,'toolbox','vision',...
'visiondata','calibration','webcam',imageFileName);
end

```

Detect calibration pattern in the images.
[imagePoints,boardSize,imagesUsed] = detectCheckerboardPoints(imageFileNames);
Display the detected points.
```

imageFileNames = imageFileNames(imagesUsed);
for i = 1:numel(imageFileNames)
I = imread(imageFileNames{i});
subplot(2, 2, i);
imshow(I);
hold on;
plot(imagePoints(:,1,i),imagePoints(:,2,i),'ro');
end

```


\section*{Detect Checkerboard in Stereo Images}

Read in stereo images.
```

numImages = 4;
imagesl = cell(1, numImages);
images2 = cell(1, numImages);
for i = 1:numImages
images1{i} = fullfile(matlabroot,'toolbox','vision',...
'visiondata','calibration','stereo','left',sprintf('left%02d.png',i));
images2{i} = fullfile(matlabroot,'toolbox','vision',...

```
```

    'visiondata','calibration','stereo','right',sprintf('right%02d.png',i));
    end

```

Detect the checkerboards in the images.
[imagePoints,boardSize,pairsUsed] = ...
detectCheckerboardPoints(images1,images2);
Display points from images1.
```

images1 = images1(pairsUsed);
figure;
for i = 1:numel(images1)
I = imread(images1{i});
subplot(2,2,i);
imshow(I);
hold on;
plot(imagePoints(:,1,i,1),imagePoints(:,2,i,1),'ro');
end
annotation('textbox',[0 0.9 1 0.1],'String','Camera 1',...
'EdgeColor','none','HorizontalAlignment','center')

```

Camera 1

\section*{Display points from images2.}
```

images2 = images2(pairsUsed);
figure;
for i = 1:numel(images2)
I = imread(images2{i});
subplot(2, 2, i);
imshow(I);
hold on;
plot(imagePoints(:,1,i,2),imagePoints(:,2,i,2),'ro');
end
annotation('textbox',[0 0.9 1 0.1],'String','Camera 2',...
'EdgeColor','none','HorizontalAlignment','center')

```

Camera 2

\section*{Input Arguments}

\section*{I - Input image}
\(M\)-by- \(N\)-by-3 truecolor image | \(M\)-by- \(N\) 2-D grayscale image
Input image, specified in either an \(M\)-by- \(N\)-by- 3 truecolor or \(M\)-by- \(N\) 2-D grayscale. The input image must be real and nonsparse. The function can detect checkerboards with a minimum size of 4 -by- 4 squares.
Data Types: single | double | int16|uint8|uint16|logical

\section*{imageFileNames - Image file names}

\section*{\(N\)-element cell array}

Image file names, specified as an \(N\)-element cell array of \(N\) file names.

\section*{imageFileNames1 - File names for camera 1 images}

\section*{\(N\)-element cell array}

File names for camera 1 images, specified as an \(N\)-element cell array of \(N\) file names. The images contained in this array must be in the same order as images contained in imageFileNames2, forming stereo pairs.

\section*{imageFileNames2 - File names for camera 2 images}
\(N\)-element cell array
File names for camera 2 images, specified as an \(N\)-element cell array of \(N\) file names. The images contained in this array must be in the same order as images contained in imageFileNames1, forming stereo pairs.

\section*{images - Images}
height-by-width-by-color channel-by-number of frames array
Images, specified as an \(H\)-by- \(W\)-by- \(B\)-by- \(F\) array containing a set of grayscale or truecolor images. The input dimensions are:
\(H\) represents the image height.
\(W\) represents the image width.
\(B\) represents the color channel. A value of 1 indicates a grayscale image, and a value of 3 indicates a truecolor image.
\(F\) represents the number of image frames.

\section*{images1 - Stereo pair images 1}
height-by-width-by-color channel-by-number of frames array
Images, specified as an \(H\)-by- \(W\)-by- \(B\)-by- \(F\) array containing a set of grayscale or truecolor images. The input dimensions are:
\(H\) represents the image height.
\(W\) represents the image width.
\(B\) represents the color channel. A value of 1 indicates a grayscale image, and a value of 3 indicates a truecolor image.
\(F\) represents the number of image frames.

\section*{images2 - Stereo pair images 2 \\ height-by-width-by-color channel-by-number of frames array}

Images, specified as an \(H\)-by- \(W\)-by- \(B\)-by- \(F\) array containing a set of grayscale or truecolor images. The input dimensions are:
\(H\) represents the image height.
\(W\) represents the image width.
\(B\) represents the color channel. A value of 1 indicates a grayscale image, and a value of 3 indicates a truecolor image.
\(F\) represents the number of image frames.

\section*{Output Arguments}

\section*{imagePoints - Detected checkerboard corner coordinates \\ \(M\)-by-2 matrix | \(M\)-by-2-by- number of images array | \(M\)-by-2-by-number of pairs of images-by-number of cameras array}

Detected checkerboard corner coordinates, returned as an \(M\)-by- 2 matrix for one image. For multiple images, points are returned as an \(M\)-by-2-by-number of images array, and for stereo pairs of images, the function returns points as an \(M\)-by-2-by-number of pairs-bynumber of cameras array.

For stereo pairs, imagePoints(:,:,:,1) are the points from the first set of images, and imagePoints \((:,,:,:, 2)\) are the points from the second set of images. The output contains \(M\) number of \([x y]\) coordinates. Each coordinate represents a point where square corners are detected on the checkerboard. The number of points the function returns depends on the value of boardSize, which indicates the number of squares detected. The function detects the points with sub-pixel accuracy.

The function calculates the number of points, \(M\), as follows:
\(M=\operatorname{prod}(\) boardSize-1).
If the checkerboard cannot be detected:
imagePoints = []
boardSize \(=[0,0]\)
When you specify the imageFileNames input, the function can return imagePoints as an \(M\)-by-2-by- \(N\) array. In this array, \(N\) represents the number of images in which a checkerboard is detected.

boardSize - Checkerboard dimensions
2-element [height, width] vector
Checkerboard dimensions, returned as a 2 -element [height, width] vector. The dimensions of the checkerboard are expressed in terms of the number of squares.

\section*{x direction (long side)}

\section*{imagesUsed - Pattern detection flag}
\(N\)-by-1 logical vector
Pattern detection flag, returned as an \(N\)-by-1 logical vector of \(N\) logicals. The function outputs the same number of logicals as there are input images. A true value indicates that the pattern was detected in the corresponding image. A false value indicates that the function did not detect a pattern.
pairsUsed - Stereo pair pattern detection flag
\(N\)-by-1 logical vector

Stereo pair pattern detection flag, returned as an \(N\)-by-1 logical vector of \(N\) logicals. The function outputs the same number of logicals as there are input images. A true value indicates that the pattern is detected in the corresponding stereo image pair. A fal se value indicates that the function does not detect a pattern.

\section*{References}
[1] Geiger, A., F. Moosmann, O. Car, and B. Schuster. "Automatic Camera and Range Sensor Calibration using a Single Shot," International Conference on Robotics and Automation (ICRA), St. Paul, USA, May 2012.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathrm{Coder}^{\mathrm{TM}}\).
Usage notes and limitations:
- Code generation will not support specifying images as file names or cell arrays of file names. It supports only checkerboard detection in a single image or stereo pair of images. For example, these syntaxes are supported:
- detectCheckerboardPoints(I1)
- detectCheckerobarPoints(I1,I2)

I1 and I2 are single grayscale or RGB images.

\author{
See Also \\ Camera Calibrator | cameraParameters | estimateCameraParameters | generateCheckerboardPoints|stereoParameters
}

\author{
Topics \\ "Single Camera Calibrator App"
}

\section*{Introduced in R2014a}

\section*{detectFASTFeatures}

Detect corners using FAST algorithm and return cornerPoints object

\section*{Syntax}
```

points = detectFASTFeatures(I)
points = detectFASTFeatures(I,Name,Value)

```

\section*{Description}
points \(=\) detectFASTFeatures(I) returns a cornerPoints object, points. The object contains information about the feature points detected in a 2-D grayscale input image, I. The detectFASTFeatures function uses the Features from Accelerated Segment Test (FAST) algorithm to find feature points.
points \(=\) detectFASTFeatures(I,Name, Value) uses additional options specified by one or more Name, Value pair arguments.

\section*{Examples}

Find Corner Points in an Image Using the FAST Algorithm
Read the image.
I = imread('cameraman.tif');
Find the corners.
corners = detectFASTFeatures(I);
Display the results.
imshow(I); hold on;
plot(corners.selectStrongest(50));

\section*{Input Arguments}

\section*{I - Input image}

M-by-N 2-D grayscale image
Input image, specified in 2-D grayscale. The input image must be real and nonsparse.
Data Types: single | double | int16|uint8|uint16|logical

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Example: 'MinQuality','0.01','ROI', [50,150,100,200] specifies that the detector must use a \(1 \%\) minimum accepted quality of corners within the designated region of interest. This region of interest is located at \(x=50, y=150\). The ROI has a width of 100 pixels, and a height of 200 pixels.

\section*{MinQuality - Minimum accepted quality of corners}
0.1 (default)

Minimum accepted quality of corners, specified as the comma-separated pair consisting of 'MinQuality' and a scalar value in the range [0,1].

The minimum accepted quality of corners represents a fraction of the maximum corner metric value in the image. Larger values can be used to remove erroneous corners.

Data Types: single | double | int8|int16|int32|int64|uint8|uint16| uint32 | uint64

\section*{MinContrast - Minimum intensity}
0.2 (default)

Minimum intensity difference between corner and surrounding region, specified as the comma-separated pair consisting of 'MinContrast' and a scalar value in the range \((0,1)\).

The minimum intensity represents a fraction of the maximum value of the image class. Increasing the value reduces the number of detected corners.

Data Types: single|double|int8|int16|int32|int64|uint8|uint16| uint32 | uint64

\section*{ROI - Rectangular region}
[1 1 size(I,2) size(I,1)] (default) | vector
Rectangular region for corner detection, specified as a comma-separated pair consisting of 'ROI' and a vector of the format [\(x y\) width height]. The first two integer values [\(x y\)] represent the location of the upper-left corner of the region of interest. The last two integer values represent the width and height.
Example: 'ROI', [50, 150, 100, 200]

\section*{Output Arguments}

\section*{points - Corner points}
cornerPoints object
Corner points object, returned as a cornerPoints object. The object contains information about the feature points detected in the 2-D grayscale input image.

\section*{References}
[1] Rosten, E., and T. Drummond. "Fusing Points and Lines for High Performance Tracking," Proceedings of the IEEE International Conference on Computer Vision, Vol. 2 (October 2005): pp. 1508-1511.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
Usage notes and limitations:
- Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries. See "Portable C Code Generation for Functions That Use OpenCV Library".

\section*{GPU Arrays}

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox \({ }^{\mathrm{TM}}\).

This function fully supports GPU arrays. For more information, see "Run MATLAB Functions on a GPU" (Parallel Computing Toolbox).

\section*{See Also}

BRISKPoints | MSERRegions | ORBPoints | SURFPoints | binaryFeatures | cornerPoints |detectBRISKFeatures|detectHarrisFeatures|
```

detectMSERFeatures | detectMinEigenFeatures|detect0RBFeatures |
detectSURFFeatures|extractFeatures| extractHOGFeatures|matchFeatures

```

\section*{Topics}
"Find Corner Points Using the Eigenvalue Algorithm" on page 3-335
"Find Corner Points Using the Harris-Stephens Algorithm" on page 3-330
"Point Feature Types"

\section*{Introduced in R2013a}

\section*{detectHarrisFeatures}

Detect corners using Harris-Stephens algorithm and return cornerPoints object

\section*{Syntax}
points \(=\) detectHarrisFeatures(I)
points = detectHarrisFeatures(I,Name, Value)

\section*{Description}
points = detectHarrisFeatures(I) returns a cornerPoints object, points. The object contains information about the feature points detected in a 2-D input image, I. The detectHarrisFeatures function uses the Harris-Stephens algorithm to find these feature points.
points = detectHarrisFeatures(I,Name, Value) uses additional options specified by one or more Name, Value pair arguments.

\section*{Examples}

\section*{Find Corner Points Using the Harris-Stephens Algorithm}

Read the image.
I = checkerboard;

\section*{Find the corners.}
```

corners = detectHarrisFeatures(I);

```

Display the results.
```

imshow(I); hold on;
plot(corners.selectStrongest(50));

```


\section*{Input Arguments}

\section*{I - Input image}

M-by-N 2-D image
Input image, specified is an \(M\)-by- \(N\) 2-D image. The input image must be real and nonsparse.

Data Types: single|double |int16|uint8|uint16|logical

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'MinQuality','0.01','ROI', [50, 150, 100, 200] specifies that the detector must use a \(1 \%\) minimum accepted quality of corners within the designated region of interest. This region of interest is located at \(x=50, y=150\). The ROI has a width of 100 pixels and a height of 200 pixels.

\section*{MinQuality - Minimum accepted quality of corners}
0.01 (default)

Minimum accepted quality of corners, specified as the comma-separated pair consisting of 'MinQuality' and a scalar value in the range [0,1].

The minimum accepted quality of corners represents a fraction of the maximum corner metric value in the image. Larger values can be used to remove erroneous corners.
Example: 'MinQuality', 0.01
Data Types: single | double |int8|int16|int32|int64|uint8|uint16| uint32|uint64

\section*{FilterSize - Gaussian filter dimension}

5 (default)
Gaussian filter dimension, specified as the comma-separated pair consisting of 'FilterSize' and an odd integer value in the range [3, min(size(I))].

The Gaussian filter smooths the gradient of the input image.
The function uses the FilterSize value to calculate the filter's dimensions, FilterSize-by-FilterSize. It also defines the standard deviation of the Gaussian filter as FilterSize/3.

Example: 'FilterSize', 5
Data Types: single | double | int8|int16|int32|int64|uint8|uint16| uint32|uint64

\section*{ROI - Rectangular region}
[1 1 size(I,2) size(I,1)] (default) | vector
Rectangular region for corner detection, specified as a comma-separated pair consisting of 'ROI' and a vector of the format [\(x y\) width height]. The first two integer values [\(x y\)] represent the location of the upper-left corner of the region of interest. The last two integer values represent the width and height.

Example: 'ROI' , [50, 150, 100, 200]

\section*{Output Arguments}

\section*{points - Corner points}
cornerPoints object
Corner points object, returned as a cornerPoints object. The object contains information about the feature points detected in the 2-D input image.

\section*{References}
[1] Harris, C., and M. Stephens, "A Combined Corner and Edge Detector," Proceedings of the 4th Alvey Vision Conference, August 1988, pp. 147-151.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
Usage notes and limitations:
- Use in a MATLAB Function block is not supported.
- 'FilterSize' must be a compile-time constant.
- Generated code for this function uses a precompiled platform-specific shared library.

\section*{GPU Arrays}

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox \({ }^{\mathrm{TM}}\).

This function fully supports GPU arrays. For more information, see "Run MATLAB Functions on a GPU" (Parallel Computing Toolbox).

\section*{See Also}

BRISKPoints |MSERRegions | SURFPoints | binaryFeatures |cornerPoints | detectBRISKFeatures | detectFASTFeatures | detectMSERFeatures | detectMinEigenFeatures | detectORBFeatures | detectSURFFeatures | extractFeatures|extractHOGFeatures | matchFeatures

\section*{Topics}
"Find Corner Points Using the Eigenvalue Algorithm" on page 3-335
"Find Corner Points in an Image Using the FAST Algorithm" on page 3-325
"Point Feature Types"

\section*{Introduced in R2013a}

\section*{detectMinEigenFeatures}

Detect corners using minimum eigenvalue algorithm and return cornerPoints object

\section*{Syntax}
```

points = detectMinEigenFeatures(I)
points = detectMinEigenFeatures(I,Name,Value)

```

\section*{Description}
points = detectMinEigenFeatures(I) returns a cornerPoints object, points. The object contains information about the feature points detected in a 2-D grayscale input image, \(I\). The detectMinEigenFeatures function uses the minimum eigenvalue algorithm developed by Shi and Tomasi to find feature points.
points \(=\) detectMinEigenFeatures(I,Name, Value) uses additional options specified by one or more Name, Value pair arguments.

\section*{Examples}

\section*{Find Corner Points Using the Eigenvalue Algorithm}

\section*{Read the image.}

I = checkerboard;

\section*{Find the corners.}
```

corners = detectMinEigenFeatures(I);

```

\section*{Display the results.}
```

imshow(I); hold on;
plot(corners.selectStrongest(50));

```

\section*{Input Arguments}

\section*{I - Input image}
\(M\)-by-N 2-D grayscale image
Input image, specified in 2-D grayscale. The input image must be real and nonsparse.
Data Types: single | double | int16|uint8|uint16|logical

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'MinQuality','0.01','ROI', [50, 150, 100, 200] specifies that the detector must use a \(1 \%\) minimum accepted quality of corners within the designated region of interest. This region of interest is located at \(x=50, y=150\). The ROI has a width of 100 pixels, and a height of 200 pixels.

MinQuality - Minimum accepted quality of corners
0.01 (default)

Minimum accepted quality of corners, specified as the comma-separated pair consisting of 'MinQuality' and a scalar value in the range [0,1].

The minimum accepted quality of corners represents a fraction of the maximum corner metric value in the image. Larger values can be used to remove erroneous corners.
Example: 'MinQuality', 0.01
Data Types: single | double | int8| int16|int32|int64|uint8|uint16| uint32|uint64

\section*{FilterSize - Gaussian filter dimension}

5 (default)
Gaussian filter dimension, specified as the comma-separated pair consisting of 'FilterSize' and an odd integer value in the range [3, inf).

The Gaussian filter smooths the gradient of the input image.
The function uses the FilterSize value to calculate the filter's dimensions, FilterSize-by-FilterSize. It also defines the standard deviation as FilterSize/3.

Example: 'FilterSize', 5
Data Types: single|double|int8|int16|int32|int64|uint8|uint16| uint32|uint64

\section*{ROI - Rectangular region}
[1 1 size(I,2) size(I,1)] (default) | vector
Rectangular region for corner detection, specified as a comma-separated pair consisting of 'ROI' and a vector of the format [\(x y\) width height]. The first two integer values \([x y\)] represent the location of the upper-left corner of the region of interest. The last two integer values represent the width and height.
Example: 'ROI', [50, 150, 100, 200]

\section*{Output Arguments}
points - Corner points
cornerPoints object
Corner points, returned as a cornerPoints object. The object contains information about the feature points detected in the 2-D grayscale input image.

\section*{References}
[1] Shi, J., and C. Tomasi, "Good Features to Track," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 1994, pp. 593-600.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\text {Coder }}{ }^{\mathrm{TM}}\).
Usage notes and limitations:
- Use in a MATLAB Function block is not supported.
- 'FilterSize' must be a compile-time constant.
- Generated code for this function uses a precompiled platform-specific shared library.

\section*{See Also}

BRISKPoints |MSERRegions | SURFPoints | binaryFeatures |cornerPoints | detectBRISKFeatures | detectFASTFeatures | detectHarrisFeatures | detectMSERFeatures | detectORBFeatures | detectSURFFeatures | extractFeatures | extractHOGFeatures | matchFeatures

\section*{Topics}
"Find Corner Points Using the Harris-Stephens Algorithm" on page 3-330
"Find Corner Points in an Image Using the FAST Algorithm" on page 3-325
"Point Feature Types"

Introduced in R2013a

\section*{detectMSERFeatures}

Detect MSER features and return MSERRegions object

\section*{Syntax}
regions = detectMSERFeatures(I)
[regions,cc] = detectMSERFeatures(I)
[___] = detectMSERFeatures(I,Name,Value)

\section*{Description}
regions = detectMSERFeatures(I) returns an MSERRegions object, regions, containing information about MSER features detected in the 2-D grayscale input image, I. This object uses Maximally Stable Extremal Regions (MSER) algorithm to find regions.
[regions,cc] = detectMSERFeatures(I) optionally returns MSER regions in a connected component structure.
[___] = detectMSERFeatures(I,Name,Value) sets additional options specified by one or more Name, Value pair arguments.

\section*{Examples}

\section*{Find MSER Regions in an Image}

\section*{Read image and detect MSER regions.}
```

I = imread('cameraman.tif');
regions = detectMSERFeatures(I);

```

Visualize MSER regions which are described by pixel lists stored inside the returned 'regions' object.
figure; imshow(I); hold on;
plot(regions,'showPixelList',true,'showEllipses',false);

Display ellipses and centroids fit into the regions. By default, plot displays ellipses and centroids.
figure; imshow(I); hold on; plot(regions);

\section*{Find circular MSER regions}

Detect MSER regions.
I = imread('coins.png');
[regions,mserCC] = detectMSERFeatures(I);
Show all detected MSER Regions.
figure
imshow(I)
hold on
plot(regions,'showPixelList',true,'showEllipses',false)

Measure the MSER region eccentricity to gauge region circularity.
```

stats = regionprops('table',mserCC,'Eccentricity');

```

Threshold eccentricity values to only keep the circular regions. (Circular regions have low eccentricity.)
```

eccentricityIdx = stats.Eccentricity < 0.55;
circularRegions = regions(eccentricityIdx);

```

Show the circular regions.
figure
imshow(I)
hold on
plot(circularRegions,'showPixelList', true,'showEllipses',false)

\section*{Input Arguments}

\section*{I - Input image}

M-by-N 2-D grayscale image
Input image, specified in grayscale. It must be real and nonsparse. The function internally converts input images to uint8 that are not uint8 before looking for MSER regions.
Data Types: uint8|int16|uint16|single|double|logical

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, . . . , NameN, ValueN.

\section*{Example: 'RegionAreaRange', [30 14000], specifies the size of the region in pixels.}

\section*{ThresholdDelta - Step size between intensity threshold levels 2 (default) | percent numeric value}

Step size between intensity threshold levels, specified as the comma-separated pair consisting of 'ThresholdDelta' and a numeric value in the range \((0,100]\). This value is expressed as a percentage of the input data type range used in selecting extremal regions while testing for their stability. Decrease this value to return more regions. Typical values range from 0.8 to 4 .

\section*{RegionAreaRange - Size of the region}
[30 14000] (default) |two-element vector
Size of the region in pixels, specified as the comma-separated pair consisting of 'RegionAreaRange' and a two-element vector. The vector, [minArea maxArea], allows the selection of regions containing pixels to be between minArea and maxArea, inclusive.

\section*{MaxAreaVariation - Maximum area variation between extremal regions}
0.25 (default) | positive scalar

Maximum area variation between extremal regions at varying intensity thresholds, specified as the comma-separated pair consisting of 'MaxAreaVariation' and a positive scalar value. Increasing this value returns a greater number of regions, but they may be less stable. Stable regions are very similar in size over varying intensity thresholds. Typical values range from 0.1 to 1.0.

\section*{ROI - Rectangular region of interest}
[1 1 size(I,2) size(I,1)] (default) | vector
Rectangular region of interest, specified as a vector. The vector must be in the format [\(x y\) width height]. When you specify an ROI, the function detects corners within the area located at \([x y]\) of size specified by [width height]. The [\(x y\)] elements specify the upper left corner of the region.

\section*{Output Arguments}

\author{
regions - MSER regions object \\ MSERRegions object (default)
}

MSER regions object, returned as a MSERRegions object. The object contains information about MSER features detected in the grayscale input image.

\section*{cc - Connected component structure}
structure
Connected component structure, returned as a structure with four fields. The connected component structure is useful for measuring region properties using the regionprops function. The four fields:
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline \begin{tabular}{l}
Connectivi \\
ty
\end{tabular} & \begin{tabular}{l}
Connectivity of the MSER regions. \\
Default: 8
\end{tabular} \\
\hline ImageSize & Size of I. \\
\hline Num0bjects & Number of MSER regions in I. \\
\hline \begin{tabular}{l}
PixelIdxLi \\
st
\end{tabular} & \begin{tabular}{l}
1-by-NumObjects cell array containing NumObjects vectors. Each \\
vector represents the linear indices of the pixels in the element's \\
corresponding MSER region.
\end{tabular} \\
\hline
\end{tabular}

\section*{Algorithms}

\section*{Intensity Threshold Levels}

The MSER detector incrementally steps through the intensity range of the input image to detect stable regions. The ThresholdDelta parameter determines the number of increments the detector tests for stability. You can think of the threshold delta value as the size of a cup to fill a bucket with water. The smaller the cup, the more number of increments it takes to fill up the bucket. The bucket can be thought of as the intensity profile of the region.

The MSER object checks the variation of the region area size between different intensity thresholds. The variation must be less than the value of the MaxAreaVariation parameter to be considered stable.

Note MSER feature detection is not suitable for use in images with extreme intensity value changes.

At a high level, MSER can be explained, by thinking of the intensity profile of an image representing a series of buckets. Imagine the tops of the buckets flush with the ground, and a hose turned on at one of the buckets. As the water fills into the bucket, it overflows and the next bucket starts filling up. Smaller regions of water join and become bigger bodies of water, and finally the whole area gets filled. As water is filling up into a bucket, it is checked against the MSER stability criterion. Regions appear, grow and merge at different intensity thresholds.

\section*{References}
[1] Nister, D., and H. Stewenius, "Linear Time Maximally Stable Extremal Regions", Lecture Notes in Computer Science. 10th European Conference on Computer Vision, Marseille, France: 2008, no. 5303, pp. 183-196.
[2] Matas, J., O. Chum, M. Urba, and T. Pajdla. "Robust wide baseline stereo from maximally stable extremal regions." Proceedings of British Machine Vision Conference, pages 384-396, 2002.
[3] Obdrzalek D., S. Basovnik, L. Mach, and A. Mikulik. "Detecting Scene Elements Using Maximally Stable Colour Regions," Communications in Computer and Information Science, La Ferte-Bernard, France; 2009, vol. 82 CCIS (2010 12 01), pp 107-115.
[4] Mikolajczyk, K., T. Tuytelaars, C. Schmid, A. Zisserman, T. Kadir, and L. Van Gool, "A Comparison of Affine Region Detectors"; International Journal of Computer Vision, Volume 65, Numbers 1-2 / November, 2005, pp 43-72 .

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathrm{Coder}^{\mathrm{TM}}\).
Usage notes and limitations:
- Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries. See "Portable C Code Generation for Functions That Use OpenCV Library".
- For code generation, the function outputs regions. PixelList as an array. The region sizes are defined in regions. Lengths.

\section*{See Also}

BRISKPoints |MSERRegions | SURFPoints | binaryFeatures | cornerPoints | detectBRISKFeatures | detectFASTFeatures | detectHarrisFeatures | detectMinEigenFeatures | detectSURFFeatures | extractFeatures | extractHOGFeatures | matchFeatures

\section*{Topics}
"Automatically Detect and Recognize Text in Natural Images" "Point Feature Types"

\section*{Introduced in R2012a}

\section*{detectPeopleACF}

Detect people using aggregate channel features (ACF)
```

Note detectPeopleACF will be removed in a future release. Use peopleDetectorACF instead.

```

\section*{Syntax}
```

bboxes = detectPeopleACF(I)
[bboxes,scores] = detectPeopleACF(I)
[___] = detectPeopleACF(I,roi)
[____] = detectPeopleACF(Name,Value)

```

\section*{Description}
bboxes = detectPeopleACF (I) returns a matrix, bboxes, that contains the locations of detected upright people in the input image, I. The locations are represented as bounding boxes. The function uses the aggregate channel features (ACF) algorithm.
[bboxes,scores] = detectPeopleACF(I) also returns the detection scores for each bounding box.
[___] = detectPeopleACF (I, roi) detects people within the rectangular search region specified by roi, using either of the previous syntaxes.
[___] = detectPeopleACF(Name,Value) uses additional options specified by one or more Name, Value pair arguments. Unspecified properties have default values.

\section*{Code Generation Support:}

Supports Code Generation: No
Supports MATLAB Function block: No
"Code Generation Support, Usage Notes, and Limitations"

\section*{Examples}

\section*{Detect People Using Aggregated Channel Features}

Read an image.
I = imread('visionteam1.jpg');
Detect people in the image and store results as bounding boxes and score.
[bboxes,scores] = detectPeopleACF(I);
Annotate the detected upright people in the image.
I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
Display the results with annotation.
figure
imshow(I)
title('Detected people and detection scores')

Detected people and detection scores

\section*{Input Arguments}

\section*{I - Input image}
truecolor image
Input image, specified as a truecolor image. The image must be real and nonsparse.
Data Types: uint8|uint16|int16| double | single
roi - Rectangular search region
four-element vector

Rectangular search region, specified as a four-element vector, [\(x, y\), width,height]. The roi must be fully contained in I.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'Threshold',-1

\section*{Model - ACF classification model}
'inria-100x41' (default)|'caltech-50x21'
ACF classification model, specified as the comma-separated pair consisting of 'Model' and either 'inria- \(100 \times 41\) ' or 'caltech \(-50 \times 21\) '. The 'inria- \(100 \times 41\) ' model was trained using the INRIA Person dataset. The 'caltech-50x21' model was trained using the Caltech Pedestrian dataset.

\section*{NumScaleLevels - Number of scale levels per octave 8 (default) | integer}

Number of scale levels per octave, specified as the comma-separated pair consisting of 'NumScaleLevels', and an integer. Each octave is a power-of-two downscaling of the image. Increase this number to detect people at finer scale increments. Recommended values are in the range \([4,8]\).

\section*{WindowStride - Window stride for sliding window \\ 4 (default) | integer}

Window stride for sliding window, specified as the comma-separated pair consisting of 'WindowStride', and an integer. Set this value to the amount you want to move the window, in the \(x\) and \(y\) directions. The sliding window scans the images for object detection. The function uses the same stride for the \(x\) and \(y\) directions.

\section*{SelectStrongest - Select strongest bounding box true (default) | false}

Select strongest bounding box, specified as the comma-separated pair consisting of 'SelectStrongest' and either true or false. The process, often referred to as nonmaximum suppression, eliminates overlapping bounding boxes based on their scores.

Set this property to true to use the selectStrongestBbox function to select the strongest bounding box. Set this property to false, to perform a custom selection operation. Setting this property to false returns detected bounding boxes.

\section*{MinSize - Minimum region size \\ two-element vector [height width]|[50 21] |[100 41]}

Minimum region size in pixels, specified as the comma-separated pair consisting of 'MinSize', and a two-element vector [height width]. You can set this property to [50 21] for the 'caltech-50×21' model or [100 41] for the 'inria-100×41' model. You can reduce computation time by setting this value to the known minimum region size for detecting a person. By default, MinSize is set to the smallest region size possible to detect an upright person for the classification model selected.

\section*{MaxSize - Maximum region size}
size(I) (default) | two-element vector [height width]
Maximum region size in pixels, specified as the comma-separated pair consisting of 'MaxSize', and a two-element vector, [height width]. You can reduce computation time by setting this value to the known region size for detecting a person. If you do not set this value, by default the function determines the height and width of the image using the size of \(I\).

\section*{Threshold - Classification accuracy threshold}
-1 (default) | numeric value
Classification accuracy threshold, specified as the comma-separated pair consisting of 'Threshold' and a numerical value. Typical values are in the range [-1,1]. During multiscale object detection, the threshold value controls the person or nonperson classification accuracy and speed. Increase this threshold to speed up the performance at the risk of missing true detections.

\section*{Output Arguments}

\section*{bboxes - Locations of detected people}

M-by-4 matrix
Locations of people detected using the aggregate channel features (ACF) algorithm, returned as an \(M\)-by- 4 matrix. The locations are represented as bounding boxes. Each row in bboxes contains a four-element vector, [\(x, y\),width, height]. This vector specifies the upper-left corner and size of a bounding box, in pixels, for a detected person.

\section*{scores - Confidence value}
\(M\)-by-1 vector
Confidence value for the detections, returned as an \(M\)-by-1 vector. The vector contains a value for each bounding box in bboxes. The score for each detection is the output of a soft-cascade classifier. The range of score values is [-inf inf]. Greater scores indicate a higher confidence in the detection.

\section*{References}
[1] Dollar, P., R. Appel, S. Belongie, and P. Perona. "Fast feature pyramids for object detection." Pattern Analysis and Machine Intelligence, IEEE Transactions. Vol. 36, Issue 8, 2014, pp. 1532-1545.
[2] Dollar, C. Wojeck, B. Shiele, and P. Perona. "Pedestrian detection: An evaluation of the
state of the art." Pattern Analysis and Machine Intelligence, IEEE
Transactions.Vol. 34, Issue 4, 2012, pp. 743-761.
[3] Dollar, C., Wojeck, B. Shiele, and P. Perona. "Pedestrian detection: A benchmark." IEEE Conference on Computer Vision and Pattern Recognition. 2009.

\section*{See Also}
selectStrongestBbox| vision.CascadeObjectDetector| vision. PeopleDetector

\section*{Topics}
"Tracking Pedestrians from a Moving Car"
"Point Feature Types"
Introduced in R2016a

\section*{detectSURFFeatures}

Detect SURF features and return SURFPoints object

\section*{Syntax}
points = detectSURFFeatures(I)
points \(=\) detectSURFFeatures(I,Name,Value)

\section*{Description}
points \(=\) detectSURFFeatures(I) returns a SURFPoints object, points, containing information about SURF features detected in the 2-D grayscale input image I. The detectSURFFeatures function implements the Speeded-Up Robust Features (SURF) algorithm to find blob features.
points = detectSURFFeatures(I,Name, Value) specifies options using one or more name-value arguments in addition to the input arguments in the previous syntax.

\section*{Examples}

Detect SURF Interest Points in a Grayscale Image
Read image and detect interest points.
I = imread('cameraman.tif');
points = detectSURFFeatures(I);
Display locations of interest in image.
```

imshow(I); hold on;
plot(points.selectStrongest(10));

```


\section*{Input Arguments}

\section*{I - Input image}

M-by-N 2-D grayscale image
Input image, specified as an \(M\)-by- \(N\) 2-D grayscale. The input image must be a real nonsparse value.

Data Types: single | double | int16|uint8|uint16|logical

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

\section*{Example: detectSURFFeatures(I,'MetricThreshold',100)}

\section*{MetricThreshold - Strongest feature threshold}
1000.0 (default)| non-negative scalar

Strongest feature threshold, specified as the comma-separated pair consisting of 'MetricThreshold' and a non-negative scalar. To return more blobs, decrease the value of this threshold.

\section*{Num0ctaves - Number of octaves}

3 (default) | scalar (greater than or equal to 1)
Number of octaves, specified as the comma-separated pair consisting of 'Num0ctaves' and an integer scalar, greater than or equal to 1 . Increase this value to detect larger blobs. Recommended values are between 1 and 4.

Each octave spans a number of scales that are analyzed using varying size filters:
\begin{tabular}{|l|l|}
\hline Octave & Filter Sizes \\
\hline 1 & 9-by-9, 15-by-15, 21-by-21, 27-by-27, ... \\
\hline 2 & 15-by-15, 27-by-27, 39-by-39, 51-by-51, ... \\
\hline 3 & 27 -by-27, 51-by-51, 75-by-75, 99-by-99, ... \\
\hline 4 & \(\ldots\). \\
\hline
\end{tabular}

Higher octaves use larger filters and subsample the image data. Larger number of octaves result in finding larger size blobs. Set the Num0ctaves parameter appropriately for the image size. For example, a 50-by-50 image require you to set the Num0ctaves parameter, less than or equal to 2 . The NumScaleLevels parameter controls the number of filters used per octave. At least three levels are required to analyze the data in a single octave.

NumScaleLevels - Number of scale levels per octave
4 (default) | integer scalar, greater than or equal to 3
Number of scale levels per octave to compute, specified as the comma-separated pair consisting of 'NumScaleLevels' and an integer scalar, greater than or equal to 3. Increase this number to detect more blobs at finer scale increments. Recommended values are between 3 and 6 .

\section*{ROI - Rectangular region of interest}
[1 1 size(I,2) size(I,1)] (default) | vector

Rectangular region of interest, specified as a vector. The vector must be in the format [\(x y\) width height]. When you specify an ROI, the function detects corners within the area at [\(x\) \(y]\) of size specified by [width height]. The [x y] elements specify the upper left corner of the region.

\section*{Output Arguments}

\section*{points - SURF features}

SURFPoints object
SURF features, returned as a SURFPoints object. This object contains information about SURF features detected in a grayscale image.

\section*{References}
[1] Bay, H., A. Ess, T. Tuytelaars, and L. Van Gool. "SURF:Speeded Up Robust Features." Computer Vision and Image Understanding (CVIU).Vol. 110, No. 3, pp. 346-359, 2008.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathrm{Coder}^{\mathrm{TM}}\).
Usage notes and limitations:
- Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries. See "Portable C Code Generation for Functions That Use OpenCV Library".

\section*{See Also}

ORBPoints | SURFPoints | detectBRISKFeatures | detectFASTFeatures | detectHarrisFeatures | detectMSERFeatures | detectMinEigenFeatures | detectORBFeatures |extractFeatures|matchFeatures

\section*{Introduced in R2011b}

\section*{detectORBFeatures}

Detect and store ORB keypoints

\section*{Syntax}
```

points = detectORBFeatures(I)

```
points = detectORBFeatures(I,Name,Value)

\section*{Description}
points \(=\) detectORBFeatures(I) returns an ORBPoints object that contains information about ORB keypoints. The ORB keypoints are detected from the input image by using the Oriented FAST and rotated BRIEF (ORB) feature detection method.
points = detectORBFeatures(I,Name,Value) specifies options using one or more name-value pair arguments.

\section*{Examples}

\section*{Detect ORB Keypoints in Grayscale Image}

Read an image into the workspace.
I = imread('businessCard.png');
Convert the image into a grayscale image.
I = rgb2gray(I);
Display the grayscale image.
figure
imshow(I)

\section*{MathWorks}
```

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
USA

```
www.mathworks.com

Detect and store ORB keypoints.
```

points = detectORBFeatures(I);

```

Display the grayscale image and plot the detected ORB keypoints. Suppress the display of circles around the detected keypoints. The ORB keypoints are detected in regions with high intensity variance.
```

figure
imshow(I)
hold on
plot(points,'ShowScale',false)
hold off

```


\section*{Detect ORB Keypoints In Binary Shape Image}

Read a binary image into the workspace.
I = imread('star.png');
Display the image.
figure
imshow(I)

Detect and store ORB keypoints. Specify the scale factor for image decomposition as 1.01 and the number of decomposition levels as 3.
```

points = detectORBFeatures(I,'ScaleFactor',1.01,'NumLevels',3);

```

Display the image and plot the detected ORB keypoints. The inflection points in the binary shape image are detected as the ORB keypoints.
figure
imshow(I)
hold on
plot(points)
hold off

\section*{Input Arguments}

I - Input image
\(M\)-by- \(N\) grayscale image
Input image, specified as an \(M\)-by- \(N\) grayscale image. The input image must be real and nonsparse.
Data Types: single | double | int16|uint8|uint16|logical

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, . . . ,NameN, ValueN.

Example: detect0RBFeatures (I, 'NumLevels' , 4)

\section*{ScaleFactor - Scale factor for image decomposition}
1.2 (default) | scalar greater than 1

Scale factor for image decomposition, specified as the comma-separated pair consisting of 'ScaleFactor' and a scalar greater than 1 . The scale value at each level of decomposition is ScaleFactor \({ }^{(l \text { level-1) }}\), where level is any value in the range [0, Numlevels-1]. Given the input image of size \(M\)-by- \(N\), the image size at each level of
```

decomposition is }\frac{M}{\mp@subsup{S}{caleFactor (level-1)}{(l)}}\mathrm{ -by- }\frac{N}{\mp@subsup{\mathrm{ ScaleFact or }}{}{(level-1)}}\mathrm{ .
Data Types: single|double|int8| int16|int32|int64|uint8|uint16|
uint64 | uint32

```

\section*{NumLevels - Number of decomposition levels}

8 (default) | scalar greater than or equal to 1
Number of decomposition levels, specified as the comma-separated pair consisting of 'NumLevels' and a scalar greater than or equal to 1. Increase this value to extract keypoints from the image at more levels of decomposition.

The number of decomposition levels for extracting keypoints is limited by the image size at that level. The image size at a level of decomposition must be at least 63 -by-63 for detecting keypoints. The maximum level of decomposition is calculated as
level \(_{\text {max }}=\) floor \(\left(\frac{\log (\min (M, N))-\log (63)}{\log (\text { ScaleFactor })}\right)+1\)
If either the default value or the specified value of 'NumLevels' is greater than level \(_{\text {max }}\) the function modifies NumLevels to level \(_{\text {max }}\) and returns a warning.
```

Data Types: single|double|int8|int16|int32|int64|uint8|uint16|
uint64|uint32

```

\section*{ROI - Region of interest}

\section*{[1 1 M N] (default)|four-element vector}

Region of interest for keypoint detection, specified as the comma-separated pair consisting of 'ROI' and a vector of the format [\(x\) y width height]. The first two elements represent the location of the upper left corner of the region of interest. The last two elements represent the width and the height of the region of interest. The width and height of the region of interest must each be a value greater than or equal to 63 .

\section*{Output Arguments}

\section*{points - ORB keypoints}

ORBPoints object
ORB keypoints, returned as an ORBPoints object. The object contains information about keypoints detected in the input image.

\section*{Algorithms}

The function detects keypoints from the input image by using the ORB feature detection method in [1].

\section*{References}
[1] Rublee, E., V. Rabaud, K. Konolige, and G. Bradski. "ORB: An Efficient Alternative to SIFT or SURF." In Proceedings of the 2011 International Conference on Computer Vision, 2564-2571. Barcelona, Spain: IEEE, 2011.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\title{
See Also \\ ORBPoints | detectBRISKFeatures | detectFASTFeatures detectHarrisFeatures | detectKAZEFeatures | detectMSERFeatures detectMinEigenFeatures | detectSURFFeatures |extractFeatures| matchFeatures
}

\section*{Topics}
"Point Feature Types"
"Local Feature Detection and Extraction"

Introduced in R2019a

\section*{disparity}
(Not recommended) Disparity map between stereo images

Note disparity is not recommended. Use disparityBM or disparitySGM instead. For more information, see "Compatibility Considerations"

\section*{Syntax}
disparityMap = disparity(I1,I2)
disparityMap = disparity(I1,I2,Name, Value)

\section*{Description}
disparityMap = disparity(I1,I2) returns the disparity map, disparityMap, for a pair of stereo images, I1 and I2.
disparityMap = disparity(I1,I2,Name, Value) provides additional control for the disparity algorithm by using one or more Name, Value pair arguments.

\section*{Examples}

\section*{Compute Disparity Map for a Pair of Stereo Images}

Load the images and convert them to grayscale.
```

I1 = imread('scene_left.png');
I2 = imread('scene_right.png');

```

Show stereo anaglyph. Use red-cyan stereo glasses to view image in 3-D.
figure
imshow(stereoAnaglyph(I1,I2));
title('Red-cyan composite view of the stereo images');

Red-cyan composite view of the stereo images

Compute the disparity map.
disparityRange = [-6 10];
disparityMap = disparity(rgb2gray(I1), rgb2gray(I2), 'BlockSize',... 15,'DisparityRange',disparityRange);

Display the disparity map. For better visualization, use the disparity range as the display range for imshow.
figure
imshow(disparityMap,disparityRange);
title('Disparity Map');
colormap(gca,jet)
colorbar

\section*{Input Arguments}

\section*{I1 - Input image 1}

M-by-N 2-D grayscale image
Input image referenced as I1 corresponding to camera 1, specified in 2-D grayscale. The stereo images, I1 and I2, must be rectified such that the corresponding points are located on the same rows. You can perform this rectification with the rectifyStereoImages function.

You can improve the speed of the function by setting the class of I1 and I2 to uint8, and the number of columns to be divisible by 4 . Input images I1 and I2 must be real, finite, and nonsparse. They must be the same class.
Data Types: uint8|uint16|int16| single | double

\section*{I2 - Input image 2 \\ M-by-N 2-D grayscale image}

Input image referenced as I2 corresponding to camera 2, specified in 2-D grayscale. The input images must be rectified such that the corresponding points are located on the same rows. You can improve the speed of the function by setting the class of I1 and I2 to uint8, and the number of columns to be divisible by 4 . Input images I1 and I2 must be real, finite, and nonsparse. They must be the same class.

Data Types: uint8|uint16|int16| single | double

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, ..., NameN, ValueN.

Example: 'Method','BlockMatching', specifies the 'Method ' property be set to 'BlockMatching'.

\section*{Method - Disparity estimation algorithm \\ 'SemiGlobal' (default)|'BlockMatching'}

Disparity estimation algorithm, specified as the comma-separated pair consisting of 'Method' and either 'BlockMatching' or 'SemiGlobal'. The disparity function implements the basic Block Matching[1] and the Semi-Global Block Matching[3] algorithms. In the 'BlockMatching ' method, the function computes disparity by comparing the sum of absolute differences (SAD) of each block of pixels in the image. In the 'SemiGlobal' matching method, the function additionally forces similar disparity on neighboring blocks. This additional constraint results in a more complete disparity estimate than in the 'BlockMatching' method.

The algorithms perform these steps:
1 Compute a measure of contrast of the image by using the Sobel filter.
2 Compute the disparity for each pixel in I1.
3 Mark elements of the disparity map, disparityMap, that were not computed reliably. The function uses -realmax('single') to mark these elements.

\section*{DisparityRange - Range of disparity}
[0 64] (default) |two-element vector

Range of disparity, specified as the comma-separated pair consisting of 'DisparityRange' and a two-element vector. The two-element vector must be in the format [MinDisparity, MaxDisparity]. Both elements must be an integer and can be negative. MinDisparity and MaxDisparity must be in the range [-image width, image width]. The difference between MaxDisparity and MinDisparity must be divisible by 16. DisparityRange must be real, finite, and nonsparse. If the camera used to take I1 was to the right of the camera used to take I2, then MinDisparity must be negative.

The disparity range depends on the distance between the two cameras and the distance between the cameras and the object of interest. Increase the DisparityRange when the cameras are far apart or the objects are close to the cameras. To determine a reasonable disparity for your configuration, display the stereo anaglyph of the input images in imtool and use the Distance tool to measure distances between pairs of corresponding points. Modify the MaxDisparity to correspond to the measurement.

\section*{BlockSize - Square block size}

15 (default) | odd integer
Square block size, specified as the comma-separated pair consisting of 'BlockSize' and an odd integer in the range [5,255]. This value sets the width for the square block size.

The function uses the square block of pixels for comparisons between I1 and I2. BlockSize must be real, finite, and nonsparse.

\section*{ContrastThreshold - Contrast threshold range 0.5 (default) | scalar value}

Contrast threshold range, specified as the comma-separated pair consisting of 'ContrastThreshold' and a scalar value in the range (0,1]. The contrast threshold defines an acceptable range of contrast values. Increasing this parameter results in fewer pixels being marked as unreliable.ContrastThreshold must be real, finite, and nonsparse.

\section*{UniquenessThreshold - Minimum value of uniqueness}

15 (default) | non-negative integer
Minimum value of uniqueness, specified as the comma-separated pair consisting of 'UniquenessThreshold' and a nonnegative integer. Increasing this parameter results in the function marking more pixels unreliable. When the uniqueness value for a pixel is low, the disparity computed for it is less reliable. Setting the threshold to 0 disables uniqueness thresholding. UniquenessThreshold must be real, finite, and nonsparse.

The function defines uniqueness as a ratio of the optimal disparity estimation and the less optimal disparity estimation. For example:
Let \(K\) be the best estimated disparity, and let \(V\) be the corresponding SAD (Sum of Absolute Difference) value.
Consider \(V\) as the smallest SAD value over the whole disparity range, and \(v\) as the smallest SAD value over the whole disparity range, excluding \(K, K-1\), and \(K+1\). If \(v<V^{*}(1+0.01 *\) UniquenessThreshold \()\), then the function marks the disparity for the pixel as unreliable.

\section*{DistanceThreshold - Maximum distance for left-to-right image checking}
[] (disabled) (default) | non-negative integer
Maximum distance for left-to-right image checking between two points, specified as the comma-separated pair consisting of 'DistanceThreshold' and a nonnegative integer. Increasing this parameter results in fewer pixels being marked as unreliable. Conversely, when you decrease the value of the distance threshold, you increase the reliability of the disparity map. You can set this parameter to an empty matrix [] to disable it. DistanceThreshold must be real, finite, and nonsparse.

The distance threshold specifies the maximum distance between a point in I1 and the same point found from I2. The function finds the distance and marks the pixel in the following way:
Let \(p_{1}\) be a point in image \(I_{1}\).
Step 1: The function searches for point \(p_{1}\) 's best match in image \(I_{2}\) (left-to-right check) and finds point \(p_{2}\).
Step 2: The function searches for \(p_{2}\) 's best match in image \(I_{1}\) (right-to-left check) and finds point \(p_{3}\).
If the search returns a distance between \(p_{1}\) and \(p_{3}\) greater than DistanceThreshold, the function marks the disparity for the point \(p_{1}\) as unreliable.

\section*{TextureThreshold - Minimum texture threshold \\ 0.0002 (default) | scalar value}

Minimum texture threshold, specified as the comma-separated pair consisting of 'TextureThreshold' and a scalar value in the range [0, 1). The texture threshold defines the minimum texture value for a pixel to be reliable. The lower the texture for a block of pixels, the less reliable the computed disparity is for the pixels. Increasing this parameter results in more pixels being marked as unreliable. You can set this parameter to 0 to disable it. This parameter applies only when you set Method to 'BlockMatching'.

The texture of a pixel is defined as the sum of the saturated contrast computed over the BlockSize-by-BlockSize window around the pixel. The function considers the disparity computed for the pixel unreliable and marks it, when the texture falls below the value defined by:

Texture \(<X^{*}\) TextureThreshold \(* \quad\) BlockSize \({ }^{2}\)
\(X\) represents the maximum value supported by the class of the input images, I1 and I2.
TextureThreshold must be real, finite, and nonsparse.

\section*{Output Arguments}

\section*{disparityMap - Disparity map}

M-by-N 2-D grayscale image
Disparity map for a pair of stereo images, returned as an \(M\)-by-N 2-D grayscale image. The function returns the disparity map with the same size as the input images, I1 and I2.

Each element of the output specifies the disparity for the corresponding pixel in the image references as \(I 1\). The returned disparity values are rounded to \(1 / 16^{\text {th }}\) pixel.

The function computes the disparity map in three steps:
1 Compute a measure of contrast of the image by using the Sobel filter.
2 Compute the disparity for each of the pixels by using block matching and the sum of absolute differences (SAD).
3 Optionally, mark the pixels which contain unreliable disparity values. The function sets the pixel to the value returned by -realmax('single').

\section*{Tips}

If your resulting disparity map looks noisy, try modifying the DisparityRange. The disparity range depends on the distance between the two cameras and the distance between the cameras and the object of interest. Increase the DisparityRange when the cameras are far apart or the objects are close to the cameras. To determine a reasonable disparity for your configuration, display the stereo anaglyph of the input images in imtool and use the Distance tool to measure distances between pairs of corresponding points. Modify the MaxDisparity to correspond to the measurement.

\title{
Compatibility Considerations
}

\section*{disparity function will be removed}

Not recommended starting in R2019a
The disparity function will be removed in a future release. Use disparityBM or disparitySGM instead. Use disparityBM to compute disparity map using block matching method. Use disparitySGM to compute disparity map using semi-global matching method.

\section*{References}
[1] Konolige, K., Small Vision Systems: Hardware and Implementation, Proceedings of the 8th International Symposium in Robotic Research, pages 203-212, 1997.
[2] Bradski, G. and A. Kaehler, Learning OpenCV : Computer Vision with the OpenCV Library, O'Reilly, Sebastopol, CA, 2008.
[3] Hirschmuller, H., Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information, International Conference on Computer Vision and Pattern Recognition, 2005.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).
Usage notes and limitations:
- 'Method ' must be a compile-time constant.
- Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries. See "Portable C Code Generation for Functions That Use OpenCV Library".

\title{
See Also \\ Stereo Camera Calibrator | estimateCameraParameters estimateUncalibratedRectification|reconstructScene| rectifyStereoImages
}

\section*{Topics}
"Depth Estimation From Stereo Video"
"Structure From Motion From Two Views"
"Structure From Motion From Multiple Views"
"Uncalibrated Stereo Image Rectification"

Introduced in R2011b

\section*{disparityBM}

Compute disparity map using block matching

\section*{Syntax}
disparityMap = disparityBM(I1,I2)
disparityMap = disparityBM(I1,I2,Name,Value)

\section*{Description}
disparityMap \(=\) disparityBM(I1,I2) computes disparity map from a pair of rectified stereo images I1 and I2, by using the block matching method. To know more about rectifying stereo images, see "Image Rectification" on page 3-386.
disparityMap = disparityBM(I1,I2,Name,Value) specifies options using one or more name-value pair arguments.

\section*{Examples}

\section*{Compute Disparity Map by Using Block Matching Method}

Load a rectified stereo pair image.
```

I1 = imread('rectified_left.png');
I2 = imread('rectified_right.png');

```

Create the stereo anaglyph of the rectified stereo pair image and display it. You can view the image in 3-D by using red-cyan stereo glasses.
\(A=\) stereoAnaglyph(I1,I2);
figure
imshow(A)
title('Red-Cyan composite view of the rectified stereo pair image')

Convert the rectified input color images to grayscale images.
```

J1 = rgb2gray(I1);
J2 = rgb2gray(I2);

```

Compute the disparity map. Specify the range of disparity as [0,48], and the minimum value of uniqueness as 20 .
```

disparityRange = [0 48];
disparityMap = disparityBM(J1,J2,'DisparityRange',disparityRange,'UniquenessThreshold'

```

Display the disparity map. Set the display range to the same value as the disparity range.
```

figure
imshow(disparityMap,disparityRange)
title('Disparity Map')
colormap jet
colorbar

```


\section*{Input Arguments}

\section*{I1 - Input image 1}

2-D grayscale image | gpuArray object
Input image referenced as I1 corresponding to camera 1, specified as a 2-D grayscale image or a gpuArray object. The function uses this image as the reference image for computing the disparity map. The input images I1 and I2 must be real, finite, and nonsparse. Also, I1 and I2 must be of the same size and same data type.

Data Types: single|double | int16|uint8|uint16

\section*{I2 - Input image 2}

2-D grayscale image | gpuArray object
Input image referenced as I2 corresponding to camera 2, specified as a 2-D grayscale image or a gpuArray object. The input images I1 and I2 must be real, finite, and nonsparse. I1 and I2 must be of the same size and same data type.

Data Types: single | double | int16|uint8|uint16

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, ... , NameN, ValueN.

Example: disparityBM(I1,I2,'DisparityRange',[0 64])

\section*{DisparityRange - Range of disparity}
[0 64] (default)| two-element vector
Range of disparity, specified as the comma-separated pair consisting of
'DisparityRange' and a two-element vector of the form [MinDisparity MaxDisparity]. MinDisparity is the minimum disparity and MaxDisparity is the maximum disparity. The conditions this range must satisfy depend on the type of input images.

If the input images are grayscale images of width \(N\), then:
- MinDisparity and MaxDisparity must be integers in the range \((-N, N)\).
- The difference between the MaxDisparity and MinDisparity values must be divisible by 16 and less than the width of the input images.

If the input images are gpuArray objects of width \(N\), then:
- The value of MinDisparity must be equal to zero.

The value of MaxDisparity must be in the range \((16, N)\). If \(N\) is greater than 256 , then the MaxDisparity must be chosen as less than or equal to 256 .

The difference between the MaxDisparity and MinDisparity values must be divisible by 16.

The default value for the range of disparity is [0 64]. For more information on choosing the range of disparity, see "Choosing Range of Disparity" on page 3-386.

\section*{BlockSize - Size of squared block \\ 15 (default) | odd integer}

Size of the squared block, specified as the comma-separated pair consisting of 'BlockSize' and an odd integer. This value specifies the width of the search window
used for block matching pixels in the rectified stereo pair image. The range for the size squared block depend on the type of input images.

If the input images are grayscale images, the 'BlockSize' value must be an odd integer in the range \([5,255]\).

If the input images are gpuArray objects, the 'BlockSize' value must be an odd integer in the range [5,51].

The default value is 15 .

\section*{ContrastThreshold - Range of contrast threshold}

\section*{0.5 (default) | scalar in the range (0,1]}

Range of contrast threshold, specified as the comma-separated pair consisting of 'ContrastThreshold' and a scalar value in the range (0,1]. The contrast threshold defines an acceptable range of contrast values. If the contrast value of a pixel in the reference image is below the contrast threshold, then the disparity computed for that pixel is considered unreliable. Increasing this parameter results in disparity for fewer pixels being marked as unreliable.

\section*{UniquenessThreshold - Minimum value of uniqueness}

15 (default) | nonnegative integer
Minimum value of uniqueness, specified as the comma-separated pair consisting of 'UniquenessThreshold' and a nonnegative integer.

The function marks the estimated disparity value \(K\) for a pixel as unreliable, if:
\(v<V \times(1+0.01 \times\) UniquenessThreshold \()\),
where \(V\) is the sum of absolute difference (SAD) corresponding to the disparity value \(K\). \(v\) is the smallest SAD value over the whole disparity range, excluding \(K, K-1\), and \(K+1\).

Increasing the value of UniquenessThreshold results in disparity values for more pixels being marked as unreliable. To disable the use of uniqueness threshold, set this value to [].

Note If the input images are gpuArray objects, then the 'UniquenessThreshold' name-value pair argument does not apply.

\section*{DistanceThreshold - Maximum distance between conjugate pixels in stereo pair image}

\section*{[] (disabled) (default) | nonnegative integer}

Maximum distance between conjugate pixels in stereo pair image, specified as the comma-separated pair consisting of 'DistanceThreshold' and a nonnegative integer. The distance threshold specifies the maximum distance between a pixel in I1 and the same pixel found in I2.

For pixel \(p_{1}\) in the reference image I1, the function performs a left-to-right check to find its best matching pixel \(p_{2}\) in image I2. For pixel \(p_{2}\), the function performs a right-to-left check to find its best matching pixel \(p_{3}\) in the reference image I1. If the distance between \(p_{1}\) and \(p_{3}\) is greater than the DistanceThreshold, the function marks the disparity for the pixel \(p_{1}\) in the reference image I1 as unreliable.

Increasing the value of DistanceThreshold results in disparity values for fewer pixels being marked as unreliable. Conversely, decreasing the value of DistanceThreshold, increases the reliability of the disparity map. To disable the use of distance threshold, set this value to [].

Note If the input images are gpuArray objects, then the 'DistanceThreshold' namevalue pair argument does not apply.

\section*{TextureThreshold - Minimum texture threshold}
0.0002 (default) | scalar value in the range [0, 1)

Minimum texture threshold, specified as the comma-separated pair consisting of 'TextureThreshold ' and a scalar value in the range [0, 1).

The texture of a pixel is defined as the sum of the saturated contrast computed over the BlockSize-by-BlockSize window around the pixel. The texture threshold defines the minimum texture value for a pixel to have reliable disparity value. The function considers the disparity for a pixel as unreliable, if:
texture \(<\) intensity \(_{\max } \times\) TextureThreshold \(\times\) BlockSize \({ }^{2}\),
where texture is the texture of a pixel. intensity max is the maximum value supported by the data type of input images I1 and I2.

Increasing the value of 'TextureThreshold ' results in disparity values for more pixels being marked as unreliable. To disable the use of texture threshold, set this value to [].

\section*{Output Arguments}

\author{
disparityMap - Disparity map
}

2-D grayscale image | gpuArray object
Disparity map for rectified stereo pair image, returned as a 2-D grayscale image or a gpuArray object. The function returns the disparity map with the same size as input images I1 and I2. Each value in this output refers to the displacement between conjugate pixels in the stereo pair image. For details about computing the disparity map, see "Computing Disparity Map Using Block Matching" on page 3-389.
Data Types: single

\section*{More About}

\section*{Image Rectification}

The input images I1 and I2 must be rectified before computing the disparity map. The rectification ensures that the corresponding points in the stereo pair image are on the same rows. You can rectify the input stereo pair image by using the rectifyStereoImages function. The reference image must be the same for rectification and disparity map computation.

\section*{Algorithms}

\section*{Choosing Range of Disparity}

The range of disparity must be chosen to cover the minimum and the maximum amount of horizontal shift between the corresponding pixels in the rectified stereo pair image. You can determine the approximate horizontal shift values from the stereo anaglyph of the stereo pair image. Compute the stereo anaglyph of the rectified images by using the stereoAnaglyph function. Display the stereo anaglyph in the Image Viewer by using the imtool function. To measure the amount of horizontal shift between the corresponding points in the stereo pair image, select Measure Distance from the Tools menu in Image Viewer. Choose the minimum and maximum disparity values for the range of disparity based on this measurement.

For example, this figure displays the stereo anaglyph of a rectified stereo pair image and the horizontal shift values measured between the corresponding points in the stereo pair image. The minimum and maximum shift values are computed as 8 and 31 respectively. Based on these values, the range of disparity can be chosen as [0,48].

\section*{Computing Disparity Map Using Block Matching}

The function computes the disparity map by following these steps:
1 Compute the disparity for each pixel by using the block matching method given in [1].
- For CPU - The sum of absolute difference (SAD) is used as the cost function in block matching. The cost function estimates the displacement between pixels in the rectified stereo pair image.
- For GPU - The sum of squared difference (SSD) is used as the cost function in block matching. The cost function estimates the displacement between pixels in the rectified stereo pair image.
2 Optionally, mark the pixels for unreliability based on the ContrastThreshold, UniquenessThreshold, DistanceThreshold, and TextureThreshold namevalue pairs. The function sets the unreliable disparity values to NaN.

\section*{References}
[1] Konolige, K. "Small Vision Systems: Hardware and Implementation." In Proceedings of the 8th International Symposium in Robotic Research, pp. 203-212. 1997.
[2] Bradski, G. and A. Kaehler. Learning OpenCV : Computer Vision with the OpenCV Library. Sebastopol, CA: O'Reilly Media, Inc. 2008.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{GPU Arrays}

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox \({ }^{\mathrm{TM}}\).

Usage notes and limitations:
- The GPU version of this function works only on NVIDIA GPUs. The maximum disparity value supported for gpuArray objects is 256 .

\section*{See Also}

\section*{Apps \\ Stereo Camera Calibrator}

\section*{Functions}
disparitySGM|estimateCameraParameters|
estimateUncalibratedRectification|reconstructScene| rectifyStereoImages

Introduced in R2019a

\section*{disparitySGM}

Compute disparity map through semi-global matching

\section*{Syntax}
```

disparityMap = disparitySGM(I1,I2)
disparityMap = disparitySGM(I1,I2,Name,Value)

```

\section*{Description}
disparityMap = disparitySGM(I1,I2) computes disparity map from a pair of rectified stereo images I1 and I2, by using semi-global matching (SGM) method. To know more about rectifying stereo images, see "Image Rectification" on page 3-395.
disparityMap = disparitySGM(I1,I2,Name,Value) specifies options using one or more name-value pair arguments.

\section*{Examples}

\section*{Compute Disparity Map by Using Semi-Global Matching Method}

Load a rectified stereo pair image.
```

I1 = imread('rectified_left.png');
I2 = imread('rectified_right.png');

```

Create the stereo anaglyph of the rectified stereo pair image and display it. You can view the image in 3-D by using red-cyan stereo glasses.
```

A = stereoAnaglyph(I1,I2);
figure
imshow(A)
title('Red-Cyan composite view of the rectified stereo pair image')

```


Convert the rectified input color images to grayscale images.
```

J1 = rgb2gray(I1);
J2 = rgb2gray(I2);

```

Compute the disparity map through semi-global matching. Specify the range of disparity as \([0,48]\), and the minimum value of uniqueness as 20 .
disparityRange = [0 48];
disparityMap = disparitySGM(J1,J2,'DisparityRange', disparityRange,'UniquenessThreshold
Display the disparity map. Set the display range to the same value as the disparity range.
```

figure
imshow(disparityMap,disparityRange)
title('Disparity Map')
colormap jet
colorbar

```


\section*{Input Arguments}

\section*{I1 - Input image 1}

2-D grayscale image | gpuArray object
Input image referenced as I1 corresponding to camera 1, specified as a 2-D grayscale image or a gpuArray object. The function uses this image as the reference image for computing the disparity map. The input images I1 and I2 must be real, finite, and nonsparse. Also, I1 and I2 must be of the same size and same data type.

Data Types: single | double | int16|uint8|uint16

\section*{I2 - Input image 2}

2-D grayscale image | gpuArray object
Input image referenced as I2 corresponding to camera 2, specified as a 2-D grayscale image or a gpuArray object. The input images I1 and I2 must be real, finite, and nonsparse. I1 and I2 must be of the same size and same data type.
```

Data Types: single | double | int16|uint8|uint16

```

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: disparitySGM(I1,I2,'DisparityRange',[0 64])

\section*{DisparityRange - Range of disparity}
[0 128] (default)|two-element vector
Range of disparity, specified as the comma-separated pair consisting of
'DisparityRange' and a two-element vector of the form [MinDisparity MaxDisparity]. MinDisparity is the minimum disparity and MaxDisparity is the maximum disparity.

For input images of width \(N\), the MinDisparity and MaxDisparity must be integers in the range \((-N, N)\). The difference between the MaxDisparity and MinDisparity values must be divisible by 8 and must be less than or equal to 128.

The default value for the range of disparity is [0 128]. For more information on choosing the range of disparity, see "Choosing Range of Disparity" on page 3-395.

\section*{Data Types: integers}

\section*{UniquenessThreshold - Minimum value of uniqueness}

15 (default) | non-negative integer
Minimum value of uniqueness, specified as the comma-separated pair consisting of 'UniquenessThreshold' and a nonnegative integer.

The function marks the estimated disparity value \(K\) for a pixel as unreliable, if:
\[
v<V \times(1+0.01 \times \text { UniquenessThreshold })
\]
where \(V\) is the Hamming distance corresponding to the disparity value \(K . v\) is the smallest Hamming distance value over the whole disparity range, excluding \(K, K-1\), and \(K+1\).

Increasing the value of UniquenessThreshold results in disparity values for more pixels being marked as unreliable. To disable the use of uniqueness threshold, set this value to 0 .

\section*{Output Arguments}

\author{
disparityMap - Disparity map
}

2-D grayscale image | gpuArray object
Disparity map for rectified stereo pair image, returned as a 2-D grayscale image or a gpuArray object. The function returns the disparity map with the same size as input images I1 and I2. Each value in this output refers to the displacement between conjugate pixels in the stereo pair image. For details about computing the disparity map, see "Computing Disparity Map Using Semi-Global Matching" on page 3-398.

Data Types: single

\section*{More About}

\section*{Image Rectification}

The input images I1 and I2 must be rectified before computing the disparity map. The rectification ensures that the corresponding points in the stereo pair image are on the same rows. You can rectify the input stereo pair image by using the rectifyStereoImages function. The reference image must be the same for rectification and disparity map computation.

\section*{Algorithms}

\section*{Choosing Range of Disparity}

The range of disparity must be chosen to cover the minimum and the maximum amount of horizontal shift between the corresponding pixels in the rectified stereo pair image. You can determine the approximate horizontal shift values from the stereo anaglyph of the stereo pair image. Compute the stereo anaglyph of the rectified images by using the stereoAnaglyph function. Display the stereo anaglyph in the Image Viewer by using the imtool function. To measure the amount of horizontal shift between the corresponding points in the stereo pair image, select Measure Distance from the Tools menu in Image Viewer. Choose the minimum and maximum disparity values for the range of disparity based on this measurement.

For example, this figure displays the stereo anaglyph of a rectified stereo pair image and the horizontal shift values measured between the corresponding points in the stereo pair image. The minimum and maximum shift values are computed as 8 and 31 respectively. Based on these values, the range of disparity can be chosen as [0,48].

\section*{Computing Disparity Map Using Semi-Global Matching}

1 Compute Census transform of the rectified stereo pair image.
2 Compute Hamming distance between pixels in the census-transformed image to obtain the matching cost matrix.
3 Compute the pixel-wise disparity from matching cost matrix by using the semi-global matching method given in [1].
4 Optionally, mark the pixels for unreliability based on the UniquenessThreshold name-value pair. The function sets the disparity values of the unreliable pixels to NaN .

\section*{References}
[1] Hirschmuller, H. "Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 807-814. San Diego, CA: IEEE, 2005.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{GPU Arrays}

Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox \({ }^{\mathrm{TM}}\).

Usage notes and limitations:
- The GPU version of this function works only on NVIDIA GPUs.

\section*{See Also}

Apps
Stereo Camera Calibrator

\section*{Functions}
disparityBM|estimateCameraParameters|
estimateUncalibratedRectification| reconstructScene| rectifyStereoImages

Introduced in R2019a

\section*{epipolarLine}

Compute epipolar lines for stereo images

\section*{Syntax}
```

lines = epipolarLine(F,points)
lines = epipolarLine(F',points)

```

\section*{Description}
lines = epipolarLine(F, points) returns an \(M\)-by- 3 matrix, lines. The matrix represents the computed epipolar lines in image I2 corresponding to the points in image I1. The input F represents the fundamental matrix that maps points in I1 to epipolar lines in image I2.
lines = epipolarLine(F',points) The matrix represents the computed epipolar lines in image I1 corresponding to the points in image I2.

\section*{Examples}

\section*{Compute Fundamental Matrix}

This example shows you how to compute the fundamental matrix. It uses the least median of squares method to find the inliers.

The points, matched_points1 and matched_points2, have been putatively matched.
```

load stereoPointPairs
[fLMedS,inliers] = estimateFundamentalMatrix(matchedPoints1,...
matchedPoints2,'NumTrials',4000);

```

Show the inliers in the first image.
I1 = imread('viprectification_deskLeft.png');
figure;
```

subplot(121);
imshow(I1);
title('Inliers and Epipolar Lines in First Image'); hold on;
plot(matchedPoints1(inliers,1),matchedPoints1(inliers,2),'go')

```

\section*{Inliers and Epipolar Lines in First Image}

Compute the epipolar lines in the first image.
epiLines = epipolarLine(fLMedS',matchedPoints2(inliers,:));
Compute the intersection points of the lines and the image border.
points = lineToBorderPoints(epiLines,size(I1));
Show the epipolar lines in the first image
```

line(points(:,[1,3])',points(:,[2,4])');

```

\section*{Inliers and Epipolar Lines in First Image}

Show the inliers in the second image.
I2 = imread('viprectification_deskRight.png'); subplot(122); imshow(I2); title('Inliers and Epipolar Lines in Second Image'); hold on; plot(matchedPoints2(inliers,1), matchedPoints2(inliers, 2), 'go')

Inliers and Epipolar Lines in First Imagediers and Epipolar Lines in Second Image

Compute and show the epipolar lines in the second image.
```

epiLines = epipolarLine(fLMedS,matchedPointsl(inliers,:));
points = lineToBorderPoints(epiLines,size(I2));
line(points(:,[1,3])',points(:,[2,4])');
truesize;

```


\section*{Input Arguments}

\section*{F - Fundamental matrix}

3-by-3 matrix (default)
Fundamental matrix, specified as a 3-by-3 matrix. F must be double or single. If \(P 1\) represents a point in the first image \(I 1\) that corresponds to \(P 2\), a point in the second image \(I 2\), then:
\(\left[P_{2}, 1\right] * F *\left[P_{1}, 1\right]=0\)
In computer vision, the fundamental matrix is a 3-by-3 matrix which relates corresponding points in stereo images. When two cameras view a 3-D scene from two distinct positions, there are a number of geometric relations between the 3-D points and their projections onto the 2-D images that lead to constraints between the image points. Two images of the same scene are related by epipolar geometry.

\section*{F' - Fundamental matrix}

3-by-3 matrix (default)
Fundamental matrix, specified as a 3-by-3 matrix. The \(\mathrm{F}^{\prime}\) fundamental matrix maps points in image I2 to epipolar lines in image I1.

\section*{points - Coordinates of points}

M

Coordinates of points, specified as an \(M\)-by-2 matrix. Each row contains the (\(x, y\)) coordinates of a point. \(M\) is the number of points.

\section*{Output Arguments}

\section*{lines - Lines}

M-by-3 matrix
An \(M\)-by- 3 matrix, where each row must be in the format, \([A, B, C]\). This corresponds to the definition of the line:
\(A * x+B^{*} y+C=0\).
\(M\) represents the number of lines.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \(\mathrm{Coder}^{\mathrm{TM}}\).

\section*{See Also}
estimateFundamentalMatrix|insertShape|isEpipoleInImage|line| lineToBorderPoints|size

\section*{Topics}
"Structure From Motion From Two Views"
"Structure From Motion From Multiple Views"
Introduced in R2011a

\section*{estimateCameraParameters}

Calibrate a single or stereo camera

\section*{Syntax}
[cameraParams,imagesUsed,estimationErrors] = estimateCameraParameters(imagePoints, worldPoints)
[stereoParams, pairsUsed,estimationErrors] = estimateCameraParameters(imagePoints, worldPoints)
cameraParams = estimateCameraParameters(\(\qquad\) , Name, Value)

\section*{Description}
[cameraParams,imagesUsed,estimationErrors] = estimateCameraParameters(imagePoints,worldPoints) returns cameraParams, a cameraParameters object containing estimates for the intrinsic and extrinsic parameters and the distortion coefficients of a single camera. The function also returns the images you used to estimate the camera parameters and the standard estimation errors for the single camera calibration.
[stereoParams,pairsUsed,estimationErrors] = estimateCameraParameters(imagePoints,worldPoints) returns stereoParams, a stereoParameters object containing the parameters of the stereo camera. The function also returns the images you used to estimate the stereo parameters and the standard estimation errors for the stereo camera calibration.
cameraParams = estimateCameraParameters(\(\qquad\) , Name, Value) configures the cameraParams object properties specified by one or more Name, Value pair arguments, using any of the preceding syntaxes. Unspecified properties have their default values.

\section*{Examples}

\section*{Single Camera Calibration}

Create a set of calibration images.
```

images = imageSet(fullfile(toolboxdir('vision'),'visiondata',...
'calibration','mono'));
imageFileNames = images.ImageLocation;

```

Detect the calibration pattern.
```

[imagePoints, boardSize] = detectCheckerboardPoints(imageFileNames);

```

Generate the world coordinates of the corners of the squares.
```

squareSizeInMM = 29;
worldPoints = generateCheckerboardPoints(boardSize,squareSizeInMM);

```

Calibrate the camera.
```

I = readimage(images,1);
imageSize = [size(I, 1),size(I, 2)];
params = estimateCameraParameters(imagePoints,worldPoints, ...
'ImageSize',imageSize);

```

Visualize the calibration accuracy.
```

showReprojectionErrors(params);

```


Visualize camera extrinsics.
figure;
showExtrinsics(params);

\section*{Extrinsic Parameters Visualization}

drawnow;
Plot detected and reprojected points.
figure;
imshow(imageFileNames\{1\});
hold on;
plot(imagePoints(:,1,1), imagePoints(:,2,1),'go');
plot(params.ReprojectedPoints(:,1,1),params.ReprojectedPoints(:,2,1),'r+');
legend('Detected Points','ReprojectedPoints');
hold off;

\section*{Stereo Camera Calibration}

Specify calibration images.
```

leftImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
'calibration','stereo','left'));
rightImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
calibration','stereo','right'));

```

Detect the checkerboards.
[imagePoints,boardSize] = ...
detectCheckerboardPoints(leftImages.Files,rightImages.Files);

Specify the world coordinates of the checkerboard keypoints. Square size is in millimeters.
```

squareSize = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

```

Calibrate the stereo camera system. Both cameras have the same resolution.
```

I = readimage(leftImages,1);
imageSize = [size(I,1),size(I,2)];
params = estimateCameraParameters(imagePoints,worldPoints, ...
'ImageSize',imageSize);

```

Visualize the calibration accuracy.
showReprojectionErrors(params);

Visualize camera extrinsics.
figure;
showExtrinsics(params);

\section*{Input Arguments}

\section*{imagePoints - Key points of calibration pattern}

M-by-2-by-numImages | M-by-2-by-numPairs-by-2 array
Key points of calibration pattern, specified as an array of \([x, y]\) intrinsic image coordinates.
\begin{tabular}{|c|c|}
\hline Calibration & Input Array of [\(x, y\)] Key Points \\
\hline Single Camera & \begin{tabular}{l}
\(M\)-by-2-by-numImages array of \([x, y]\) points. \\
- The number of images, numImages, must be greater than 2 . \\
- The number of keypoint coordinates in each pattern, \(M\), must be greater than 3.
\end{tabular} \\
\hline Stereo Camera & \begin{tabular}{l}
M-by-2-by-numPairs-by-2 array of \([x, y]\) points. \\
- numPairs is the number of stereo image pairs containing the calibration pattern. \\
- The number of keypoint coordinates in each pattern, \(M\), must be greater than 3. \\
- imagePoints(: , : : , 1) are the points from camera 1. \\
- imagePoints(:, :, : , 2) are the points from camera 2 .
\end{tabular} \\
\hline
\end{tabular}

\section*{Data Types: single | double}
worldPoints - Key points of calibration pattern in world coordinates
\(M\)-by-2 array
Key points of calibration pattern in world coordinates, specified as an \(M\)-by-2 array of \(M\) number of \([x, y]\) world coordinates. The pattern must be planar; therefore, \(z\)-coordinates are zero.

Data Types: single | double

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'WorldUnits','mm' sets the world point units to millimeters.

\section*{WorldUnits - World points units}
'mm ' (default) | character vector | string scalar
World points units, specified as the comma-separated pair consisting of 'WorldUnits' and a character vector or string scalar.

\section*{EstimateSkew - Estimate skew \\ false (default) | logical scalar}

Estimate skew, specified as the comma-separated pair consisting of 'EstimateSkew' and a logical scalar. When you set this property to true, the function estimates the image axes skew. When set to false, the image axes are exactly perpendicular and the function sets the skew to zero.

\section*{NumRadialDistortionCoefficients - Number of radial distortion coefficients} 2 (default)| 3

Number of radial distortion coefficients to estimate, specified as the comma-separated pair consisting of 'NumRadialDistortionCoefficients' and the value 2 or 3. Radial distortion occurs when light rays bend more near the edges of a lens than they do at its optical center. The smaller the lens, the greater the distortion.

The radial distortion coefficients model this type of distortion. The distorted points are denoted as (\(x_{\text {distorted }}, y_{\text {distorted }}\)):

- \(x, y\) - Undistorted pixel locations. \(x\) and \(y\) are in normalized image coordinates. Normalized image coordinates are calculated from pixel coordinates by translating to the optical center and dividing by the focal length in pixels. Thus, \(x\) and \(y\) are dimensionless.
- \(k_{1}, k_{2}\), and \(k_{3}-\) Radial distortion coefficients of the lens.
- \(r^{2}: x^{2}+y^{2}\)

Typically, two coefficients are sufficient for calibration. For severe distortion, such as in wide-angle lenses, you can select 3 coefficients to include \(k_{3}\).

\section*{EstimateTangentialDistortion - Tangential distortion flag}
false (default) | logical scalar
Tangential distortion flag, specified as the comma-separated pair consisting of, 'EstimateTangentialDistortion' and a logical scalar. When you set this property to true, the function estimates the tangential distortion. When you set it to false, the tangential distortion is negligible.

Tangential distortion occurs when the lens and the image plane are not parallel. The tangential distortion coefficients model this type of distortion.

Zero Tangential Distortion

Tangential Distortion

The distorted points are denoted as (\(\chi_{\text {distorted }}, y_{\text {distorted }}\)):

- \(\quad x, y\) - Undistorted pixel locations. \(x\) and \(y\) are in normalized image coordinates. Normalized image coordinates are calculated from pixel coordinates by translating to the optical center and dividing by the focal length in pixels. Thus, \(x\) and \(y\) are dimensionless.
- \(p_{1}\) and \(p_{2}\) - Tangential distortion coefficients of the lens.
- \(r^{2}: x^{2}+y^{2}\)

\section*{InitialIntrinsicMatrix - Initial guess for camera intrinsics}
[] (default) | 3-by-3 matrix
Initial guess for camera intrinsics, specified as the comma-separated pair consisting of 'InitialIntrinsicMatrix' and a 3-by-3 matrix. If you do not provide an initial value, the function computes the initial intrinsic matrix using linear least squares.

\section*{InitialRadialDistortion - Initial guess for radial distortion coefficients [] (default) | 2-element vector | 3-element vector}

Initial guess for radial distortion coefficients, specified as the comma-separated pair consisting of 'InitialRadialDistortion' and a 2- or 3-element vector. If you do not provide an initial value, the function uses 0 as the initial value for all the coefficients.

\section*{ImageSize - Image size produced by camera \\ 1-by-2 [mrows, ncols] vector | []}

Image size produced by camera, specified as the comma-separated pair consisting of 'ImageSize' and as 1-by-2 [mrows, ncols] vector.

\section*{Output Arguments}

\section*{cameraParams - Camera parameters}
cameraParameters object
Camera parameters, returned as a cameraParameters object.

\section*{imagesUsed - Images used to estimate camera parameters}
\(P\)-by-1 logical array
Images you use to estimate camera parameters, returned as a \(P\)-by- 1 logical array. \(P\) corresponds to the number of images. The array indicates which images you used to estimate the camera parameters. A logical true value in the array indicates which images you used to estimate the camera parameters.

The function computes a homography between the world points and the points detected in each image. If the homography computation fails for an image, the function issues a
warning. The points for that image are not used for estimating the camera parameters. The function also sets the corresponding element of imagesUsed to false.

\section*{estimationErrors - Standard errors of estimated parameters cameraCalibrationErrors object | stereoCalibrationErrors object}

Standard errors of estimated parameters, returned as a cameraCalibrationErrors object or a stereoCalibrationErrors object.

\section*{stereoParams - Camera parameters for stereo system}

\section*{stereoParameters object}

Camera parameters for stereo system, returned as a stereoParameters object. The object contains the intrinsic, extrinsic, and lens distortion parameters of the stereo camera system.

\section*{pairsUsed - Image pairs used to estimate camera parameters}
\(P\)-by-1 logical array
Image pairs used to estimate camera parameters, returned as a \(P\)-by-1 logical array. \(P\) corresponds to the number of image pairs. A logical true value in the array indicates which image pairs you used to estimate the camera parameters.

\section*{Algorithms}

\section*{Calibration Algorithm}

You can use the Camera Calibrator app with cameras up to a field of view (FOV) of 95 degrees.

The calibration algorithm assumes a pinhole camera model:
\[
w\left[\begin{array}{lll}
x & y & 1
\end{array}\right]=\left[\begin{array}{llll}
X & Y & Z & 1
\end{array}\right]\left[\begin{array}{l}
R \\
t
\end{array}\right]_{K}
\]
\((X, Y, Z)\) : world coordinates of a point
\((x, y)\) : coordinates of the corresponding image point
\(w\) : arbitrary scale factor
K: camera intrinsic matrix
\(R\) : matrix representing the 3-D rotation of the camera \(t\) : translation of the camera relative to the world coordinate system

Camera calibration estimates the values of the intrinsic parameters, the extrinsic parameters, and the distortion coefficients. There are two steps involved in camera calibration:

1 Solve for the intrinsics and extrinsics in closed form, assuming that lens distortion is zero. [1]
2 Estimate all parameters simultaneously including the distortion coefficients using nonlinear least-squares minimization (Levenberg-Marquardt algorithm). Use the closed form solution from the preceding step as the initial estimate of the intrinsics and extrinsics. Then set the initial estimate of the distortion coefficients to zero. [1] [2]

\section*{References}
[1] Zhang, Z. "A Flexible New Technique for Camera Calibration". IEEE Transactions on Pattern Analysis and Machine Intelligence.Vol. 22, No. 11, 2000, pp. 1330-1334.
[2] Heikkila, J, and O. Silven. "A Four-step Camera Calibration Procedure with Implicit Image Correction", IEEE International Conference on Computer Vision and Pattern Recognition, 1997.
[3] Bouguet, J.Y. "Camera Calibration Toolbox for Matlab", Computational Vision at the California Institute of Technology. Camera Calibration Toolbox for MATLAB.
[4] Bradski, G., and A. Kaehler. Learning OpenCV : Computer Vision with the OpenCV Library. Sebastopol, CA: O'Reilly, 2008.

\section*{See Also}

\section*{Apps}

Camera Calibrator | Stereo Camera Calibrator

\section*{Classes}
cameraCalibrationErrors | cameraParameters|stereoCalibrationErrors| stereoParameters

\section*{Functions}
detectCheckerboardPoints | disparityBM|disparitySGM| estimateFundamentalMatrix|estimateStereoBaseline|
estimateUncalibratedRectification|generateCheckerboardPoints|
reconstructScene|rectifyStereoImages | showExtrinsics |
showReprojectionErrors|undistortImage|undistortPoints

\section*{Topics}
"Evaluating the Accuracy of Single Camera Calibration"
"What Is Camera Calibration?"
"Single Camera Calibrator App"
"Coordinate Systems"
Introduced in R2014b

\section*{estimateFundamentalMatrix}

Estimate fundamental matrix from corresponding points in stereo images
```

Syntax
estimateFundamentalMatrix
F = estimateFundamentalMatrix(matchedPoints1,matchedPoints2)
[F,inliersIndex] = estimateFundamentalMatrix(matchedPoints1,
matchedPoints2)
[F,inliersIndex,status] = estimateFundamentalMatrix(matchedPoints1,
matchedPoints2)
[F,inliersIndex,status] = estimateFundamentalMatrix(matchedPoints1,
matchedPoints2,Name,Value)

```

\section*{Description}
estimateFundamentalMatrix estimates the fundamental matrix from corresponding points in stereo images. This function can be configured to use all corresponding points or to exclude outliers. You can exclude outliers by using a robust estimation technique such as random-sample consensus (RANSAC). When you use robust estimation, results may not be identical between runs because of the randomized nature of the algorithm.

F = estimateFundamentalMatrix(matchedPoints1,matchedPoints2) returns the 3-by-3 fundamental matrix, F, using the least median of squares (LMedS) method. The input points can be \(M\)-by-2 matrices of \(M\) number of [x y] coordinates, or KAZEPoints, SURFPoints, MSERRegions, ORBPoints, or cornerPoints object.
[F,inliersIndex] = estimateFundamentalMatrix(matchedPoints1, matchedPoints2) additionally returns logical indices, inliersIndex, for the inliers used to compute the fundamental matrix. The inliersIndex output is an \(M\)-by- 1 vector. The function sets the elements of the vector to true when the corresponding point was used to compute the fundamental matrix. The elements are set to false if they are not used.
[F,inliersIndex,status] = estimateFundamentalMatrix(matchedPoints1, matchedPoints2) additionally returns a status code.
[F,inliersIndex,status] = estimateFundamentalMatrix(matchedPoints1, matchedPoints2, Name, Value) uses additional options specified by one or more Name,Value pair arguments.

\section*{Examples}

\section*{Compute Fundamental Matrix}

The RANSAC method requires that the input points are already putatively matched. We can, for example, use the matchFeatures function for this. Using the RANSAC algorithm eliminates any outliers which may still be contained within putatively matched points.

Load stereo points.
load stereoPointPairs
Estimate the fundamental matrix.
fRANSAC = estimateFundamentalMatrix(matchedPoints1,...
matchedPoints2,'Method', 'RANSAC', ...
'NumTrials',2000,'DistanceThreshold',1e-4)
```

fRANSAC = 3\times3

```
\begin{tabular}{rrr}
0.0000 & -0.0004 & 0.0348 \\
0.0004 & 0.0000 & -0.0937 \\
-0.0426 & 0.0993 & 0.9892
\end{tabular}

\section*{Use the Least Median of Squares Method to Find Inliers}

Load the putatively matched points.
```

load stereoPointPairs
[fLMedS, inliers] = estimateFundamentalMatrix(matchedPoints1,matchedPoints2,'NumTrials
fLMedS = 3×3
0.0000 -0.0004 0.0349

```
```

    0.0004 0.0000 -0.0938
    -0.0426 0.0994 0.9892
    inliers = 18x1 logical array

```
 1
1
1
1
1
1
0
1
0
0

Load the stereo images.
I1 = imread('viprectification_deskLeft.png');
I2 = imread('viprectification deskRight.png');
Show the putatively matched points.
figure;
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2,'montage','Plot0ptions',\{'ro', title('Putative point matches');

Show the inlier points.
figure;
showMatchedFeatures(I1, I2, matchedPoints1(inliers,:),matchedPoints2(inliers,:),'monta title('Point matches after outliers were removed');

\section*{Use the Normalized Eight-Point Algorithm to Compute the Fundamental Matrix}

Load the stereo point pairs.
load stereoPointPairs
Compute the fundamental matrix for input points which do not contain any outliers.
```

inlierPts1 = matchedPoints1(knownInliers,:);
inlierPts2 = matchedPoints2(knownInliers,:);
fNorm8Point = estimateFundamentalMatrix(inlierPts1,inlierPts2,'Method','Norm8Point')
fNorm8Point = 3×3

```
\begin{tabular}{rrr}
0.0000 & -0.0004 & 0.0348 \\
0.0004 & 0.0000 & -0.0937 \\
-0.0426 & 0.0993 & 0.9892
\end{tabular}

\section*{Input Arguments}

\section*{matchedPoints1 - Coordinates of corresponding points}

SURFPoints | cornerPoints | MSERRegions | ORBPoints object | M-by-2 matrix of [\(x, y\)] coordinates

Coordinates of corresponding points in image one, specified as an \(M\)-by-2 matrix of \(M\) number of [x y] coordinates, or as a KAZEPoints, SURFPoints, MSERRegions, ORBPoints, or cornerPoints object. The matchedPoints1 input must contain points which do not lie on a single planar surface, (e.g., a wall, table, or book) and are putatively matched by using a function such as matchFeatures.

\section*{matchedPoints2 - Coordinates of corresponding points}

\section*{SURFPoints | cornerPoints | MSERRegions | ORBPoints object | M-by-2 matrix of} \([x, y]\) coordinates

Coordinates of corresponding points in image two, specified as an \(M\)-by-2 matrix of \(M\) number of [x y] coordinates, or as a KAZEPoints, SURFPoints, MSERRegions, ORBPoints, or cornerPoints object. The matchedPoints2 input must contain points which do not lie on a single planar surface, (e.g., a wall, table, or book) and are putatively matched by using a function such as matchFeatures

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'Method ', 'RANSAC' specifies RANSAC as the method to compute the fundamental matrix.

\section*{Method - Method used to compute the fundamental matrix LMedS (default) | Norm8Point | RANSAC | MSAC | LTS}

Method used to compute the fundamental matrix, specified as the comma-separated pair consisting of 'Method' and one of the following:

Norm8Point Normalized eight-point algorithm. To produce reliable results, the inputs, matchedPoints1 and matchedPoints2 must match precisely.
LMedS Least Median of Squares. Select this method if you know that at least \(50 \%\) of the points in matchedPoints1 and matchedPoints2 are inliers.
RANSAC RANdom SAmple Consensus. Select this method if you would like to set the distance threshold for the inliers.
MSAC M-estimator SAmple Consensus. Select the M-estimator SAmple Consensus method if you would like to set the distance threshold for the inliers. Generally, the MSAC method converges more quickly than the RANSAC method.
LTS Least Trimmed Squares. Select the Least Trimmed Squares method if you know a minimum percentage of inliers in matchedPoints1 and matchedPoints2. Generally, the LTS method converges more quickly than the LMedS method.

To produce reliable results using the Norm8Point algorithm, the inputs, matchedPoints1 and matchedPoints2, must match precisely. The other methods can tolerate outliers and therefore only require putatively matched input points. You can obtain putatively matched points by using the matchFeatures function.

\section*{OutputClass - Fundamental matrix class}
'double' (default)|'single'

Fundamental matrix class, specified as the comma-separated pair consisting of 'OutputClass' and either 'double' or 'single'. This specifies the class for the fundamental matrix and the function's internal computations.

\section*{NumTrials - Number of random trials for finding the outliers 500 (default) | integer}

Number of random trials for finding the outliers, specified as the comma-separated pair consisting of 'NumTrials' and an integer value. This parameter applies when you set the Method parameter to LMedS, RANSAC, MSAC, or LTS.

When you set the Method parameter to either LMedS or LTS, the function uses the actual number of trials as the parameter value.

When you set the Method parameter to either RANSAC or MSAC, the function uses the maximum number of trials as the parameter value. The actual number of trials depends on matchedPoints1, matchedPoints2, and the value of the Confidence parameter.

Select the number of random trials to optimize speed and accuracy.

\section*{DistanceType - Algebraic or Sampson distance type}
'Sampson' (default)|'Algebraic'
Algebraic or Sampson distance type, specified as the comma-separated pair consisting of 'DistanceType' and either the Algebraic or Sampson. The distance type determines whether a pair of points is an inlier or outlier. This parameter applies when you set the Method parameter to LMedS, RANSAC, MSAC, or LTS.

Note For faster computations, set this parameter to Algebraic. For a geometric distance, set this parameter to Sampson.

Data Types: char
DistanceThreshold - Distance threshold for finding outliers 0.01 (default)

Distance threshold for finding outliers, specified as the comma-separated pair consisting of 'DistanceThreshold' and a positive value. This parameter applies when you set the Method parameter to RANSAC or MSAC.

\section*{Confidence - Desired confidence for finding maximum number of inliers 99 (default) | scalar}

Desired confidence for finding maximum number of inliers, specified as the commaseparated pair consisting of 'Confidence' and a percentage scalar value in the range (0 100). This parameter applies when you set the Method parameter to RANSAC or MSAC.

\section*{InlierPercentage - Minimum percentage of inliers in input points 50 (default) | scalar}

Minimum percentage of inliers in input points, specified as the comma-separated pair consisting of 'InlierPercentage' and percentage scalar value in the range (0 100). Specify the minimum percentage of inliers in matchedPoints1 and matchedPoints2. This parameter applies when you set the Method parameter to LTS.

\section*{ReportRuntimeError - Report runtime error \\ true (default) | false}

Report runtime error, specified as the comma-separated pair consisting of 'ReportRuntimeError' and a logical value. Set this parameter to true to report runtime errors when the function cannot compute the fundamental matrix from matchedPoints1 and matchedPoints2. When you set this parameter to false, you can check the status output to verify validity of the fundamental matrix.

\section*{Output Arguments}

\section*{F - Fundamental matrix}

3-by-3 matrix
Fundamental matrix, returns as a 3-by-3 matrix that is computed from the points in the inputs matchedPoints1 and matchedPoints2.
\[
\left[\begin{array}{ll}
P_{2} & 1
\end{array}\right]^{*} \text { FundamentalMatrix } *\left[\begin{array}{ll}
P_{1} & 1
\end{array}\right]^{\prime}=0
\]
\(\mathrm{P}_{1}\), the point in matchedPoints 1 of image 1 in pixels, corresponds to the point, \(\mathrm{P}_{2}\), the point in matchedPoints2 in image 2.

In computer vision, the fundamental matrix is a 3-by-3 matrix which relates corresponding points in stereo images. When two cameras view a 3-D scene from two distinct positions, there are a number of geometric relations between the 3-D points and
their projections onto the 2-D images that lead to constraints between the image points. Two images of the same scene are related by epipolar geometry.

\section*{inliersIndex - Inliers index}
\(M\)-by-1 logical vector
Inliers index, returned as an M-by-1 logical index vector. An element set to true means that the corresponding indexed matched points in matchedPoints1 and matchedPoints 2 were used to compute the fundamental matrix. An element set to false means the indexed points were not used for the computation.

Data Types: logical

\section*{status - Status code}

0|1|2
Status code, returned as one of the following possible values:
\begin{tabular}{|r|l|}
\hline status & Value \\
\hline \(0:\) & No error. \\
\hline \(1:\) & \begin{tabular}{l}
matchedPoints1 and matchedPoints2 do not contain enough points. \\
Norm8Point, RANSAC, and MSAC require at least 8 points, LMedS 16 \\
points, and LTS requires ceil(800/InlierPercentage).
\end{tabular} \\
\hline \(2:\) & Not enough inliers found. \\
\hline
\end{tabular}

Data Types: int32

\section*{Tips}

Use estimateEssentialMatrix when you know the camera intrinsics. You can obtain the intrinsics using the Camera Calibrator app. Otherwise, you can use the estimateFundamentalMatrix function that does not require camera intrinsics. Note that the fundamental matrix cannot be estimated from coplanar world points.

\section*{Algorithms}

\section*{Computing the Fundamental Matrix}

This function computes the fundamental matrix using the normalized eight-point algorithm [1]

When you choose the Norm8Point method, the function uses all points in matchedPoints1 and matchedPoints2 to compute the fundamental matrix.

When you choose any other method, the function uses the following algorithm to exclude outliers and compute the fundamental matrix from inliers:

1 Initialize the fundamental matrix, \(F\), to a 3-by-3 matrix of zeros.
2 Set the loop counter \(n\), to zero, and the number of loops \(N\), to the number of random trials specified.
3 Loop through the following steps while \(n<N\) :
a Randomly select 8 pairs of points from matchedPoints1 and matchedPoints2.
b Use the selected 8 points to compute a fundamental matrix, \(f\), by using the normalized 8-point algorithm.
c Compute the fitness of \(f\) for all points in matchedPoints1 and matchedPoints2.
d If the fitness of \(f\) is better than \(F\), replace \(F\) with \(f\).
For RANSAC and MSAC, update \(N\).
e \(n=n+1\)

\section*{Number of Random Samplings for RANSAC and MSAC Methods}

The RANSAC and MSAC methods update the number of random trials \(N\), for every iteration in the algorithm loop. The function resets \(N\), according to the following:
\(N=\min \left(N, \frac{\log (1-p)}{\log \left(1-r^{8}\right)}\right)\).
Where, \(p\) represents the confidence parameter you specified, and \(r\) is calculated as follows:
\(\left.\sum_{i}^{N} \operatorname{sgn}\left(d u_{i}, v_{i}\right), t\right) / N\), where \(\operatorname{sgn}(a, b)=1\) if \(a \leq b\) and 0 otherwise.
When you use RANSAC or MSAC, results may not be identical between runs because of the randomized nature of the algorithm.

\section*{Distance Types}

The function provides two distance types, algebraic distance and Sampson distance, to measure the distance of a pair of points according to a fundamental matrix. The following equations are used for each type, with \(u\) representing matchedPointsl and \(v\) representing matchedPoints2.

Algebraic distance:
\[
d\left(u_{i}, v_{i}\right)=\left(v_{i} F u_{i}^{T}\right)^{2}
\]

Sampson distance:
\[
d\left(u_{i}, v_{i}\right)=\left(v_{i} F u_{i}^{T}\right)^{2}\left[\frac{1}{\left(F u_{i}^{T}\right)_{1}^{2}+\left(F u_{i}^{T}\right)_{2}^{2}}+\frac{1}{\left(v_{i} F\right)_{1}^{2}+\left(v_{i} F\right)_{2}^{2}}\right]
\]
where \(i\) represents the index of the corresponding points, and \(\left(F u_{i}^{T}\right)_{j}^{2}\), the square of the \(j\) th entry of the vector \(F u_{i}^{T}\).

\section*{Fitness of Fundamental Matrix for Corresponding Points}

The following table summarizes how each method determines the fitness of the computed fundamental matrix:
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Metho \\
d
\end{tabular} & Measure of Fitness \\
\hline LMedS & \begin{tabular}{l}
median \(\left(d\left(u_{i}, v_{i}\right) ; i=1: N\right)\), the number of input points. The smaller the value, the better the \\
fitness.
\end{tabular} \\
\hline \begin{tabular}{l}
RANSA \\
C
\end{tabular} & \begin{tabular}{l}
\(\left.\sum_{i}^{N} \operatorname{sgn}\left(d u_{i}, v_{i}\right), t\right) / N\), where \(\operatorname{sgn}(a, b)=1\) if \(a \leq b\) and 0 otherwise, \(t\) represents the specified \\
threshold. The greater the value, the better the fitness.
\end{tabular} \\
\hline MSAC & \(\sum_{i}^{N} \min \left(d\left(u_{i}, v_{i}\right), t\right)\). The smaller the value, the better the fitness. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Metho \\
d
\end{tabular} & Measure of Fitness \\
\hline LTS & \begin{tabular}{l}
\(\sum_{i \varepsilon \Omega} d\left(u_{i}, v_{i}\right)\), where \(\Omega\) is the first lowest value of an \((N \mathrm{x} q)\) pair of points. Where \(q\) \\
represents the inlier percentage you specified. The smaller the value, the better the \\
fitness.
\end{tabular} \\
\hline
\end{tabular}

\section*{References}
[1] Hartley, R., A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2003.
[2] Rousseeuw, P., A. Leroy, Robust Regression and Outlier Detection, John Wiley \& Sons, 1987.
[3] Torr, P. H. S., and A. Zisserman, MLESAC: A New Robust Estimator with Application to Estimating Image Geometry, Computer Vision and Image Understanding, 2000.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).
Usage notes and limitations:
- 'Method', 'OutputClass', 'DistanceType', and 'ReportRuntimeError' must be compile-time constants.

\section*{See Also}

ORBPoints | detectFASTFeatures | detectHarrisFeatures | detectMSERFeatures | detectMinEigenFeatures | detectORBFeatures detectSURFFeatures|epipolarline|estimateUncalibratedRectification| extractFeatures|matchFeatures|relativeCameraPose
Topics"Structure From Motion From Two Views""Structure From Motion From Multiple Views"
"Point Feature Types"
"Structure from Motion"
"Coordinate Systems"
Introduced in R2012b

\section*{estimateEssentialMatrix}

Estimate essential matrix from corresponding points in a pair of images

\section*{Syntax}
```

E = estimateEssentialMatrix(matchedPoints1,matchedPoints2,
cameraParams)
E = estimateEssentialMatrix(matchedPoints1,matchedPoints2,
cameraParams1,cameraParams2)
[E,inliersIndex] = estimateEssentialMatrix(matchedPoints1,
matchedPoints2)
[E,inliersIndex,status] = estimateEssentialMatrix(matchedPoints1,
matchedPoints2)
[E,inliersIndex,status] = estimateEssentialMatrix( ___ ,Name,Value)

```

\section*{Description}

E = estimateEssentialMatrix(matchedPoints1,matchedPoints2, cameraParams) returns the 3-by-3 essential matrix, E, using the M-estimator sample consensus (MSAC) algorithm. The input points can be \(M\)-by-2 matrices of \(M\) number of \([x, y]\) coordinates, or a KAZEPoints, SURFPoints, MSERRegions, BRISKPoints, or cornerPoints object. The cameraParams object contains the parameters of the camera used to take the images.

E = estimateEssentialMatrix(matchedPoints1,matchedPoints2, cameraParams1, cameraParams2) returns the essential matrix relating two images taken by different cameras. cameraParams1 and cameraParams 2 are cameraParameters objects containing the parameters of camera 1 and camera 2 respectively.
[E,inliersIndex] = estimateEssentialMatrix(matchedPoints1, matchedPoints2) additionally returns an \(M\)-by-1 logical vector, inliersIndex, used to compute the essential matrix. The function sets the elements of the vector to true when the corresponding point was used to compute the fundamental matrix. The elements are set to false if they are not used.
[E,inliersIndex, status] \(=\) estimateEssentialMatrix(matchedPoints1,
matchedPoints2) additionally returns a status code to indicate the validity of points. matchedPoints2) additionally returns a status code to indicate the validity of points.
[E,inliersIndex,status] = estimateEssentialMatrix(\(\qquad\) ,Name, Value) uses additional options specified by one or more Name,Value pair arguments.

\section*{Examples}

\section*{Estimate Essential Matrix from A Pair of Images}

Load precomputed camera parameters.
load upToScaleReconstructionCameraParameters.mat
Read and undistort two images.
```

imageDir = fullfile(toolboxdir('vision'),'visiondata',...
'upToScaleReconstructionImages');
images = imageDatastore(imageDir);
I1 = undistortImage(readimage(images,1),cameraParams);
I2 = undistortImage(readimage(images,2),cameraParams);
Ilgray = rgb2gray(I1);
I2gray = rgb2gray(I2);

```

Detect feature points each image.
imagePoints1 = detectSURFFeatures(I1gray);
imagePoints2 = detectSURFFeatures(I2gray);
Extract feature descriptors from each image.
```

features1 = extractFeatures(Ilgray,imagePoints1,'Upright',true);
features2 = extractFeatures(I2gray,imagePoints2,'Upright',true);

```

Match features across the images.
```

indexPairs = matchFeatures(features1,features2);
matchedPoints1 = imagePoints1(indexPairs(:,1));
matchedPoints2 = imagePoints2(indexPairs(:,2));
figure
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2);
title('Putative Matches')

```


Estimate the essential matrix.
[E,inliers] = estimateEssentialMatrix(matchedPoints1,matchedPoints2,... cameraParams);

Display the inlier matches.
```

inlierPoints1 = matchedPointsl(inliers);
inlierPoints2 = matchedPoints2(inliers);
figure
showMatchedFeatures(I1,I2,inlierPoints1,inlierPoints2);
title('Inlier Matches')

```


\section*{Input Arguments}

\section*{matchedPoints1 - Coordinates of corresponding points \\ M-by-2 matrix of \([x, y]\) coordinates | KAZEPoints | SURFPoints | BRISKPoints | MSERRegions | cornerPoints}

Coordinates of corresponding points in image 1, specified as an \(M\)-by-2 matrix of \(M\) of [\(x, y\)] coordinates, or as a KAZEPoints,SURFPoints, BRISKPoints, MSERRegions, or cornerPoints object. The matchedPoints1 input must contain at least five points, which are putatively matched by using a function such as matchFeatures.

\section*{matchedPoints2 - Coordinates of corresponding points}

SURFPoints | cornerPoints | MSERRegions | BRISKPoints | M-by-2 matrix of [x,y] coordinates

Coordinates of corresponding points in image 1, specified as an \(M\)-by-2 matrix of \(M\) of [\(x, y\)] coordinates, or as a KAZEPoints, SURFPoints, MSERRegions, BRISKPoints,or cornerPoints object. The matchedPoints2 input must contain at least five points, which are putatively matched by using a function such as matchFeatures.

\section*{cameraParams - Object for storing camera parameters}
cameraParameters object| cameraIntrinsics object
Camera parameters, specified as a cameraParameters or cameraIntrinsics object. You can return the cameraParameters object using the estimateCameraParameters function. The cameraParameters object contains the intrinsic, extrinsic, and lens distortion parameters of a camera.

\section*{cameraParams1 - Camera parameters for camera 1 \\ cameraParameters object| cameraIntrinsics object}

Camera parameters for camera 1, specified as a cameraParameters or cameraIntrinsics object. You can return the cameraParameters object using the estimateCameraParameters function. The cameraParameters object contains the intrinsic, extrinsic, and lens distortion parameters of a camera.

\section*{cameraParams2 - Camera parameters for camera 2 \\ cameraParameters object| cameraIntrinsics object}

Camera parameters for camera 2, specified as a cameraParameters or cameraIntrinsics object. You can return the cameraParameters object using the estimateCameraParameters function. The cameraParameters object contains the intrinsic, extrinsic, and lens distortion parameters of a camera.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'MaxNumTrials',500

\section*{MaxNumTrials - Maximum number of random trials for finding the outliers 500 (default) | positive integer}

Maximum number of random trials for finding outliers, specified as the comma-separated pair consisting of 'MaxNumTrials' and a positive integer. The actual number of trials depends on matchedPoints1, matchedPoints2, and the value of the Confidence parameter. To optimize speed and accuracy, select the number of random trials.

\section*{Confidence - Desired confidence for finding maximum number of inliers 99 (default) | scalar}

Desired confidence for finding the maximum number of inliers, specified as the commaseparated pair consisting of 'Confidence' and a percentage scalar value in the range \((0,100)\). Increasing this value improves the robustness of the output but increases the amount of computations.

\section*{MaxDistance - Sampson distance threshold}
0.1 (default) | scalar

Sampson distance threshold, specified as the comma-separated pair consisting of 'MaxDistance' and a scalar value. The function uses the threshold to find outliers returned in pixels squared. The Sampson distance is a first-order approximation of the squared geometric distance between a point and the epipolar line. Increase this value to make the algorithm converge faster, but this can also adversely affect the accuracy of the result.

\section*{Output Arguments}

\section*{E - Essential matrix}

3-by-3 matrix
Essential matrix, returned as a 3-by-3 matrix that is computed from the points in the matchedPoints1 and matchedPoints2 inputs.
\[
\left[\begin{array}{ll}
P_{2} & 1
\end{array}\right] * \text { EssentialMatrix } *\left[\begin{array}{ll}
P_{1} & 1
\end{array}\right]^{\prime}=0
\]

The \(\mathrm{P}_{1}\) point in image 1, in normalized image coordinates, corresponds to the , \(\mathrm{P}_{2}\) point in image 2.

In computer vision, the essential matrix is a 3-by-3 matrix which relates corresponding points in stereo images which are in normalized image coordinates. When two cameras
view a 3-D scene from two distinct positions, the geometric relations between the 3-D points and their projections onto the 2-D images lead to constraints between image points. The two images of the same scene are related by epipolar geometry.

\section*{Data Types: double}

\section*{inliersIndex - Inliers index}
\(M\)-by-1 logical vector
Inliers index, returned as an \(M\)-by- 1 logical index vector. An element set to true indicates that the corresponding indexed matched points in matchedPoints1 and matchedPoints 2 were used to compute the essential matrix. An element set to false means the indexed points were not used for the computation.
Data Types: logical

\section*{status - Status code}

0|1|2
Status code, returned as one of the following possible values:
\begin{tabular}{|r|l|}
\hline \multicolumn{1}{|c|}{ status } & Value \\
\hline \(0:\) & No error. \\
\hline \(1:\) & \begin{tabular}{l}
matchedPoints1 and matchedPoints2 do not contain enough points. \\
At least five points are required.
\end{tabular} \\
\hline \(2:\) & Not enough inliers found. A least five inliers are required. \\
\hline
\end{tabular}

Data Types: int32

\section*{Tips}

Use estimateEssentialMatrix when you know the camera intrinsics. You can obtain the intrinsics using the Camera Calibrator app. Otherwise, you can use the estimateFundamentalMatrix function that does not require camera intrinsics. The fundamental matrix cannot be estimated from coplanar world points.

\section*{References}
[1] Kukelova, Z., M. Bujnak, and T. Pajdla Polynomial Eigenvalue Solutions to the 5-pt and 6-pt Relative Pose Problems. Leeds, UK: BMVC, 2008.
[2] Nister, D.. "An Efficient Solution to the Five-Point Relative Pose Problem." IEEE Transactions on Pattern Analysis and Machine Intelligence.Volume 26, Issue 6, June 2004.
[3] Torr, P. H. S., and A. Zisserman. "MLESAC: A New Robust Estimator with Application to Estimating Image Geometry." Computer Vision and Image Understanding. Volume 78, Issue 1, April 2000, pp. 138-156.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® Coder \(^{\mathrm{TM}}\).
Usage notes and limitations:
- Use in a MATLAB Function block is not supported.

\section*{See Also}

\section*{Apps}

Camera Calibrator

\section*{Functions}
estimateCameraParameters|estimateFundamentalMatrix| estimateWorldCameraPose|relativeCameraPose

\section*{Topics}
"Structure From Motion From Two Views"
"Structure From Motion From Multiple Views"
"Point Feature Types"
"Structure from Motion"
"Coordinate Systems"

Introduced in R2016b

\section*{estimateStereoBaseline}

\author{
Estimate baseline of stereo camera
}

\section*{Syntax}
```

[stereoParams,pairsUsed,estimationErrors] = estimateStereoBaseline( imagePoints,worldPoints,intrinsics1,intrinsics2)
[stereoParams,pairsUsed,estimationErrors] = estimateStereoBaseline( imagePoints,worldPoints,intrinsics1,intrinsics2,'WorldUnits', units)

```

\section*{Description}
[stereoParams,pairsUsed,estimationErrors] = estimateStereoBaseline(imagePoints, worldPoints,intrinsics1,intrinsics2) estimates the translation and orientation between two cameras of the same resolution. The estimateStereoBaseline function is best used for a stereo system with a wide baseline.
[stereoParams,pairsUsed,estimationErrors] = estimateStereoBaseline(imagePoints,worldPoints,intrinsics1,intrinsics2,'WorldUnits', units) specifies the units in which worldPoints are measured.

\section*{Examples}

\section*{Estimate Baseline of a Stereo System}

Load camera intrinsic parameters.
ld = load('wideBaselineStereo');
Specify stereo calibration images.
leftImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ... 'calibration','wideBaseline','left'));
```

rightImages = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
'calibration','wideBaseline','right'));

```

Detect the checkerboards.
```

[imagePoints, boardSize] = ...

```
 detectCheckerboardPoints(leftImages.Files,rightImages.Files);

Specify world coordinates of checkerboard keypoints.
```

squareSize = 29; % in millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

```

Estimate the baseline and extrinsic parameters.
```

params = estimateStereoBaseline(imagePoints,worldPoints, ...

```
 ld.intrinsics1,ld.intrinsics2)
params =
 stereoParameters with properties:
 Parameters of Two Cameras
 CameraParameters1: [1x1 cameraParameters]
 CameraParameters2: [1x1 cameraParameters]
 Inter-camera Geometry
 Rotation0fCamera2: [3x3 double]
 TranslationOfCamera2: [-978.9732 55.2644 547.8082]
 FundamentalMatrix: [3x3 double]
 EssentialMatrix: [3x3 double]
 Accuracy of Estimation
 MeanReprojectionError: 0.2699
 Calibration Settings
 NumPatterns: 6
 WorldPoints: [54×2 double]
 WorldUnits: 'mm'

Visualize calibration accuracy.
figure
showReprojectionErrors(params)

Visualize camera extrinsics.
figure
showExtrinsics(params)

\section*{Input Arguments}

\section*{imagePoints - Key points of calibration pattern}

M-by-2-by-numPairs-by-2 array
Key points of calibration pattern, specified as an \(M\)-by-2-by-numPairs-by-2 array. The array contains the \([x, y]\) intrinsic image coordinates of key points in the calibration pattern.
- numPairs is the number of stereo image pairs containing the calibration pattern.
- The number of keypoint coordinates in each pattern, \(M\), must be greater than 3 .
- imagePoints(:, : : : , 1) are the points from camera 1.
- imagePoints(: : : : , 2) are the points from camera 2 .

Data Types: single | double
```

worldPoints - Key points of calibration pattern in world coordinates
M-by-2 array

```

Key points of calibration pattern in world coordinates, specified as an \(M\)-by-2 array of \(M\) number of \([x, y]\) world coordinates. The pattern must be planar; therefore, \(z\)-coordinates are zero.

Data Types: single | double

\section*{intrinsics1 - Intrinsic parameters of camera 1 \\ cameraIntrinsics object}

Intrinsic parameters of camera 1, specified as a cameraIntrinsics object. The intrinsics object stores information about a camera's intrinsic calibration parameters, including lens distortion.

\section*{intrinsics2 - Intrinsic parameters of camera 2 \\ cameraIntrinsics object}

Intrinsic parameters of camera 2 , specified as a cameraIntrinsics object. The intrinsics object stores information about a camera's intrinsic calibration parameters, including lens distortion.

\section*{units - World points units}
'mm' (default) | string
World points units, specified as a string representing units.

\section*{Output Arguments}

\author{
stereoParams - Camera parameters for stereo system stereoParameters object
}

Camera parameters for stereo system, returned as a stereoParameters object. The object contains the intrinsic, extrinsic, and lens distortion parameters of the stereo camera system.

\section*{pairsUsed - Image pairs used to estimate camera parameters}
numPairs-by-1 logical vector
Image pairs used to estimate camera parameters, returned as a numPairs-by-1 logical array. A logical true value in the vector indicates which that the image pairs was used to estimate the camera parameters. An image pair will not be used for estimation if the algorithm fails to estimate a homography between the world points and the points detected in that pair of images.

\section*{estimationErrors - Standard errors of estimated parameters}

\section*{stereoCalibrationErrors object}

Standard errors of estimated parameters, returned as a stereoCalibrationErrors object.

\section*{See Also}

\section*{Apps}

Stereo Camera Calibrator
```

Classes
cameraCalibrationErrors | cameraIntrinsics | cameraParameters | stereoCalibrationErrors|stereoParameters

```

\section*{Functions}
detectCheckerboardPoints |estimateCameraParameters | generateCheckerboardPoints | showExtrinsics | showReprojectionErrors | undistortImage

Introduced in R2018a

\section*{estimateWorldCameraPose}

Estimate camera pose from 3-D to 2-D point correspondences

\section*{Syntax}
```

[worldOrientation,worldLocation] = estimateWorldCameraPose(
imagePoints,worldPoints,cameraParams)
[___,inlierIdx] = estimateWorldCameraPose(imagePoints,worldPoints,
cameraParams)
[___,status] = estimateWorldCameraPose(imagePoints,worldPoints,
cameraParams)
[ ] = estimateWorldCameraPose(

```
\(\qquad\)
``` ,Name, Value)
```


Description

[worldOrientation,worldLocation] = estimateWorldCameraPose(imagePoints, worldPoints, cameraParams) returns the orientation and location of a calibrated camera in a world coordinate system. The input worldPoints must be defined in the world coordinate system.

This function solves the perspective-n-point (PnP) problem using the perspective-threepoint (P3P) algorithm [1]. The function also eliminates spurious correspondences using the M-estimator sample consensus (MSAC) algorithm.
[\qquad ,inlierIdx] = estimateWorldCameraPose(imagePoints, worldPoints, cameraParams) returns the indices of the inliers used to compute the camera pose, in addition to the arguments from the previous syntax.
\qquad ,status] = estimateWorldCameraPose(imagePoints,worldPoints, cameraParams) additionally returns a status code to indicate whether there were enough points.
[___] = estimateWorldCameraPose(__ , Name, Value) uses additional options specified by one or more Name, Value pair arguments, using any of the preceding syntaxes.

Examples

Determine Camera Pose from World-to-Image Correspondences

Load previously calculated world-to-image correspondences.
data = load('worldToImageCorrespondences.mat');
Estimate the world camera pose.
[worldOrientation,worldLocation] = estimateWorldCameraPose(... data.imagePoints,data.worldPoints,data.cameraParams);

Plot the world points.

```
pcshow(data.worldPoints,'VerticalAxis','Y','VerticalAxisDir','down', ...
    'MarkerSize',30);
hold on
plotCamera('Size',10,'Orientation',world0rientation,'Location',...
    worldLocation);
hold off
```


Input Arguments

imagePoints - Coordinates of undistorted image points
 M-by-2 array

Coordinates of undistorted image points, specified as an M-by-2 array of $[x, y]$ coordinates. The number of image points, M, must be at least four.

The function does not account for lens distortion. You can either undistort the images using the undistortImage function before detecting the image points, or you can undistort the image points themselves using the undistortPoints function.

Data Types: single|double

worldPoints - Coordinates of world points

M-by-3 array
Coordinates of world points, specified as an M-by-3 array of $[x, y, z]$ coordinates.
Data Types: single | double

cameraParams - Object for storing camera parameters
 cameraParameters object|cameraIntrinsics object

Camera parameters, specified as a cameraParameters or cameraIntrinsics object. You can return the cameraParameters object using the estimateCameraParameters function. The cameraParameters object contains the intrinsic, extrinsic, and lens distortion parameters of a camera.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, ... , NameN, ValueN.

Example: 'MaxNumTrials',1000

MaxNumTrials - Maximum number of random trials

1000 (default) | positive integer scalar
Maximum number of random trials, specified as the comma-separated pair consisting of 'MaxNumTrials' and a positive integer scalar. The actual number of trials depends on the number of image and world points, and the values for the MaxReprojectionError and Confidence properties. Increasing the number of trials improves the robustness of the output at the expense of additional computation.

Confidence - Confidence for finding maximum number of inliers

99 (default) | scalar in the range $(0,100)$
Confidence for finding maximum number of inliers, specified as the comma-separated pair consisting of 'Confidence' and a scalar in the range (0,100). Increasing this value improves the robustness of the output at the expense of additional computation.

MaxReprojectionError - Reprojection error threshold
 1 (default) | positive numeric scalar

Reprojection error threshold for finding outliers, specified as the comma-separated pair consisting of 'MaxReprojectionError' and a positive numeric scalar in pixels.
Increasing this value makes the algorithm converge faster, but can reduce the accuracy of the result.

Output Arguments

worldOrientation - Orientation of camera in world coordinates 3-by-3 matrix

Orientation of camera in world coordinates, returned as a 3-by-3 matrix.
Data Types: double

worldLocation - Location of camera

1-by-3 vector
Location of camera, returned as a 1-by-3 unit vector.
Data Types: double

inlierIdx - Indices of inlier points

M-by-1 logical vector
Indices of inlier points, returned as an M-by-1 logical vector. A logical true value in the vector corresponds to inliers represented in imagePoints and worldPoints.

status - Status code

integer value
Status code, returned as 0,1 , or 2.

Status code	Status
0	No error
1	imagePoints and worldPoints do not contain enough points. A minimum of four points are required.

Status code	Status
2	Not enough inliers found. A minimum of 4 inliers are required.

References

[1] Gao, X.-S., X.-R. Hou, J. Tang, and H.F. Cheng. "Complete Solution Classification for the Perspective-Three-Point Problem." IEEE Transactions on Pattern Analysis and Machine Intelligence. Volume 25,Issue 8, pp. 930-943, August 2003.
[2] Torr, P. H. S., and A. Zisserman. "MLESAC: A New Robust Estimator with Application to Estimating Image Geometry." Computer Vision and Image Understanding. Volume 78, Issue 1, April 2000, pp. 138-156.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Use in a MATLAB Function block is not supported.

See Also

Functions

bundleAdjustment|cameraPoseToExtrinsics |extrinsics | extrinsicsToCameraPose | pcshow | plotCamera|pointsToWorld| relativeCameraPose|triangulateMultiview|viewSet | worldToImage

Topics

"Structure from Motion"

Introduced in R2016b

cameraPoseToExtrinsics

Convert camera pose to extrinsics

Syntax

[rotationMatrix,translationVector] = cameraPoseToExtrinsics(orientation,location)

Description

[rotationMatrix,translationVector] = cameraPoseToExtrinsics(orientation, location) returns the camera extrinsics, rotationMatrix and translationVector, which represent the coordinate system transformation from world coordinates to camera coordinates. The inputs, orientation and location, represent the 3-D camera pose in the world coordinates.

Examples

Convert World Coordinates to Camera Coordinates

```
orientation = eye(3);
location = [0 0 10];
[R,t] = cameraPoseToExtrinsics(orientation,location)
R=3\times3
    0 0
    0 1 0
    0 0 1
t = 1\times3
    0 0 - 10
```


Input Arguments

orientation - 3-D orientation

3-by-3 matrix
3-D orientation of the camera in world coordinates, specified as a 3-by-3 matrix. The orientation and location inputs must be the same data type.

Data Types: double | single

location - 3-D location

three-element vector
3-D location of the camera in world coordinates, specified as a three-element vector. The orientation and location inputs must be the same data type.
Data Types: double | single

Output Arguments

rotationMatrix - 3-D rotation

3-by-3 matrix
3-D rotation, returned as a 3-by-3 matrix. The rotation matrix, together with the translation vector allows you to transform points from the world coordinate system to the camera coordinate system.

The relationship between the rotation matrix and the input orientation matrix is: rotationMatrix $=$ orientation'

translationVector - 3-D translation

1-by-3 vector

3-D translation, returned as a 1-by-3 vector. The translation vector together with the rotation matrix, enables you to transform points from the world coordinate system to the camera coordinate system.

The relationship between the translation vector and the input orientation matrix is : translationVector $=-$ location*orientation'

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also
estimateWorldCameraPose|extrinsics|extrinsicsToCameraPose| relativeCameraPose

Topics

"Structure From Motion From Two Views"
"Structure From Motion From Multiple Views"

Introduced in R2016b

extrinsicsToCameraPose

Convert extrinsics to camera pose

Syntax

[orientation,location] = extrinsicsToCameraPose(rotationMatrix, translationVector)

Description

[orientation,location] = extrinsicsToCameraPose(rotationMatrix, translationVector) returns 3-D camera pose orientation and location in world coordinates. The inputs, rotationMatrix and translationVector, represent the transformation from world coordinates to camera coordinates.

Examples

Convert Camera Coordinates to World Coordinates

$$
\mathrm{R}=\text { eye(3); }
$$

```
t = [0 0 -10];
```

[orientation,location] = extrinsicsToCameraPose(R,t)
orientation = 3×3
100
$0 \quad 1 \quad 0$
$0 \quad 0 \quad 1$
location = 1×3
$0 \quad 0 \quad 10$

Input Arguments

rotationMatrix - 3-D rotation

3-by-3 matrix
3-D rotation, specified as a 3-by-3 matrix. The rotation matrix, together with the translation vector allows you to transform points from the world coordinate system to the camera coordinate system.

The relationship between the rotation matrix and the input orientation matrix is: rotationMatrix $=$ orientation'

Data Types: double \| single

translationVector - 3-D translation

1-by-3 vector
3-D translation, specified as a 1-by-3 vector. The translation vector together with the rotation matrix, enables you to transform points from the world coordinate system to the camera coordinate system.

The relationship between the translation vector and the input orientation matrix is : translationVector $=-$ location*orientation'
Data Types: double \| single

Output Arguments

orientation - 3-D orientation
3-by-3 matrix

3-D orientation of the camera in world coordinates, returned as a 3-by-3 matrix.

location - 3-D location

3-element vector
3-D location of the camera in world coordinates, specified as a three-element vector.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

cameraPoseToExtrinsics|cameraPoseToExtrinsics|
estimateWorldCameraPose|estimateWorldCameraPose|extrinsics|
pointsToWorld|relativeCameraPose|relativeCameraPose|worldToImage

Topics
"Structure From Motion From Two Views"
"Structure From Motion From Multiple Views"

Introduced in R2016b

trainACFObjectDetector

Train ACF object detector

Syntax

```
detector = trainACFObjectDetector(trainingData)
detector = trainACFObjectDetector(trainingData,Name,Value)
```


Description

detector = trainACFObjectDetector(trainingData) returns a trained aggregate channel features (ACF) object detector. The function uses positive instances of objects in images given in the trainingData table and automatically collects negative instances from the images during training. To create a ground truth table, use the Image Labeler or Video Labeler app.
detector $=$ trainACFObjectDetector(trainingData, Name, Value) returns a detector object with additional options specified by one or more Name, Value pair arguments.

Examples

Train a Stop Sign Detector Using an ACF Object Detector

Use the trainACFObjectDetector with training images to create an ACF object detector that can detect stop signs. Test the detector with a separate image.

Load the training data.
load('stopSignsAndCars.mat')
Select the ground truth for stop signs. These ground truth is the set of known locations of stop signs in the images.

```
stopSigns = stopSignsAndCars(:,1:2);
```

Add the full path to the image files.

```
stopSigns.imageFilename = fullfile(toolboxdir('vision'),...
    'visiondata',stopSigns.imageFilename);
```

Train the ACF detector. You can turn off the training progress output by specifying 'Verbose', false as a Name, Value pair.
acfDetector = trainACFObjectDetector(stopSigns,' NegativeSamplesFactor',2);

ACF Object Detector Training
The training will take 4 stages. The model size is 34×31.
Sample positive examples(~100\% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.

Stage 1:

Sample negative examples($\sim 100 \%$ Completed)
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed. The trained classifier has 19 weak learners.

Stage 2

Sample negative examples(~100\% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed. The trained classifier has 20 weak learners.

Stage 3:

Sample negative examples(~100\% Completed)
Found 84 new negative examples for training. Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed. The trained classifier has 54 weak learners.

Stage 4:

Sample negative examples(100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed. The trained classifier has 61 weak learners.

```
ACF object detector training is completed. Elapsed time is 85.1445 seconds.
```

Test the ACF detector on a test image.

```
img = imread('stopSignTest.jpg');
[bboxes,scores] = detect(acfDetector,img);
```

Display the detection results and insert the bounding boxes for objects into the image.

```
for i = 1:length(scores)
    annotation = sprintf('Confidence = %.1f',scores(i));
        img = insertObjectAnnotation(img,'rectangle',bboxes(i,:),annotation);
end
figure
imshow(img)
```


Input Arguments

trainingData - Labeled ground truth images

table
Labeled ground truth images, specified as a table with two columns. The first column must contain paths and file names to grayscale or truecolor (RGB) images. Although, ACFbased detectors work best with truecolor images. The second column contains M-by-4 matrices, that contain the locations of the bounding boxes related to the corresponding image. The locations are in the format, $[x, y$,width,height]. The second column represents a positive instance of a single object class, such as a car, dog, flower, or stop sign. Negative instances are automatically collected from images during the training process.

stopSigns

27×2 table

1 imageFilename	$\begin{gathered} 2 \\ \text { stopSign } \end{gathered}$
'stopSignlmages/image005.jpg'	[$980,393,31,56]$
'stopSignlmages/image006.jpg'	[1.0408e+03,354.7500,73,72]
'stopSignlmages/image009.jpg'	[635,254,65,63]
'stopSignlmages/image013.jpg'	[398.2050,261.2996,349.6806,385.6992]
'stopSignlmages/image014.jpg'	[365.1880,306.3229,357.1845,421.7178]
'stopSignlmages/image020.jpg'	[653.7500,307.7500,73.0000,76]
'stopSignlmages/image021.jpg'	[$589.7500,239.7500,181,196.0000]$
'stopSignlmages/image022.jpg'	[509.7500,470.7500,43,73]

Each bounding box must be in the format [x, y, width,height]. The format specifies the upper-left corner location and the size of the object in the corresponding image. The table variable (column) name defines the object class name. To create the ground truth table, use the Image Labeler app.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.

You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: 'ObjectTrainingSize', [100 100]

ObjectTrainingSize - Size of training images

'Auto ' (default) | [height width] vector
Size of training images, specified as the comma-separated pair consisting of 'ObjectTrainingSize' and either 'Auto' or a [height width] vector. The minimum value of height and width is 8 . During the training process, all images are resized to this height and width. Increasing the size can improve detection accuracy, but also increases training and detection times.

When you specify 'Auto', the size is set based on the median width-to-height ratio of the positive instances.

Example: [100,100]
Data Types: single | double | int8|int16|int32|int64|uint8|uint16| uint32|uint64

NumStages - Number of training stages

4 (default) | positive integer
Number of training stages for the iterative training process, specified as the commaseparated pair consisting of 'NumStages' and a positive integer. Increasing this number can improve the detector and reduce training errors, at the expense of longer training time.

Data Types: double

NegativeSamplesFactor - Negative sample factor

5 (default) | real-valued scalar
Negative sample factor, specified as the comma-separated pair consisting of 'NegativeSamplesFactor' and a real-valued scalar. The number of negative samples to use at each stage is equal to

NegativeSamplesFactor x number of positive samples used at each stage

Data Types: double

MaxWeakLearners - Maximum number of weak learners
 2048 (default) | positive integer scalar | vector of positive integers

Maximum number of weak learners for the last stage, specified as the comma-separated pair consisting of 'MaxWeakLearners' and a positive integer scalar or vector of positive integers. If the input is a scalar, MaxWeakLearners specifies the maximum number for the last stage. If the input is a vector, MaxWeakLearners specifies the maximum number for each of the stages and must have a length equal to 'NumStages'. These values typically increase throughout the stages. The ACF object detector uses the boosting algorithm to create an ensemble of weaker learners. You can use higher values to improve the detection accuracy, at the expense of reduced detection performance speeds. Recommended values range from 300 to 5000.

Data Types: double

Verbose - Display progress information true (default) | false

Option to display progress information for the training process, specified as the commaseparated pair consisting of 'Verbose' and true or false.

Data Types: logical

Output Arguments

detector - Trained ACF-based object detector
acf0bjectDetector object
Trained ACF-based object detector, returned as an acf0bjectDetector object.

See Also

Apps

Image Labeler | Video Labeler

Functions

acf0bjectDetector| detectPeopleACF |trainCascadeObjectDetector| trainRCNNObjectDetector

Introduced in R2017a

trainRCNNObjectDetector

Train an R-CNN deep learning object detector

Syntax

```
detector = trainRCNNObjectDetector(trainingData,network,options)
detector = trainRCNNObjectDetector(
                ,Name,Value)
detector = trainRCNNObjectDetector(
```

\qquad

``` ,'
RegionProposalFcn', proposalFcn) [detector,info] = trainRCNNObjectDetector(
``` \(\qquad\)
``` )
```


Description

detector = trainRCNNObjectDetector(trainingData, network,options) trains an R-CNN (regions with convolutional neural networks) based object detector. The function uses deep learning to train the detector to detect multiple object classes.

This implementation of R-CNN does not train an SVM classifier for each object class.
This function requires that you have Deep Learning Toolbox and Statistics and Machine Learning Toolbox. It is recommended that you also have Parallel Computing Toolbox to use with a CUDA-enabled NVIDIA GPU with compute capability 3.0 or higher.
detector = trainRCNNObjectDetector(\qquad ,Name, Value) returns a detector object with optional input properties specified by one or more Name, Value pair arguments.
detector $=$ trainRCNNObjectDetector(\qquad ,'
RegionProposalFcn' , proposalFcn) optionally trains an R-CNN detector using a custom region proposal function.
[detector,info] = trainRCNNObjectDetector(\qquad) also returns information on the training progress, such as training loss and accuracy, for each iteration.

Examples

Train R-CNN Stop Sign Detector

Load training data and network layers.

```
load('rcnnStopSigns.mat', 'stopSigns', 'layers')
```

Add the image directory to the MATLAB path.

```
imDir = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata',...
    'stopSignImages');
addpath(imDir);
```

Set network training options to use mini-batch size of 32 to reduce GPU memory usage. Lower the InitialLearningRate to reduce the rate at which network parameters are changed. This is beneficial when fine-tuning a pre-trained network and prevents the network from changing too rapidly.

```
options = trainingOptions('sgdm', ...
    'MiniBatchSize', 32, ...
    'InitialLearnRate', 1e-6, ...
    'MaxEpochs', 10);
```

Train the R-CNN detector. Training can take a few minutes to complete.

```
rcnn = trainRCNNObjectDetector(stopSigns, layers, options, 'NegativeOverlapRange', [0 (
```

Training an R-CNN Object Detector for the following object classes:

* stopSign

Step 1 of 3: Extracting region proposals from 27 training images...done.
Step 2 of 3: Training a neural network to classify objects in training data...

Epoch	Iteration	Time Elapsed (seconds)	Mini-batch Loss	Mini-batch Accuracy	Base Lear Rate
3	50	9.27	0.2895	96.88\%	0.000
5	100	14.77	0.2443	93.75\%	0.000

8	150	20.29	0.0013	100.00\%	0.000
10	200	25.94	0.1524	96.88\%	0.000

Network training complete.
Step 3 of 3: Training bounding box regression models for each object class... 100.00\%.
R-CNN training complete.

Test the R-CNN detector on a test image.
img = imread('stopSignTest.jpg');
[bbox, score, label] = detect(rcnn, img, 'MiniBatchSize', 32);
Display strongest detection result.
[score, idx] = max(score);
bbox = bbox(idx, :);
annotation $=$ sprintf('\%s: (Confidence $=\% f)$ ', label(idx), score);
detectedImg = insertObjectAnnotation(img, 'rectangle', bbox, annotation);
figure
imshow(detectedImg)

Remove the image directory from the path.

```
rmpath(imDir);
```


Resume Training an R-CNN Object Detector

Resume training an R-CNN object detector using additional data. To illustrate this procedure, half the ground truth data will be used to initially train the detector. Then, training is resumed using all the data.

Load training data and initialize training options.

```
load('rcnnStopSigns.mat', 'stopSigns', 'layers')
```

stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
stopSigns.imageFilename);
options = trainingOptions('sgdm', ...

```
'MiniBatchSize', 32, ...
'InitialLearnRate', 1e-6, ...
'MaxEpochs', 10, ...
'Verbose', false);
```

Train the R-CNN detector with a portion of the ground truth.

```
rcnn = trainRCNNObjectDetector(stopSigns(1:10,:), layers, options, 'NegativeOverlapRan
```

Get the trained network layers from the detector. When you pass in an array of network layers to trainRCNNObjectDetector, they are used as-is to continue training.

```
network = rcnn.Network;
layers = network.Layers;
```

Resume training using all the training data.

```
rcnnFinal = trainRCNNObjectDetector(stopSigns, layers, options);
```


Create a network for multiclass R-CNN object detection

Create an R-CNN object detector for two object classes: dogs and cats.

```
objectClasses = {'dogs','cats'};
```

The network must be able to classify both dogs, cats, and a "background" class in order to be trained using trainRCNNObjectDetector. In this example, a one is added to include the background.

```
numClassesPlusBackground = numel(objectClasses) + 1;
```

The final fully connected layer of a network defines the number of classes that the network can classify. Set the final fully connected layer to have an output size equal to the number of classes plus a background class.

```
layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(5,20)
    fullyConnectedLayer(numClassesPlusBackground);
    softmaxLayer()
    classificationLayer()];
```

These network layers can now be used to train an R-CNN two-class object detector.

Use A Saved Network In R-CNN Object Detector

Create an R-CNN object detector and set it up to use a saved network checkpoint. A network checkpoint is saved every epoch during network training when the trainingOptions 'CheckpointPath' parameter is set. Network checkpoints are useful in case your training session terminates unexpectedly.

Load the stop sign training data.

```
load('rcnnStopSigns.mat','stopSigns','layers')
```

Add full path to image files.

```
stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
    stopSigns.imageFilename);
```

Set the 'CheckpointPath' using the training0ptions function.

```
checkpointLocation = tempdir;
options = trainingOptions('sgdm','Verbose',false, ...
    'CheckpointPath',checkpointLocation);
```

Train the R-CNN object detector with a few images.

```
rcnn = trainRCNNObjectDetector(stopSigns(1:3,:),layers,options);
```

Load a saved network checkpoint.

```
wildcardFilePath = fullfile(checkpointLocation,'convnet_checkpoint__*.mat');
contents = dir(wildcardFilePath);
Load one of the checkpoint networks.
```

filepath = fullfile(contents(1).folder, contents(1).name); checkpoint = load(filepath);
checkpoint.net
ans $=$
SeriesNetwork with properties:

Layers: [15×1 nnet.cnn.layer. Layer]

Create a new R-CNN object detector and set it up to use the saved network.
rcnnCheckPoint = rcnnObjectDetector();
rcnnCheckPoint.RegionProposalFcn = @rcnnObjectDetector.proposeRegions;
Set the Network to the saved network checkpoint.
rcnnCheckPoint.Network = checkpoint.net
rcnnCheckPoint =
rcnnObjectDetector with properties:
Network: [1×1 SeriesNetwork]
ClassNames: \{'stopSign' 'Background'\}
RegionProposalFcn: @rcnnObjectDetector.proposeRegions

Input Arguments

trainingData - Labeled ground truth images

table
Labeled ground truth images, specified as a table with two or more columns.
If you use a table, the table must have two or more columns. The first column of the table must contain image file names with paths. The images must be grayscale or truecolor (RGB) and they can be in any format supported by imread. Each of the remaining columns must be a cell vector that contains M-by- 4 matrices that represent a single object class, such as vehicle, flower, or stop sign. The columns contain 4-element double arrays of M bounding boxes in the format [x, y,width,height]. The format specifies the upper-left corner location and size of the bounding box in the corresponding image. To create a ground truth table, you can use the Image Labeler app or Video Labeler app. To create a table of training data from the generated ground truth, use the objectDetectorTrainingData function.

The table variable name defines the object class name. To create the ground truth table, use the Image Labeler app. Boxes smaller than 32-by-32 are not used for training.

network - Network

SeriesNetwork object | array of Layer objects | LayerGraph object | network name
Network, specified as a SeriesNetwork, an array of Layer objects, a layerGraph object, or by the network name. The network is trained to classify the object classes defined in the trainingData table. The SeriesNetwork, Layer, and layerGraph objects are available in the Deep Learning Toolbox.

- When you specify the network as a SeriesNetwork, an array of Layer objects, or by the network name, the network is automatically transformed into a R-CNN network by adding new classification and regression layers to support object detection.
- The array of Layer objects must contain a classification layer that supports the number of object classes, plus a background class. Use this input type to customize the learning rates of each layer. An example of an array of Layer objects:

```
layers = [imageInputLayer([28 28 3])
    convolution2dLayer([5 5],10)
    reluLayer()
    fullyConnectedLayer(10)
    softmaxLayer()
    classificationLayer()];
```

- When you specify the network as SeriesNetwork, Layer array, or network by name, the weights for convolution and fully-connected layers are initialized to ' narrownormal'.
- The network name must be one of the following valid networks names. You must also install the corresponding Add-on.
- 'alexnet'
- 'vgg16'
- 'vgg19'
- resnet18
- 'resnet50'
- 'resnet101'
- 'inceptionv3'
- 'googlenet'
- 'inceptionresnetv2'
- 'mobilenetv2'
- 'squeezenet'
- The LayerGraph object must be a valid R-CNN object detection network. You can also use a LayerGraph object to train a custom R-CNN network.

See "Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN" to learn more about how to create a R-CNN network.

options - Training options

trainging0ptions output
Training options, returned by the training0ptions function from the Deep Learning Toolbox. To specify solver and other options for network training, use training0ptions.

Note trainRCNNObjectDetector does not support these training options:

- The Plots value: 'training-progress'
- The ValidationData, ValidationFrequency, or ValidationPatience options
- The OutputFcn option.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

```
Example: 'PositiveOverlapRange',[0.5 1].
```


PositiveOverlapRange - Positive training sample ratios for range of bounding box overlap

[0.5 1] (default) | two-element vector

Positive training sample ratios for range of bounding box overlap, specified as the commaseparated pair consisting of 'Positive0verlapRange' and a two-element vector. The vector contains values in the range [0,1]. Region proposals that overlap with ground truth bounding boxes within the specified range are used as positive training samples.

The overlap ratio used for both the PositiveOverlapRange and NegativeOverlapRange is defined as:

$$
\frac{\operatorname{area}(A \cap B)}{\operatorname{area}(A \cup B)}
$$

A and B are bounding boxes.

NegativeOverlapRange - Negative training sample ratios for range of bounding box overlap

[0.1 0.5] (default)| two-element vector

Negative training sample ratios for range of bounding box overlap, specified as the comma-separated pair consisting of 'NegativeOverlapRange' and a two-element vector. The vector contains values in the range [0,1]. Region proposals that overlap with the ground truth bounding boxes within the specified range are used as negative training samples.

NumStrongestRegions - Maximum number of strongest region proposals 2000 (default) | integer

Maximum number of strongest region proposals to use for generating training samples, specified as the comma-separated pair consisting of 'NumStrongestRegions' and an integer. Reduce this value to speed up processing time, although doing so decreases training accuracy. To use all region proposals, set this value to inf.

RegionProposalFcn - Custom region proposal function handle

Custom region proposal function handle, specified as the comma-separated pair consisting of 'RegionProposalFcn' and the function name. If you do not specify a custom region proposal function, the default variant of the Edge Boxes algorithm [3], set in rcnnObjectDetector, is used. A custom proposalFcn must have the following functional form:

```
[bboxes,scores] = proposalFcn(I)
```

The input, I, is an image defined in the groundTruth table. The function must return rectangular bounding boxes in an M-by- 4 array. Each row of bboxes contains a fourelement vector, [x, y, width,height], that specifies the upper-left corner and size of a bounding box in pixels. The function must also return a score for each bounding box in an M-by- 1 vector. Higher scores indicate that the bounding box is more likely to contain an object. The scores are used to select the strongest regions, which you can specify in NumStrongestRegions.

BoxRegressionLayer - Box regression layer name

'auto' (default)| character vector
Box regression layer name, specified as the comma-separated pair consisting of 'BoxRegressionLayer' and a character vector. Valid values are 'auto' or the name of a layer in the input network. The output activations of this layer are used as features to train a regression model for refining the detected bounding boxes.

If the name is 'auto', then trainRCNNObjectDetector automatically selects a layer from the input network based on the type of input network:

- If the input network is a SeriesNetwork or an array of Layer objects, then the function selects the last convolution layer.
- If the input network is a LayerGraph, then the function selects the source of the last fully connected layer.

Output Arguments

detector - Trained R-CNN-based object detector
rcnnObjectDetector object

Trained R-CNN-based object detector, returned as an rcnnObjectDetector object. You can train an R-CNN detector to detect multiple object classes.

info - Training information

structure
Training information, returned as a structure with the following fields. Each field is a numeric vector with one element per training iteration. Values that have not been calculated at a specific iteration are represented by NaN .

- TrainingLoss - Training loss at each iteration. This is the combination of the classification and regression loss used to train the R-CNN network.
- TrainingAccuracy - Training set accuracy at each iteration
- BaseLearnRate - Learning rate at each iteration

Limitations

- This implementation of R-CNN does not train an SVM classifier for each object class.

Tips

- To accelerate data preprocessing for training, trainRCNNObjectDetector automatically creates and uses a parallel pool based on your parallel preference settings. This requires Parallel Computing Toolbox.
- VGG-16, VGG-19, ResNet-101, and Inception-ResNet-v2 are large models. Training with large images may produce "Out of Memory" errors. To mitigate these errors, manually resize the images along with the bounding box ground truth data before calling trainRCNNObjectDetector.
- This function supports transfer learning. When a network is input by name, such as 'resnet50' , then the software automatically transforms the network into a valid RCNN network model based on the pretrained resnet50 model. Alternatively, manually specify a custom R-CNN network using the LayerGraph extracted from a pretrained DAG network. See "Create R-CNN Object Detection Network".
- Use the training0ptions function to enable or disable verbose printing.

References

[1] Girshick, R., J. Donahue, T. Darrell, and J. Malik. "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, pp. 580-587.
[2] Girshick, R. "Fast R-CNN." Proceedings of the IEEE International Conference on Computer Vision. 2015, pp. 1440-1448.
[3] Zitnick, C. Lawrence, and P. Dollar. "Edge Boxes: Locating Object Proposals from Edges." Computer Vision-ECCV, Springer International Publishing. 2014, pp. 391405.

Extended Capabilities

Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox ${ }^{\mathrm{TM}}$.

To run in parallel, set 'UseParallel' to true or enable this by default using the Computer Vision Toolbox preferences.

For more information, see "Parallel Computing Toolbox Support".

See Also

Apps

Image Labeler | Video Labeler

Functions

objectDetectorTrainingData|trainFastRCNNObjectDetector| trainFasterRCNNObjectDetector|trainY0LOv20bjectDetector| training0ptions

Objects
Layer|SeriesNetwork|imageCategoryClassifier|rcnnObjectDetector

Topics
"Image Category Classification Using Deep Learning"
"Anchor Boxes for Object Detection"
"Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN"

Introduced in R2016b

estimateGeometricTransform

Estimate geometric transform from matching point pairs

Syntax

tform = estimateGeometricTransform(matchedPoints1,matchedPoints2, transformType)
[tform,inlierpoints1,inlierpoints2] = estimateGeometricTransform(matchedPoints1,matchedPoints2,transformType)
[__,status] = estimateGeometricTransform(matchedPoints1, matchedPoints2,transformType)
[___] = estimateGeometricTransform(matchedPoints1,matchedPoints2, transformType, Name, Value)

Description

tform = estimateGeometricTransform(matchedPoints1,matchedPoints2, transformType) returns a 2-D geometric transform object, tform. The tform object maps the inliers in matchedPoints1 to the inliers in matchedPoints2.

The function excludes outliers using the M-estimator SAmple Consensus (MSAC) algorithm. The MSAC algorithm is a variant of the Random Sample Consensus (RANSAC) algorithm. Results may not be identical between runs because of the randomized nature of the MSAC algorithm.
[tform,inlierpoints1,inlierpoints2] = estimateGeometricTransform(matchedPoints1, matchedPoints2,transformType) returns the corresponding inlier points in inlierpoints1 and inlierpoints2.
\qquad ,status] = estimateGeometricTransform(matchedPoints1, matchedPoints2, transformType) returns a status code of 0,1 , or 2 . If you do not request the status code output, the function returns an error for conditions that cannot produce results.

> [
\qquad] = estimateGeometricTransform(matchedPoints1,matchedPoints2, transformType, Name, Value) uses additional options specified by one or more Name, Value pair arguments.

Examples

Recover a Transformed Image Using SURF Feature Points

Read and display an image and a transformed image.

```
original = imread('cameraman.tif');
imshow(original);
title('Base image');
```

Base image


```
distorted = imresize(original,0.7);
distorted = imrotate(distorted,31);
```

figure; imshow(distorted); title('Transformed image');

Transformed image

Detect and extract features from both images.

```
ptsOriginal = detectSURFFeatures(original);
ptsDistorted = detectSURFFeatures(distorted);
[featuresOriginal,validPtsOriginal] = ...
    extractFeatures(original,ptsOriginal);
[featuresDistorted,validPtsDistorted] = ...
    extractFeatures(distorted,ptsDistorted);
```

Match features.
index_pairs = matchFeatures(featuresOriginal,featuresDistorted); matchedPtsOriginal = validPtsOriginal(index_pairs(:,1)); matchedPtsDistorted = validPtsDistorted(index_pairs(:,2)); figure;
showMatchedFeatures(original, distorted,...
matchedPtsOriginal, matchedPtsDistorted) ;
title('Matched SURF points,including outliers');

Matched SURF points, including outliers

Exclude the outliers, and compute the transformation matrix.
[tform,inlierPtsDistorted,inlierPtsOriginal] = ...
estimateGeometricTransform(matchedPtsDistorted,matchedPtsOriginal,... 'similarity');
figure;
showMatchedFeatures(original, distorted,...
inlierPtsOriginal,inlierPtsDistorted);
title('Matched inlier points');

Recover the original image from the distorted image.
outputView = imref2d(size(original));
Ir = imwarp(distorted,tform,'OutputView',outputView); figure; imshow(Ir); title('Recovered image');

Recovered image

Input Arguments

matchedPoints1 - Matched points from image 1

cornerPoints object | SURFPoints object | MSERRegions object | ORBPoints object | BRISKpoints | KAZEPoints | M-by-2 matrix of $[x, y]$ coordinates

Matched points from image 1, specified as either a KAZEPoints, cornerPoints object, SURFPoints object, MSERRegions object, ORBPoints object, BRISKPointsor an M-by-2 matrix of $[\mathrm{x}, \mathrm{y}]$ coordinates. The function excludes outliers using the M-estimator SAmple Consensus (MSAC) algorithm. The MSAC algorithm is a variant of the Random Sample Consensus (RANSAC) algorithm.

matchedPoints2 - Matched points from image 2

cornerPoints object | SURFPoints object | MSERRegions object | ORBPoints object | BRISKpoints | KAZEPoints | M-by-2 matrix of $[x, y]$ coordinates

Matched points from image 2, specified as either a KAZEPoints, cornerPoints object, SURFPoints object, MSERRegions object, ORBPoints object, BRISKPointsor an M-by-2 matrix of $[\mathrm{x}, \mathrm{y}]$ coordinates. The function excludes outliers using the M-estimator SAmple Consensus (MSAC) algorithm. The MSAC algorithm is a variant of the Random Sample Consensus (RANSAC) algorithm.

transformType - Transform type

'similarity' | 'affine'| 'projective'
Transform type, specified as one of three character strings. You can set the transform type to either 'similarity', 'affine', or 'projective'. The greater the number of matched pairs of points, the greater the accuracy of the estimated transformation. The minimum number of matched pairs of points for each transform type:

Transform Type	Minimum Number of Matched Pairs of Points
'similarity'	2
'affine'	3
'projective'	4

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'Confidence', 99 sets the confidence value to 99 .

MaxNumTrials - Maximum random trials

1000 (default) | positive integer
Maximum number of random trials for finding the inliers, specified as the commaseparated pair consisting of 'MaxNumTrials' and a positive integer scalar. Increasing this value improves the robustness of the results at the expense of additional computations.

Data Types: single | double |int8|int16|int32|int64|uint8|uint16| uint32|uint64

Confidence - Confidence of finding maximum number of inliers
 99 (default) | positive numeric scalar

Confidence of finding the maximum number of inliers, specified as the comma-separated pair consisting of 'Confidence' and a percentage numeric scalar in the range (0 100). Increasing this value improves the robustness of the results at the expense of additional computations.

Data Types: single | double |int8|int16|int32|int64|uint8|uint16| uint32 | uint64

MaxDistance - Maximum distance from point to projection
1.5 (default) | positive numeric scalar

Maximum distance in pixels, from a point to the projection of its corresponding point, specified as the comma-separated pair consisting of 'MaxDistance' and a positive numeric scalar. The corresponding projection is based on the estimated transform.

Distance in pixels between the point in image 1 and the projection of the corresponding point from image 2.

Data Types: single|double |int8|int16|int32|int64|uint8|uint16| uint32|uint64

Output Arguments

tform - Geometric transformation
affine2d object|projective2d object

Geometric transformation, returned as either an affine2d object or a projective2d object.

The returned geometric transformation matrix maps the inliers in matchedPoints1 to the inliers in matchedPoints2. When you set the transformType input to either 'similarity' or 'affine', the function returns an affine2d object. Otherwise, it returns a projective2d object.

status - Status code

0|1|2
Status code, returned as the value 0,1 , or 2.

status	Description
0	No error.
1	matchedPoints1 and matchedPoints2 inputs do not contain enough points.
2	Not enough inliers found.

If you do not request the status code output, the function will throw an error for the two conditions that cannot produce results.

Data Types: double

inlierpoints1 - Inlier points in image 1
 inlier points

Inlier points in image 1, returned as the same type as the input matching points.

inlierpoints2 - Inlier points in image 2

inlier points
Inlier points in image 2, returned as the same type as the input matching points.

References

[1] Hartley, R., and A. Zisserman, "Multiple View Geometry in Computer Vision," Cambridge University Press, 2003.
[2] Torr, P. H. S., and A. Zisserman, "MLESAC: A New Robust Estimator with Application to Estimating Image Geometry," Computer Vision and Image Understanding, 2000.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- You cannot use SURFPoints object as an input to estimateGeometricTransform. See the "Introduction to Code Generation with Feature Matching and Registration" example for details on how to use SURFPoints with estimateGeometricTransform in codegen.

See Also

BRISKPoints |KAZEPoints | MSERRegions | ORBPoints | SURFPoints | cornerPoints | detectFASTFeatures | detectMSERFeatures | detectMinEigenFeatures | detectORBFeatures | detectSURFFeatures | estimateFundamentalMatrix|extractFeatures|fitgeotrans|matchFeatures

Topics

"Feature Based Panoramic Image Stitching"
"Point Feature Types"
"Coordinate Systems"
"2-D and 3-D Geometric Transformation Process Overview" (Image Processing Toolbox) "Introduction to Code Generation with Feature Matching and Registration"

Introduced in R2013a

estimateUncalibratedRectification

Uncalibrated stereo rectification

Syntax

[T1,T2] = estimateUncalibratedRectification(F,inlierPoints1, inlierPoints2,imagesize)

Description

[T1,T2] = estimateUncalibratedRectification(F,inlierPoints1, inlierPoints2,imagesize) returns projective transformations for rectifying stereo images. This function does not require either intrinsic or extrinsic camera parameters.

Examples

Find Fundamental Matrix Describing Epipolar Geometry

This example shows how to compute the fundamental matrix from corresponding points in a pair of stereo images.

Load the stereo images and feature points which are already matched.

```
I1 = imread('yellowstone left.png');
I2 = imread('yellowstone right.png');
load yellowstone_inlier_points;
```

Display point correspondences. Notice that the matching points are in different rows, indicating that the stereo pair is not rectified.

```
showMatchedFeatures(I1, I2,inlier_points1,inlier_points2,'montage');
title('Original images and matching feature points');
```

Original images and matching feature points

Compute the fundamental matrix from the corresponding points.

```
f = estimateFundamentalMatrix(inlier_points1,inlier_points2,...
    'Method','Norm8Point');
```

Compute the rectification transformations.
[t1, t2] = estimateUncalibratedRectification(f,inlier_points1,... inlier_points2,size(I2));

Rectify the stereo images using projective transformations t 1 and t 2 .
[I1Rect,I2Rect] = rectifyStereoImages(I1,I2,t1,t2);
Display the stereo anaglyph, which can also be viewed with 3-D glasses.
figure;
imshow(stereoAnaglyph(I1Rect,I2Rect));

Input Arguments

F - Fundamental matrix for the stereo images

3-by-3 matrix
Fundamental matrix for the stereo images, specified as a 3-by-3 fundamental matrix. The fundamental matrix satisfies the following criteria:
If P_{1}, a point in image 1 , corresponds to P_{2}, a point in image 2 , then:
$\left[P_{2}, 1\right] * F *\left[P_{1}, 1\right]^{\prime}=0$
F must be double or single.
inlierPoints1 - Coordinates of corresponding points
ORBPoints | BRISKPoints | SURFPoints | cornerPoints | MSERRegions | M-by-2
matrix of $[x, y]$ coordinates

Coordinates of corresponding points in image one, specified as an M-by-2 matrix of M number of [$\mathrm{x} y$] coordinates, or as aORBPoints,BRISKPoints, SURFPoints, MSERRegions, or cornerPoints object.

inlierPoints2 - Coordinates of corresponding points ORBPoints | BRISKPoints | SURFPoints | cornerPoints | MSERRegions | M-by-2 matrix of $[x, y]$ coordinates

Coordinates of corresponding points in image two, specified as an M-by-2 matrix of M number of [$\mathrm{x} y$] coordinates, or as aORBPoints,BRISKPoints, SURFPoints, MSERRegions, or cornerPoints object.

imagesize - Input image size

single | double | integer
Second input image size, specified as a double, single, or integer value and in the format returned by the size function. The size of input image 2 corresponds to inlierPoints2.

Output Arguments

T1 - Projective transformation one

3-by-3 matrix

Projective transformation, returned as a 3-by-3 matrix describing the projective transformations for input image T1.

T2 - Projective transformation two

3-by-3 matrix
Projective transformation, returned as a 3-by-3 matrix describing the projective transformations for input image T2.

Tips

- An epipole may be located in the first image or the second image. Applying the output uncalibrated rectification of T1 (or T2) to image 1 (or image 2) may result in an undesired distortion. You can check for an epipole within an image by applying the isEpipoleInImage function.

References

[1] Hartley, R. and A. Zisserman, "Multiple View Geometry in Computer Vision," Cambridge University Press, 2003.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

```
Apps
Camera Calibrator | Stereo Camera Calibrator
Objects
BRISKPoints | MSERRegions | ORBPoints | SURFPoints | cameraParameters | cornerPoints |stereoParameters
```


Functions

```
cameraMatrix|detectHarrisFeatures | detectHarrisFeatures | detectMinEigenFeatures|estimateCameraParameters|
estimateFundamentalMatrix|extractFeatures|imwarp|isEpipoleInImage| matchFeatures|reconstructScene|size|undistortImage
```


Topics

Image Rectification
"Point Feature Types"
"Coordinate Systems"

Introduced in R2012b

evaluateDetectionMissRate

Evaluate miss rate metric for object detection

Syntax

logAverageMissRate = evaluateDetectionMissRate(detectionResults, groundTruthData)
[logAverageMissRate,fppi,missRate] = evaluateDetectionMissRate(___) [___] = evaluateDetectionMissRate(__ , threshold)

Description

logAverageMissRate = evaluateDetectionMissRate(detectionResults, groundTruthData) returns the log-average miss rate of the detectionResults compared to groundTruthData, which is used to measure the performance of the object detector. For a multiclass detector, the log-average miss rate is a vector of scores for each object class in the order specified by groundTruthData.
[logAverageMissRate,fppi,missRate] = evaluateDetectionMissRate(___) returns data points for plotting the log miss rate-false positives per image (FPPI) curve, using input arguments from the previous syntax.
[___] = evaluateDetectionMissRate(\qquad ,threshold) specifies the overlap threshold for assigning a detection to a ground truth box.

Examples

Evaluate Miss Rate of a YOLO v2 Object Detector

This example shows how to evaluate miss rate of a pretrained YOLO v2 object detector.

Load the Vehicle Ground Truth Data

Load a table containing the vehicle training data. The first column contains the training images, the remaining columns contain the labeled bounding boxes.

```
data = load('vehicleTrainingData.mat');
trainingData = data.vehicleTrainingData(1:100,:);
```

Add fullpath to the local vehicle data folder.

```
dataDir = fullfile(toolboxdir('vision'), 'visiondata');
trainingData.imageFilename = fullfile(dataDir, trainingData.imageFilename);
```

Create an imageDatastore using the files from the table.

```
imds = imageDatastore(trainingData.imageFilename);
```

Create a boxLabelDatastore using the label columns from the table.
blds = boxLabelDatastore(trainingData(:,2:end));

Load YOLOv2 Detector for Detection

Load the detector containing the layerGraph for trainining.

```
vehicleDetector = load('yolov2VehicleDetector.mat');
detector = vehicleDetector.detector;
```


Evaluate and Plot the Miss Rate Results

Run the detector with imageDatastore.

```
results = detect(detector, imds);
```

Evaluate the results against the ground truth data.

```
[am, fppi, missRate] = evaluateDetectionMissRate(results, blds);
```

Plot the log-miss-rate/FPPI curve.

```
figure;
loglog(fppi, missRate);
grid on
title(sprintf('Log Average Miss Rate = %.1f', am))
```

Log Average Miss Rate $=\mathbf{0 . 0}$

Evaluate a Stop Sign Detector

Load a ground truth table.
load('stopSignsAndCars.mat')
stopSigns = stopSignsAndCars(:, 1:2);
stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
stopSigns.imageFilename);
Train an ACF based detector.
detector $=$ trainACFObjectDetector(stopSigns,' NegativeSamplesFactor',2);

ACF Object Detector Training
The training will take 4 stages. The model size is 34×31.
Sample positive examples(~100\% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.

Stage $1:$

Sample negative examples(~100\% Completed)
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 19 weak learners.

Stage 2:
Sample negative examples(~100\% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed. The trained classifier has 20 weak learners.

Stage 3:

Sample negative examples(100% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 54 weak learners.

Stage 4:
Sample negative examples(~100\% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed. The trained classifier has 61 weak learners.

ACF object detector training is completed. Elapsed time is 39.8954 seconds.
Create a struct array to store the results.
numImages $=$ height(stopSigns);
results(numImages) = struct('Boxes', [], 'Scores', []);
Run the detector on the training images.

```
for i = 1 : numImages
    I = imread(stopSigns.imageFilename{i});
    [bboxes, scores] = detect(detector, I);
```

```
    results(i).Boxes = bboxes;
    results(i).Scores = scores;
end
results = struct2table(results);
```

Evaluate the results against the ground truth data.
[am, fppi, missRate] = evaluateDetectionMissRate(results, stopSigns(:, 2));
Plot log-miss-rate/FPPI curve.
figure
loglog(fppi, missRate);
grid on
title(sprintf('log Average Miss Rate = \%.1f', am))
\log Average Miss Rate $=0.3$

Input Arguments

detectionResults - Object locations and scores

table
Object locations and scores, specified as a two-column table containing the bounding boxes and scores for each detected object. For multiclass detection, a third column contains the predicted label for each detection. The bounding boxes must be stored in an M-by- 4 cell array. The scores must be stored in an M-by- 1 cell array, and the labels must be stored as a categorical vector.

When detecting objects, you can create the detection results table by using imageDatastore.

```
ds = imageDatastore(stopSigns.imageFilename);
detectionResults = detect(detector,ds);
```


Data Types: table

groundTruthData - Labeled ground truth

datastore | table
Labeled ground truth, specified as a datastore or a table.
Each bounding box must be in the format $[x y$ width height].

- Datastore - A datastore whose read and readall functions return a cell array or a table with at least two columns of bounding box and labels cell vectors. The bounding boxes must be in a cell array of M-by- 4 matrices in the format [x, y,width,height]. The datastore's read and readall functions must return one of the formats:
- \{boxes,labels \} - The boxLabelDatastore creates this type of datastore.
- \{images,boxes,labels\} - A combined datastore. For example, using combine(imds,blds).

See boxLabelDatastore.

- Table - One or more columns. All columns contain bounding boxes. Each column must be a cell vector that contains M-by- 4 matrices that represent a single object class, such as stopSign, carRear, or carFront. The columns contain 4 -element double arrays of M bounding boxes in the format [x, y, width,height]. The format specifies the upperleft corner location and size of the bounding box in the corresponding image.

threshold - Overlap threshold

0.5 | numeric scalar

Overlap threshold for a detection assigned to a ground truth box, specified as a numeric scalar. The overlap ratio is computed as the intersection over union.

Output Arguments

logAverageMissRate - Log-average miss rate metric
 numeric scalar | vector

Log-average miss rate metric, returned as either a numeric scalar or vector. For a multiclass detector, the log-average miss rate is returned as a vector of values that correspond to the data points for each class.

fppi - False positives per image
 vector of numeric scalars | cell array

False positives per image, returned as either a vector of numeric scalars or as a cell array. For a multiclass detector, the FPPI and log miss rate are cell arrays, where each cell contains the data points for each object class.

```
missRate - Log miss rate
vector of numeric scalars | cell array
```

Log miss rate, returned as either a vector of numeric scalars or as a cell array. For a multiclass detector, the FPPI and log miss rate are cell arrays, where each cell contains the data points for each object class.

See Also

Apps
Image Labeler | Video Labeler

Functions

evaluateDetectionPrecision|trainACFObjectDetector

Objects

acfObjectDetector| boxLabelDatastore

Topics
"Datastores for Deep Learning" (Deep Learning Toolbox)
Introduced in R2017a

evaluateDetectionPrecision

Evaluate precision metric for object detection

Syntax

```
averagePrecision = evaluateDetectionPrecision(detectionResults,
groundTruthData)
[averagePrecision,recall,precision] = evaluateDetectionPrecision(
```

\qquad

```
)
[___] = evaluateDetectionPrecision( __ , threshold)
```


Description

averagePrecision = evaluateDetectionPrecision(detectionResults, groundTruthData) returns the average precision, of the detectionResults compared to the groundTruthData. You can use the average precision to measure the performance of an object detector. For a multiclass detector, the function returns averagePrecision as a vector of scores for each object class in the order specified by groundTruthData.
[averagePrecision,recall,precision] = evaluateDetectionPrecision(\qquad) returns data points for plotting the precision-recall curve, using input arguments from the previous syntax.
[___] = evaluateDetectionPrecision(__ , threshold) specifies the overlap threshold for assigning a detection to a ground truth box.

Examples

Evaluate Precision of a YOLO v2 Object Detector

This example shows how to evaluate a pretrained YOLO v2 object detector.

Load the Vehicle Ground Truth Data

Load a table containing the vehicle training data. The first column contains the training images, the remaining columns contain the labeled bounding boxes.

```
data = load('vehicleTrainingData.mat');
trainingData = data.vehicleTrainingData;
```

Add fullpath to the local vehicle data folder.

```
dataDir = fullfile(toolboxdir('vision'), 'visiondata');
trainingData.imageFilename = fullfile(dataDir, trainingData.imageFilename);
```

Create an imageDatastore using the files from the table.

```
imds = imageDatastore(trainingData.imageFilename);
```

Create a boxLabelDatastore using the label columns from the table.
blds = boxLabelDatastore(trainingData(:,2:end));

Load YOLOv2 Detector for Detection

Load the detector containing the layerGraph for trainining.

```
vehicleDetector = load('yolov2VehicleDetector.mat');
```

detector = vehicleDetector.detector;

Evaluate and Plot the Results

Run the detector with imageDatastore.

```
results = detect(detector, imds);
```

Evaluate the results against the ground truth data.

```
[ap, recall, precision] = evaluateDetectionPrecision(results, blds);
```

Plot the precision/recall curve.

```
figure;
plot(recall, precision);
grid on
title(sprintf('Average precision = %.1f', ap))
```


Evaluate Precision of Stop Sign Detector

Train an ACF-based detector using pre-loaded ground truth information. Run the detector on the training images. Evaluate the detector and display the precision-recall curve.

Load the ground truth table.

```
load('stopSignsAndCars.mat')
stopSigns = stopSignsAndCars(:,1:2);
stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
    stopSigns.imageFilename);
```

Train an ACF-based detector.

```
detector = trainACFObjectDetector(stopSigns,'NegativeSamplesFactor',2);
ACF Object Detector Training
The training will take 4 stages. The model size is 34x31.
Sample positive examples(~100% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.
```


Stage 1:

```
Sample negative examples(~100\% Completed) Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has }19\mathrm{ weak learners.
```


Stage 2:

```
Sample negative examples(~100\% Completed)
Found 84 new negative examples for training. Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed. The trained classifier has 20 weak learners.
```


Stage 3

```
Sample negative examples(~100\% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 54 weak learners.
Stage 4:
Sample negative examples(~100\% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed. The trained classifier has 61 weak learners.
ACF object detector training is completed. Elapsed time is 19.2586 seconds.
```

Create a table to store the results.

```
numImages = height(stopSigns);
```

results = table('Size',[numImages 2],...
'VariableTypes', \{'cell',' cell'\},...
'VariableNames',\{'Boxes','Scores'\});

Run the detector on the training images. Store the results as a table.

```
for i = 1 : numImages
    I = imread(stopSigns.imageFilename{i});
    [bboxes, scores] = detect(detector,I);
    results.Boxes{i} = bboxes;
    results.Scores{i} = scores;
end
```

Evaluate the results against the ground truth data. Get the precision statistics.
[ap,recall,precision] = evaluateDetectionPrecision(results,stopSigns(:,2));
Plot the precision-recall curve.

```
figure
plot(recall,precision)
grid on
title(sprintf('Average Precision = %.1f',ap))
```


Input Arguments

detectionResults - Object locations and scores

table
Object locations and scores, specified as a two-column table containing the bounding boxes and scores for each detected object. For multiclass detection, a third column contains the predicted label for each detection. The bounding boxes must be stored in an M-by- 4 cell array. The scores must be stored in an M-by- 1 cell array, and the labels must be stored as a categorical vector.

When detecting objects, you can create the detection results table by using imageDatastore.

```
ds = imageDatastore(stopSigns.imageFilename);
detectionResults = detect(detector,ds);
```

Data Types: table

groundTruthData - Labeled ground truth

datastore | table
Labeled ground truth, specified as a datastore or a table.
Each bounding box must be in the format [x y width height].

- Datastore - A datastore whose read and readall functions return a cell array or a table with at least two columns of bounding box and labels cell vectors. The bounding boxes must be in a cell array of M-by- 4 matrices in the format [x, y,width,height]. The datastore's read and readall functions must return one of the formats:
- \{boxes,labels\} - The boxLabelDatastore creates this type of datastore.
- \{images,boxes,labels\} - A combined datastore. For example, using combine(imds,blds).

See boxLabelDatastore.

- Table - One or more columns. All columns contain bounding boxes. Each column must be a cell vector that contains M-by- 4 matrices that represent a single object class, such as stopSign, carRear, or carFront. The columns contain 4 -element double arrays of M bounding boxes in the format [x, y,width,height]. The format specifies the upperleft corner location and size of the bounding box in the corresponding image.

tbl $\times$$\# \times 3$ table		
$\stackrel{1}{\text { stopSign }}$	$\begin{gathered} 2 \\ \text { carRear } \end{gathered}$	$\begin{gathered} 3 \\ \text { carFront } \end{gathered}$
16×4 double	4×4 double	7x4 double
2 10x4 double	[561, 304, 763,194]	8×4 double
37×4 double	[733, 913, 716, 32; $926,343,203,762]$	[513,492, 927, 625]
4 [428,1007, 309, 718]	7×4 double	6×4 double
53×4 double	4×4 double	5×4 double
$\bigcirc 3 \times 4$ dombzanen	5×1 d-bl	511.50 5-253.292

threshold - Overlap threshold

0.5 | numeric scalar

Overlap threshold for assigned a detection to a ground truth box, specified as a numeric scalar. The overlap ratio is computed as the intersection over union.

Output Arguments

averagePrecision - Average precision

numeric scalar | vector
Average precision over all the detection results, returned as a numeric scalar or vector. Precision is a ratio of true positive instances to all positive instances of objects in the detector, based on the ground truth. For a multiclass detector, the average precision is a vector of average precision scores for each object class.

recall - Recall values from each detection
 vector of numeric scalars | cell array

Recall values from each detection, returned as an M-by- 1 vector of numeric scalars or as a cell array. The length of M equals $1+$ the number of detections assigned to a class. For example, if your detection results contain 4 detections with class label 'car', then recall contains 5 elements. The first value of recall is always 0.

Recall is a ratio of true positive instances to the sum of true positives and false negatives in the detector, based on the ground truth. For a multiclass detector, recall and precision are cell arrays, where each cell contains the data points for each object class.

precision - Precision values from each detection vector of numeric scalars | cell array

Precision values from each detection, returned as an M-by-1 vector of numeric scalars or as a cell array. The length of M equals $1+$ the number of detections assigned to a class. For example, if your detection results contain 4 detections with class label ' car', then precision contains 5 elements. The first value of precision is always 1.

Precision is a ratio of true positive instances to all positive instances of objects in the detector, based on the ground truth. For a multi-class detector, recall and precision are cell arrays, where each cell contains the data points for each object class.
See Also
Apps
Image Labeler | Video Labeler
FunctionsevaluateDetectionMissRate|trainACFObjectDetector
Objectsacf0bjectDetector|boxLabelDatastore
Topics"Datastores for Deep Learning" (Deep Learning Toolbox)
Introduced in R2017a

evaluatelmageRetrieval

Evaluate image search results

Syntax

averagePrecision = evaluateImageRetrieval(queryImage,imageIndex, expectedIDs)
[averagePrecision,imageIDs,scores] = evaluateImageRetrieval(queryImage,imageIndex,expectedIDs)
[averagePrecision,imageIDs,scores] = evaluateImageRetrieval(\qquad , Name, Value)

Description

averagePrecision = evaluateImageRetrieval(queryImage,imageIndex, expectedIDs) returns the average precision metric for measuring the accuracy of image search results for the queryImage. The expectedIDs input contains the indices of images within imageIndex that are known to be similar to the query image.
[averagePrecision,imageIDs,scores] = evaluateImageRetrieval(queryImage, imageIndex, expectedIDs) optionally returns the indices corresponding to images within imageIndex that are visually similar to the query image. It also returns the corresponding similarity scores.
[averagePrecision,imageIDs,scores] = evaluateImageRetrieval(\qquad , Name, Value) uses additional options specified by one or more Name, Value pair arguments, using any of the preceding syntaxes.

Examples

Evaluate Image Retrieval Results

Define a set of images.

```
dataDir = fullfile(toolboxdir('vision'),'visiondata','bookCovers');
bookCovers = imageDatastore(dataDir);
Display the set of images.
thumbnailGallery = [];
for i = 1:length(bookCovers.Files)
    img = readimage(bookCovers,i);
    thumbnail = imresize(img,[300 300]);
    thumbnailGallery = cat(4,thumbnailGallery,thumbnail);
end
figure
montage(thumbnailGallery);
```


Index the images. This will take a few minutes.
imageIndex = indexImages(bookCovers);

```
Creating an inverted image index using Bag-Of-Features.
```

Creating Bag-Of-Features.

* Selecting feature point locations using the Detector method.
* Extracting SURF features from the selected feature point locations.
** detectSURFFeatures is used to detect key points for feature extraction.
* Extracting features from 58 images...done. Extracted 29216 features.
* Keeping 80 percent of the strongest features from each category.
* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 23373
** Using the strongest 23373 features from each of the other image categories.
* Using K-Means clustering to create a 20000 word visual vocabulary.
* Number of features : 23373
* Number of clusters (K) : 20000
* Initializing cluster centers...100.00\%.
* Clustering...completed 11/100 iterations (~1.63 seconds/iteration)...converged in 11
* Finished creating Bag-Of-Features
Encoding images using Bag-Of-Features.
* Encoding 58 images...done.
Finished creating the image index.

Select and display the query image.

```
queryDir = fullfile(dataDir,'queries',filesep);
query = imread([queryDir 'query2.jpg']);
figure
imshow(query)
```


Evaluation requires knowing the expected results. Here, the query image is known to be the 3rd book in the imageIndex.

```
expectedID = 3;
```

Find and report the average precision score.
[averagePrecision, actualIDs] = evaluateImageRetrieval(query,... imageIndex, expectedID);
fprintf('Average Precision: \%f\n\n',averagePrecision)
Average Precision: 0.043478

Show the query and best match side-by-side.

```
bestMatch = actualIDs(1);
bestImage = imread(imageIndex.ImageLocation{bestMatch});
```

figure
imshowpair(query,bestImage,'montage')

Compute Mean Average Precision (MAP) for Image Retrieval

Create an image set of book covers.

```
dataDir = fullfile(toolboxdir('vision'),'visiondata','bookCovers');
bookCovers = imageDatastore(dataDir);
```

Index the image set. The indexing may take a few minutes.

```
imageIndex = indexImages(bookCovers,'Verbose',false);
```

Create a set of query images.

```
queryDir = fullfile(dataDir,'queries',filesep);
querySet = imageDatastore(queryDir);
```

Specify the expected search results for each query image.

```
expectedIDs = [1 2 3];
```

Evaluate each query image and collect average precision scores.

```
for i = 1:numel(querySet.Files)
    query = readimage(querySet,i);
    averagePrecision(i) = evaluateImageRetrieval(query, imageIndex, expectedIDs(i));
end
```

Compute mean average precision (MAP).

```
map = mean(averagePrecision)
map = 0.8333
```


Input Arguments

queryImage - Input query image

M-by- N-by-3 truecolor image | M-by- N 2-D grayscale image
Input query image, specified as either an M-by- N-by-3 truecolor image or an M-by- N 2-D grayscale image.

Data Types: single | double |int16|uint8|uint16|logical

imageIndex - Image search index

invertedImageIndex object
Image search index, specified as an invertedImageIndex object. The indexImages function creates the invertedImageIndex object, which stores the data used for the image search.

expectedIDs - Image indices

row or column vector
Image indices, specified as a row or column vector. The indices correspond to the images within imageIndex that are known to be similar to the query image.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, ... , NameN, ValueN.

Example: 'NumResults',25

NumResults - Maximum number of search results to evaluate Inf (default) | positive integer value

Maximum number of search results to evaluate, specified as the comma-separated pair consisting of 'NumResults' and a positive integer value. The function evaluates the top NumResults and returns the average-precision-at-NumResults metric.

ROI - Rectangular search region

```
[1 1 size(queryImage,2) size(queryImage,1)] (default)|[x y width height]
vector
```

Rectangular search region within the query image, specified as the comma-separated pair consisting of 'ROI' and a [x y width height] formatted vector.

Output Arguments

averagePrecision - Average precision metric

scalar value in the range [0 1]
Average precision metric, returned as a scalar value in the range [0 1]. The average precision metric represents the accuracy of image search results for the query image.

imageIDs - Ranked index of retrieved images

M-by-1 vector
Ranked index of retrieved images, returned as an M-by- 1 vector. The image IDs are returned in ranked order, from the most to least similar matched image.

scores - Similarity metric

N-by-1 vector

Similarity metric, returned as an N-by- 1 vector. This output contains the scores that correspond to the retrieved images in the imageIDs output. The scores are computed using the cosine similarity and range from 0 to 1 .

See Also

bag0fFeatures |imageDatastore |indexImages |invertedImageIndex| retrieveImages

Topics

"Image Retrieval Using Customized Bag of Features"
"Image Retrieval with Bag of Visual Words"

Introduced in R2015a

evaluateSemanticSegmentation

Evaluate semantic segmentation data set against ground truth

Syntax

```
ssm = evaluateSemanticSegmentation(dsResults,dsTruth)
ssm = evaluateSemanticSegmentation(dsResults,dsTruth,Name,Value)
```


Description

ssm = evaluateSemanticSegmentation(dsResults,dsTruth) computes various metrics to evaluate the quality of the semantic segmentation results, dsResults, against the ground truth segmentation, dsTruth.
ssm = evaluateSemanticSegmentation(dsResults,dsTruth,Name,Value) computes semantic segmentation metrics using one or more Name, Value pair arguments to control the evaluation.

Examples

Evaluate Semantic Segmentation Results

Evaluate the results of semantic segmentation by computing a confusion matrix and metrics for each class, each image, and the entire data set.

Perform Semantic Segmentation

Label each pixel in a series of images either as an object or as the background. This example uses the triangleImages data set, which has 100 test images of triangles with ground truth labels.

Define the location of the data set, test images, and ground truth labels.

```
dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
testImagesDir = fullfile(dataSetDir,'testImages');
testLabelsDir = fullfile(dataSetDir,'testLabels');
```

Create an image datastore holding the test images.

```
imds = imageDatastore(testImagesDir);
```

Define the class names and their associated label IDs.

```
classNames = ["triangle","background"];
labelIDs = [255 0];
```

Create a pixel label datastore holding the ground truth pixel labels for the test images.

```
pxdsTruth = pixelLabelDatastore(testLabelsDir,classNames,labelIDs);
```

Load a semantic segmentation network that has been trained on the training images of noisy shapes.

```
net = load('triangleSegmentationNetwork');
net = net.net;
```

Run the network on the test images. Predicted labels are written to disk in a temporary folder and returned as a pixelLabelDatastore.

```
pxdsResults = semanticseg(imds,net,"WriteLocation",tempdir);
Running semantic segmentation network
* Processed 100 images.
```


Compute Confusion Matrix and Segmentation Metrics

Evaluate the prediction results against the ground truth. By default, evaluateSemanticSegmentation computes all available metrics, including the confusion matrix, normalized confusion matrix, data set metrics, class metrics, and image metrics.

```
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth)
Evaluating semantic segmentation results
* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score.
* Processed 100 images.
```

```
* Finalizing... Done.
* Data set metrics:
\begin{tabular}{|c|c|c|c|c|}
\hline GlobalAccuracy & MeanAccuracy & MeanIoU & WeightedIoU & MeanBFScore \\
\hline 0.90624 & 0.95085 & 0.61588 & 0.87529 & 0.40652 \\
\hline
\end{tabular}
```

```
metrics =
```

metrics =
semanticSegmentationMetrics with properties:
semanticSegmentationMetrics with properties:
ConfusionMatrix: [2x2 table]
ConfusionMatrix: [2x2 table]
NormalizedConfusionMatrix: [2x2 table]
NormalizedConfusionMatrix: [2x2 table]
DataSetMetrics: [1x5 table]
DataSetMetrics: [1x5 table]
ClassMetrics: [2x3 table]
ClassMetrics: [2x3 table]
ImageMetrics: [100x5 table]

```
    ImageMetrics: [100x5 table]
```

To explore the results, display the classification accuracy, the intersection over union, and the boundary F-1 score for each class. These values are stored in the ClassMetrics property. Also, display the normalized confusion matrix.
metrics.ClassMetrics

	Accuracy	IoU	MeanBFScore
triangle	1	0.33005	0.028664
background	0.9017	0.9017	0.78438
metrics.NormalizedConfusionMatrix			
ans $=2 \times 2$ table triangle backgrour			
triangle	1		

Input Arguments

dsResults - Predicted pixel labels
 datastore | PixelLabelDatastore object | PixelLabelImageDatastore | cell array of datastore objects

Predicted pixel labels resulting from semantic segmentation, specified as a datastore or a cell array of datastore objects. dsResults can be any datastore that returns categorical images, such as PixelLabelDatastore or pixelLabelImageDatastore. The read(dsResults) must return a categorical array, a cell array, or a table. If the read function returns a multicolumn cell array or table, the second column must contain categorical arrays.

dsTruth - Ground truth pixel labels

PixelLabelDatastore object | cell array of PixelLabelDatastore objects
Ground truth pixel labels, specified as a datastore or a cell array of datastore objects. dsResults can be any datastore that returns categorical images, such as PixelLabelDatastore or pixelLabelImageDatastore. Using read(dsTruth) must return a categorical array, a cell array, or a table. If the read function returns a multicolumn cell array or table, the second column must contain categorical arrays.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, ... , NameN, ValueN.

Example: metrics = evaluateSemanticSegmentation(pxdsResults, pxdsTruth,' Metrics',"bfscor $e^{\prime \prime}$) computes only the mean BF score of each class, each image, and the entire data set.

Metrics - Segmentation metrics

"all" (default) | vector of strings
Segmentation metrics in semanticSegmentationMetrics to compute, specified as the comma-separated pair consisting of 'Metrics' and a vector of strings. This argument
specifies which variables in the DataSetMetrics, ClassMetrics, and ImageMetrics tables to compute. ConfusionMatrix and NormalizedConfusionMatrix are computed regardless of the value of 'Metric'.
$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Value } & \text { Description } & \begin{array}{l}\text { Aggr } \\ \text { egat } \\ \text { e }\end{array} & \begin{array}{l}\text { Imag } \\ \text { Data } \\ \text { Set } \\ \text { Metri } \\ \text { c }\end{array} & \begin{array}{l}\text { Class } \\ \text { c }\end{array} \\ & & \text { Metric }\end{array}\right]$

Value	Description	Aggr egat Data Set Metri c	Imag e Metri c	Class Metric
"accurac y"	Accuracy indicates the percentage of correctly identified pixels for each class. Use the accuracy metric if you want to know how well each class correctly identifies pixels. - For each class, Accuracy is the ratio of correctly classified pixels to the total number of pixels in that class, according to the ground truth. In other words, Accuracy score = TP / (TP + FN) TP is the number of true positives and FN is the number of false negatives. - For the aggregate data set, MeanAccuracy is the average Accuracy of all classes in all images. - For each image, MeanAccuracy is the average Accuracy of all classes in that particular image. The class accuracy is a simple metric analogous to global accuracy, but it can be misleading. For example, labeling all pixels "car" gives a perfect score for the "car" class (although not for the other classes). Use class accuracy in conjuction with IoU for a more complete evaluation of segmentation results.	Mean Accu racy	Mean Accu racy	Accur acy

Value	Description	Aggr egat e Data Set Metri c	Imag e Metri	Class Metric
"bfscore	The boundary F1 (BF) contour matching score indicates how well the predicted boundary of each class aligns with the true boundary. Use the BF score if you want a metric that tends to correlate better with human qualitative assessment than the IoU metric.	Mean BFSc ore	Mean BFSc ore	MeanB FScor
eFor each class, MeanBFScore is the average BF score of that class over all images.	For each image, MeanBFScore is the average BF score of all classes in that particular image.	For the aggregate data set, MeanBFScore is the average BF score of all classes in all images.	For more information, see bfscore.	
"global -	GlobalAccuracy is the ratio of correctly classified pixels, regardless of class, to the total number of pixels. Use the global accuracy metric if you want a quick and computationally inexpensive estimate of the percentage of correctly classified pixels.	Glob alAc cura cy	Glob alAc cura cy	none

Value	Description	Aggr egat e Data Set Metri c	Imag e Metri c	Class Metric
"iou"	Intersection over union (IoU), also known as the Jaccard similarity coefficient, is the most commonly used metric. Use the IoU metric if you want a statistical accuracy measurement that penalizes false positives. -For each class, IoU is the ratio of correctly classified pixels to the total number of ground truth and predicted pixels in that class. In other words, IoU score = TP / (TP + FP + FN) The image describes the true positives (TP), false positives (FP), and false negatives (FN). Mean IoU Mean IoU IoU			

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Value } & \text { Description } & \begin{array}{l}\text { Aggr } \\ \text { egat } \\ \text { e } \\ \text { Data } \\ \text { Set } \\ \text { Metri } \\ \text { c }\end{array} & \begin{array}{l}\text { Imag } \\ \text { e }\end{array} & \begin{array}{l}\text { Class } \\ \text { Metri }\end{array} \\ \text { Metric }\end{array}\right]$

Example: metrics = evaluateSemanticSegmentation(pxdsResults, pxdsTruth,'Metrics',["global-accuracy","iou"]) calculates the global accuracy and IoU metrics across the data set, images, and classes.

Data Types: string

Verbose - Flag to display evaluation progress

1 (default) | 0
Flag to display evaluation progress information in the command window, specified as the comma-separated pair consisting of 'Verbose' and either 1 (true) or 0 (false).

The displayed information includes a progress bar, elapsed time, estimated time remaining, and data set metrics.

Example: metrics = evaluateSemanticSegmentation(pxdsResults, pxdsTruth,'Verbose',0) calculates segmentation metrics without displaying progress information.

Data Types: logical

Output Arguments

ssm - Semantic segmentation metrics

semanticSegmentationMetrics object
Semantic segmentation metrics, returned as a semanticSegmentationMetrics object.

References

[1] Csurka, G., D. Larlus, and F. Perronnin. "What is a good evaluation measure for semantic segmentation?" Proceedings of the British Machine Vision Conference, 2013, pp. 32.1-32.11.

Extended Capabilities

Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox ${ }^{\mathrm{TM}}$.

- To run in parallel, set 'UseParallel' to true or enable this by default using the Computer Vision Toolbox preferences.

For more information, see "Parallel Computing Toolbox Support".

- Parallel processing is only supported when the input datastores is a pixelLabelDatastore or a pixelLabelImageDatastore.

See Also

Functions

bfscore|jaccard|plotconfusion| semanticseg

Objects

PixelLabelDatastore|pixelLabelImageDatastore| semanticSegmentationMetrics

Topics

"Getting Started With Semantic Segmentation Using Deep Learning"
"Deep Learning in MATLAB" (Deep Learning Toolbox)
"Datastores for Deep Learning" (Deep Learning Toolbox)

Introduced in R2017b

extractFeatures

Extract interest point descriptors

Syntax

```
[features,validPoints] = extractFeatures(I,points)
[features,validPoints] = extractFeatures(I,points,Name,Value)
```


Description

[features,validPoints] = extractFeatures(I,points) returns extracted feature vectors, also known as descriptors, and their corresponding locations, from a binary or intensity image.

The function derives the descriptors from pixels surrounding an interest point. The pixels represent and match features specified by a single-point location. Each single-point specifies the center location of a neighborhood. The method you use for descriptor extraction depends on the class of the input points.
[features,validPoints] = extractFeatures(I, points,Name,Value) uses additional options specified by one or more Name, Value pair arguments.

Examples

Extract Corner Features from an Image.

Read the image.

```
I = imread('cameraman.tif');
```


Find and extract corner features.

corners = detectHarrisFeatures(I);
[features, valid_corners] = extractFeatures(I, corners);

Display image.

figure; imshow(I); hold on

Plot valid corner points.
plot(valid_corners);

Extract SURF Features from an Image

Read image.

```
    I = imread('cameraman.tif');
```


Find and extract features.

points = detectSURFFeatures(I);
[features, valid_points] = extractFeatures(I, points);

Display and plot ten strongest SURF features.

figure; imshow(I); hold on;
plot(valid_points.selectStrongest(10),'showOrientation',true);

Extract MSER Features from an Image

Read image.

I = imread('cameraman.tif');
Find features using MSER with SURF feature descriptor.
regions = detectMSERFeatures(I);
[features, valid_points] = extractFeatures(I,regions,'Upright',true);
Display SURF features corresponding to the MSER ellipse centers.
figure; imshow(I); hold on;
plot(valid_points,'show0rientation',true);

Input Arguments

I - Input image

binary image | M-by- N 2-D grayscale image
Input image, specified as either a binary or 2-D grayscale image.
Data Types: logical| single | double | int16|uint8|uint16

points - Center location point

BRISKPoints object | cornerPoints object | SURFPoints object | KAZEPoints object | MSERRegions object | ORBPoints object | M-by-2 matrix of [x,y] coordinates

Center location point of a square neighborhood, specified as either a BRISKPoints, SURFPoints, KAZEPoints, MSERRegions, cornerPoints, or ORBPoints object, or an M-by-2 matrix of M number of [xy] coordinates. The table lists the possible input classes of points that can be used for extraction.

Class of Points	
BRISKPoints	Binary Robust Invariant Scalable Keypoints (BRISK)
SURFPoints object	Speeded-Up Robust Features (SURF)
MSERRegions object	Maximally Stable Extremal Regions (MSER)
cornerPoints	Features from Accelerated Segment Test (FAST), Minimum eigen-value, or Harris
KAZEPoints	Non-linear image pyramid-based rotation and orientation invariant features. Similar to SURF, but contains less noisy points.
ORBPoints	Oriented FAST and rotated BRIEF (ORB) features.
M-by-2 matrix of [x y] coordinates	Simple square neighborhood around [x y] point locations

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Example: 'Method ','Block' specifies the Block method for descriptor extraction.

Method - Descriptor extraction method

'Auto' (default) |'BRISK' | 'FREAK' | 'SURF' | 'ORB' | 'KAZE' | 'Block'
Descriptor extraction method, specified as a comma-separated pair consisting of 'Method' and 'FREAK', 'SURF', 'ORB', Block', or 'Auto'.

The table describes how the function implements the descriptor extraction methods.

Method	Feature Vector (Descriptor)
BRISK	Binary Robust Invariant Scalable Keypoints (BRISK). The function sets the Orientation property of the validPoints output object to the orientation of the extracted features, in radians.

$\left.\begin{array}{|l|l|}\hline \text { Method } & \text { Feature Vector (Descriptor) } \\ \hline \text { FREAK } & \begin{array}{l}\text { Fast Retina Keypoint (FREAK). } \\ \text { The function sets the Orientation property of the } \\ \text { validPoints output object to the orientation of the } \\ \text { extracted features, in radians. }\end{array} \\ \hline \text { SURF } & \begin{array}{l}\text { Speeded-Up Robust Features (SURF). } \\ \text { The function sets the Orientation property of the } \\ \text { validPoints output object to the orientation of the } \\ \text { extracted features, in radians. }\end{array} \\ \hline & \begin{array}{l}\text { When you use an MSERRegions object with the SURF } \\ \text { method, the Centroid property of the object extracts } \\ \text { SURF descriptors. The Axes property of the object selects } \\ \text { the scale of the SURF descriptors such that the circle } \\ \text { representing the feature has an area proportional to the } \\ \text { MSER ellipse area. The scale is calculated as } \\ 1 / 4 * \text { sqrt ((majorAxes/2). *(minorAxes/2)) and } \\ \text { saturated to 1.6, as required by the SURFPoints object. }\end{array} \\ \hline \text { ORB } & \begin{array}{l}\text { Oriented FAST and rotated BRIEF (ORB) features. } \\ \text { The Orientation property of the validPoints output } \\ \text { object is automatically set to the Orientation property of } \\ \text { the input ORBPoints object points. }\end{array} \\ \hline \text { KAZE } & \begin{array}{l}\text { Non-linear pyramid-based features. }\end{array} \\ \begin{array}{l}\text { The function sets the Orientation property of the } \\ \text { validPoints output object to the orientation of the } \\ \text { extracted features, in radians. }\end{array} \\ \hline \begin{array}{l}\text { When you use an MSERRegions object with the KAZE } \\ \text { method, the Location property of the object is used to } \\ \text { extract KAZE descriptors. }\end{array} \\ \hline \text { The Axes property of the object selects the scale of the } \\ \text { KAZE descriptors such that the circle representing the } \\ \text { feature has an area proportional to the MSER ellipse area. }\end{array}\right\}$

Method	Feature Vector (Descriptor)
Block	Simple square neighbhorhood. The Block method extracts only the neighborhoods fully contained within the image boundary. Therefore, the output, validPoints, can contain fewer points than the input POINTS.
Auto	The function selects the Method, based on the class of the input points and implements: The FREAK method for a cornerPoints input object. The SURF method for a SURFPoints or MSERRegions input object. The BRISK method for a BRISKPoints input object. The ORB method for a ORBPoints input object.
For an M-by-2 input matrix of $[x y]$ coordinates, the function implements the Block method.	

Note The descriptor extraction method must be ORB, if the input points is an ORBPoints object. Also, ORB descriptor extraction method is not supported for any other class of points, except ORBPoints.

BlockSize - Block size
 11 (default) | odd integer scalar

Block size, specified as an odd integer scalar. This value defines the local square neighborhood BlockSize-by-BlockSize, centered at each interest point. This option applies only when the function implements the Block method.

Upright - Rotation invariance flag

false | logical scalar
Rotation invariance flag, specified a logical scalar. When you set this property to true, the orientation of the feature vectors are not estimated and the feature orientation is set to $\mathrm{pi} / 2$. Set this to true when you do not need the image descriptors to capture rotation information. When you set this property to false, the orientation of the features is estimated and the features are then invariant to rotation.

Note The rotation invariance flag 'Upright' is not supported if the input points is an ORBPoints object.

FeatureSize - Length of feature vector
 64 (default) | 128

Length of the SURF or KAZE feature vector (descriptor), specified as 64 or 128. This option applies only when the function implements the SURF or KAZE method. The larger feature size of 128 provides greater accuracy, but decreases the feature matching speed.

Output Arguments

features - Feature vectors

M-by- N matrix | binaryFeatures object
Feature vectors, returned as a binaryFeatures object or an M-by- N matrix of M feature vectors, also known as descriptors. Each descriptor is of length N.

validPoints - Valid points

BRISKPoints object | cornerPoints object | SURFPoints object | KAZEPoints object | MSERRegions object | ORBPoints object | M-by-2 matrix of [x,y] coordinates

Valid points associated with each output feature vector (descriptor) in features, returned in the same format as the input. Valid points can be a BRISKPoints, cornerPoints, SURFPoints, KAZEPoints, MSERRegions, ORBPoints object, or an M-by-2 matrix of [x, y] coordinates.

The function extracts descriptors from a region around each interest point. If the region lies outside of the image, the function cannot compute a feature descriptor for that point. When the point of interest lies too close to the edge of the image, the function cannot compute the feature descriptor. In this case, the function ignores the point. The point is not included in the valid points output.

References

[1] G. Bradski and A. Kaehler, Learning OpenCV : Computer Vision with the OpenCV Library, O'Reilly, Sebastopol, CA, 2008.
[2] Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, SURF: Speeded Up Robust Features", Computer Vision and Image Understanding (CVIU), Vol. 110, No. 3, pp. 346--359, 2008
[3] Bay, Herbert, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool, "SURF: Speeded Up Robust Features", Computer Vision and Image Understanding (CVIU), Vol. 110, No. 3, pp. 346--359, 2008.
[4] Alahi, Alexandre, Ortiz, Raphael, and Pierre Vandergheynst, "FREAK: Fast Retina Keypoint", IEEE Conference on Computer Vision and Pattern Recognition, 2012.
[5] Alcantarilla, P.F., A. Bartoli, and A.J. Davison. "KAZE Features", ECCV 2012, Part VI, LNCS 7577 pp. 214, 2012

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- 'Method' must be a compile-time constant.
- Supports MATLAB Function block for BRISK, FREAK, and SURF methods only.
- Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries for BRISK, ORB, FREAK, and SURF Methods. See "Portable C Code Generation for Functions That Use OpenCV Library".
- The KAZE method and the detectKAZEFeatures function do not support code generation.

See Also

KAZEPoints |MSERRegions | ORBPoints | SURFPoints | binaryFeatures detectBRISKFeatures | detectFASTFeatures | detectHarrisFeatures | detectKAZEFeatures| detectMSERFeatures | detectMinEigenFeatures | detectORBFeatures | detectSURFFeatures |extractH0GFeatures | extractLBPFeatures|matchFeatures

Topics
"Point Feature Types"
"Local Feature Detection and Extraction"
\section*{Introduced in R2011a}

extractHOGFeatures

Extract histogram of oriented gradients (HOG) features

Syntax

```
features = extractHOGFeatures(I)
[features,validPoints] = extractHOGFeatures(I,points)
[__, visualization] = extractHOGFeatures(I, ___)
[
```

\qquad

``` ] = extractHOGFeatures(
``` \(\qquad\)
``` ,Name, Value)
```


Description

features $=$ extractHOGFeatures(I) returns extracted HOG features from a truecolor or grayscale input image, I. The features are returned in a 1 -by- N vector, where N is the HOG feature length. The returned features encode local shape information from regions within an image. You can use this information for many tasks including classification, detection, and tracking.
[features,validPoints] = extractHOGFeatures(I, points) returns HOG features extracted around specified point locations. The function also returns validPoints, which contains the input point locations whose surrounding region is fully contained within I. Scale information associated with the points is ignored.
[__, visualization] = extractHOGFeatures(I, ___) optionally returns a HOG feature visualization, using any of the preceding syntaxes. You can display this visualization using plot(visualization).
\qquad] = extractHOGFeatures(\qquad , Name, Value) uses additional options specified by one or more Name,Value pair arguments, using any of the preceding syntaxes.

Examples

Extract and Plot HOG Features

Read the image of interest.

```
img = imread('cameraman.tif');
```

Extract HOG features.
[featureVector,hogVisualization] = extractHOGFeatures(img);
Plot HOG features over the original image.

```
figure;
imshow(img);
hold on;
plot(hogVisualization);
```


Extract HOG Features using CellSize

Read the image of interest.
I1 = imread('gantrycrane.png');
Extract HOG features.
[hog1,visualization] = extractHOGFeatures(I1,'CellSize',[32 32]);
Display the original image and the HOG features.
subplot(1,2,1);
imshow(I1);
subplot(1,2,2);
plot(visualization);

Extract HOG Features Around Corner Points

Read in the image of interest.

```
I2 = imread('gantrycrane.png');
```

Detect and select the strongest corners in the image.

```
corners = detectFASTFeatures(rgb2gray(I2));
strongest = selectStrongest(corners,3);
Extract HOG features.
```

[hog2, validPoints,ptVis] = extractHOGFeatures(I2,strongest);
Display the original image with an overlay of HOG features around the strongest corners.
figure;
imshow(I2);
hold on;
plot(ptVis,'Color','green');

Input Arguments

I - Input image

M-by- N-by-3 truecolor image | M-by- N 2-D grayscale image
Input image, specified in either M-by- N-by-3 truecolor or M-by- N 2-D grayscale. The input image must be a real, nonsparse value. If you have tightly cropped images, you may lose
shape information that the HOG function can encode. You can avoid losing this information by including an extra margin of pixels around the patch that contains background pixels.

Data Types: single | double | int16|uint8|uint16|logical

points - Center location point

BRISKPoints object \| cornerPoints object \| SURFPoints object | MSERRegions object | M-by-2 matrix of $[x, y]$ coordinates

Center location point of a square neighborhood, specified as either a BRISKPoints, SURFPoints, MSERRegions, ORBPoints or cornerPoints object, or an M-by-2 matrix of M number of $[x, y]$ coordinates. The function extracts descriptors from the neighborhoods that are fully contained within the image boundary. You can set the size of the neighborhood with the BlockSize parameter. Only neighborhoods fully contained within the image are used to determine the valid output points. The function ignores scale information associated with these points.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Example: 'BlockSize',[2 2] sets the BlockSize to be a 2-by-2 square block.

CellSize - Size of HOG cell

[8 8] (default)| 2 -element vector
Size of HOG cell, specified in pixels as a 2-element vector. To capture large-scale spatial information, increase the cell size. When you increase the cell size, you may lose smallscale detail.

BlockSize - Number of cells in block

[2 2] (default) | 2-element vector

Number of cells in a block, specified as a 2 -element vector. A large block size value reduces the ability to suppress local illumination changes. Because of the number of pixels in a large block, these changes may get lost with averaging. Reducing the block size helps to capture the significance of local pixels. Smaller block size can help suppress illumination changes of HOG features.

BlockOverlap - Number of overlapping cells between adjacent blocks ceil(BlockSize/2) (default)

Number of overlapping cells between adjacent blocks, specified as a 2 -element vector. To ensure adequate contrast normalization, select an overlap of at least half the block size. Large overlap values can capture more information, but they produce larger feature vector size. This property applies only when you are extracting HOG features from regions and not from point locations. When you are extracting HOG features around a point location, only one block is used, and thus, no overlap occurs.

NumBins - Number of orientation histogram bins

```
9 (default) | positive scalar
```

Number of orientation histogram bins, specified as positive scalar. To encode finer orientation details, increase the number of bins. Increasing this value increases the size of the feature vector, which requires more time to process.

UseSignedOrientation - Selection of orientation values
 false (default)| logical scalar

Selection of orientation values, specified as a logical scalar. When you set this property to true, orientation values are evenly spaced in bins between -180 and 180 degrees. When you set this property to false, they are evenly spaced from 0 through 180. In this case, values of theta that are less than 0 are placed into a theta +180 value bin. Using signed orientation can help differentiate light-to-dark versus dark-to-light transitions within an image region.

Output Arguments

features - Extracted HOG features
1 -by- N vector $\mid P$-by- Q matrix

Extracted HOG features, returned as either a 1-by- N vector or a P-by- Q matrix. The features encode local shape information from regions or from point locations within an image. You can use this information for many tasks including classification, detection, and tracking.

features output	Description
1-by-N vector	HOG feature length, N, is based on the image size and the function parameter values. $N=$ prod([BlocksPerImage, BlockSize, NumBins]) BlocksPerImage = floor((size(I)./CellSize - BlockSize)./ (BlockSize - BlockOverlap) +1$)$
P-by-Q matrix	P is the number of valid points whose surrounding region is fully contained within the input image. You provide the points input value for extracting point locations. The surrounding region is calculated as: CellSize.*BlockSize. The feature vector length, Q, is calculated as: prod([NumBins,BlockSize]).

Example 3.1. Arrangement of Histograms in HOG Feature Vectors

The figure below shows an image with six cells.

C_{11}	C_{12}	C_{13}
C_{21}	C_{22}	C_{23}

If you set the BlockSize to [2 2], it would make the size of each HOG block, 2-by-2 cells. The size of the cells are in pixels. You can set it with the CellSize property.

The HOG feature vector is arranged by HOG blocks. The cell histogram, $\mathrm{H}\left(\mathrm{C}_{\mathrm{yx}}\right)$, is 1-byNumBins.

The figure below shows the HOG feature vector with a 1-by-1 cell overlap between blocks.

validPoints - Valid points
cornerPoints object | BRISKPoints object | SURFPoints object | MSERRegions object | ORBPoints object | M-by-2 matrix of $[x, y]$ coordinates

Valid points associated with each features descriptor vector output. This output can be returned as either a cornerPoints object, BRISKPoints, SURFPoints object, MSERRegions object, ORBPoints object or an M-by-2 matrix of [x, y] coordinates. The function extracts M number of descriptors from valid interest points in a region of size equal to [CellSize.*BlockSize]. The extracted descriptors are returned as the same type of object or matrix as the input. The region must be fully contained within the image.

visualization - HOG feature visualization

object
HOG feature visualization, returned as an object. The function outputs this optional argument to visualize the extracted HOG features. You can use the plot method with the visualization output. See the "Extract and Plot HOG Features" on page 3-545 example.

HOG features are visualized using a grid of uniformly spaced rose plots. The cell size and the size of the image determines the grid dimensions. Each rose plot shows the distribution of gradient orientations within a HOG cell. The length of each petal of the rose plot is scaled to indicate the contribution each orientation makes within the cell histogram. The plot displays the edge directions, which are normal to the gradient directions. Viewing the plot with the edge directions allows you to better understand the shape and contours encoded by HOG. Each rose plot displays two times NumBins petals.

You can use the following syntax to plot the HOG features:
plot (visualization) plots the HOG features as an array of rose plots.
plot(visualization, AX) plots HOG features into the axes AX.
plot(__, 'Color', Colorspec) Specifies the color used to plot HOG features, where Colorspec represents the color.

References

[1] Dalal, N. and B. Triggs. "Histograms of Oriented Gradients for Human Detection", IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1 (June 2005), pp. 886-893.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathrm{Coder}^{\mathrm{TM}}$.

See Also

MSERRegions | ORBPoints | SURFPoints | binaryFeatures | detectFASTFeatures | detectHarrisFeatures | detectMSERFeatures | detectMinEigenFeatures | detectORBFeatures | detectSURFFeatures |extractFeatures |
extractLBPFeatures | matchFeatures | rose

Topics

"Digit Classification Using HOG Features"
"Local Feature Detection and Extraction"
"Point Feature Types"

Introduced in R2013b

fitPolynomialRANSAC

Fit polynomial to points using RANSAC

Syntax

```
P = fitPolynomialRANSAC(xyPoints,N,maxDistance)
[P,inlierIdx] = fitPolynomialRANSAC( ___)
[___] = fitPolynomialRANSAC( ___ ,Name,Value)
```


Description

$P=$ fitPolynomialRANSAC(xyPoints,N,maxDistance) finds the polynomial coefficients, P , by sampling a small set of points given in xyPoints and generating polynomial fits. The fit that has the most inliers within maxDistance is returned. If a fit cannot be found, then P is returned empty.The function uses the M -estimator sample consensus (MSAC) algorithm, a variation of the random sample consensus (RANSAC) algorithm to fit the data.
[P,inlierIdx] = fitPolynomialRANSAC(_ _) returns a logical array, inlierIdx, that specifies the indices for data points that are inliers to the fit polynomial based on maxDistance. Use the input arguments from the previous syntax.
[___] = fitPolynomialRANSAC(\qquad , Name, Value) specifies additional options specified by one or more Name, Value pair arguments.

Examples

Fit Parabola to Noisy Data Using RANSAC

Use the RANSAC algorithm to generate a polynomial that fits a set of noisy data. The fitPolynomialRANSAC function generates a polynomial by sampling a small set of points from [x y] point data and generating polynomial fits. The fit with the most inliers within maxDistance is returned.

Construct and plot a parabola with [$\mathrm{x} y$] points.

```
x = (-10:0.1:10)';
y = (36-x.^2)/9;
figure
plot(x,y)
title('Parabola')
```

Parabola

Add noise and outlier points to the points on the parabola.
$y=y+r a n d(l e n g t h(y), 1)$;
$y([50,150,99,199])=[y(50)+12, y(150)-12, y(99)+33, y(199)-23]$;
plot(x, y)
title('Parabola with Outliers and Noise')

Use fitPolynomialRANSAC to generate coefficients for a second-degree polynomial. Also get the inliers identified by the specified maxDistance from the polynomial fit.

```
N = 2; % second-degree polynomial
maxDistance = 1; % maximum allowed distance for a point to be inlier
[P, inlierIdx] = fitPolynomialRANSAC([x,y],N,maxDistance);
```

Evaluate the polynomial using polyval. Plot the curve and overlay the [$\mathrm{x} y$] points. Mark outliers with a red circle.

```
yRecoveredCurve = polyval(P,x);
figure
plot(x,yRecoveredCurve,'-g','LineWidth',3)
```

```
    hold on
    plot(x(inlierIdx),y(inlierIdx),'.',x(~inlierIdx),y(~inlierIdx),'ro')
    legend('Fit polynomial','Inlier points','Outlier points')
    hold off
```


Input Arguments

xyPoints - [x y] coordinate points

m-by-2 matrix
[x y] coordinate points, specified as an m-by- 2 matrix. The polynomial is fit to these points.

Data Types: double | single | uint32 | int32|uint16|int16

N - Degree of polynomial fit

integer
Degree of polynomial fit, P , specified as an integer. The degree of a polynomial is the highest degree of the terms in the equation. For example, a polynomial of degree 2 is:
$A x^{2}+B x+C$
A, B, and C are constants. In general, higher degree polynomials allow for a better fit, but the fit depends on your data.

maxDistance - Maximum distance for inlier points

positive scalar
Maximum distance from the polynomial fit curve to an inlier point, specified as a positive scalar. Any points further away are considered outliers. The RANSAC algorithm creates a fit from a small sample of points but tries to maximize the number of inlier points. Lowering the maximum distance helps to improve the polynomial fit by putting a tighter tolerance on inlier points.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Example: 'MaxNumTrials',2000

MaxNumTrials - Maximum number of random trials 1000 (default) | integer

Maximum number of random trials, specified as the comma-separated pair consisting of 'MaxNumTrials' and an integer. A single trial uses a minimum number of random points from xyPoints to fit a parabolic model. Then, the trial checks the number of inliers within the maxDistance from the model. After all trials, the model with the highest number of inliers is selected. Increasing the number of trials improves the robustness of the output at the expense of additional computation.

Confidence - Confidence of final solution
 99 (default) | scalar from 0 to 100

Confidence that the final solution finds the maximum number of inliers for the polynomial fit, specified as the comma-separated pair consisting of 'Confidence' and a scalar from 0 to 100 . Increasing this value improves the robustness of the output at the expense of additional computation.

ValidatePolynomialFcn - Function to validate polynomial

function handle
Function to validate polynomial, specified as the comma-separated pair consisting of 'ValidatePolynomialFcn' and a function handle. The function returns true if the polynomial is accepted based on criteria defined in the function. Use this function to reject specific polynomial fits. The function must be of the form:

```
isValid = validatePolynomialFcn(P,varargin)
```

If no function is specified, all polynomials are assumed to be valid.

MaxSamplingAttempts - Maximum number of sample attempts

100 (default) | integer
Maximum number of attempts to find a sample that yields a valid polynomial, specified as the comma-separated pair consisting of 'MaxSamplingAttempts' and an integer.

Output Arguments

P - Polynomial coefficients

vector of numeric scalars
Polynomial coefficients, returned as a vector of numeric scalars. Each element corresponds to a constant in the polynomial equation with degree N. For example, for a second-degree polynomial, $A x^{2}+B x+C$:
$P=\left[\begin{array}{ll}A & B C\end{array}\right]$;
Data Types: single | double
inlierIdx - Inlier points
logical vector

Inlier points, returned as a logical vector. The vector is the same length as xyPoints, and each element indicates if that point is an inlier for the polynomial fit based on maxDistance.

References

[1] Torr, P. H. S., and A. Zisserman. "MLESAC: A New Robust Estimator with Application to Estimating Image Geometry." Computer Vision and Image Understanding. Vol. 18, Issue 1, April 2000, pp. 138-156.

See Also

polyfit|polyval|ransac

Introduced in R2017a

extrinsics

Compute location of calibrated camera

Syntax

[rotationMatrix,translationVector] = extrinsics(imagePoints, worldPoints, cameraParams)

Description

[rotationMatrix,translationVector] = extrinsics(imagePoints, worldPoints, cameraParams) returns the 3-D rotation matrix and the 3-D translation vector to allow you to transform points from the world coordinate to the camera coordinate system.

Examples

Compute Camera Extrinsics

Create a set of calibration images.

```
images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
```

 'calibration', 'slr'));
 Detect the checkerboard corners in the images.
[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);
Generate the world coordinates of the checkerboard corners in the pattern-centric coordinate system, with the upper-left corner at (0,0). The square size is in millimeters.

```
squareSize = 29;
worldPoints = generateCheckerboardPoints(boardSize, squareSize);
```

Calibrate the camera.
$I=$ readimage(images,1);
imageSize $=$ [size(I,1), size(I,2)];
cameraParams = estimateCameraParameters(imagePoints,worldPoints, ... 'ImageSize',imageSize);

Load image at new location.
im0rig = imread(fullfile(matlabroot,'toolbox','vision','visiondata', ...
'calibration','slr','image9.jpg'));
figure
imshow(im0rig);
title('Input Image');

Undistort image.
[im,newOrigin] = undistortImage(imOrig,cameraParams,'OutputView','full');

Find reference object in new image.

```
[imagePoints,boardSize] = detectCheckerboardPoints(im);
```

Compensate for image coordinate system shift.

```
imagePoints = [imagePoints(:,1) + newOrigin(1), ...
    imagePoints(:,2) + newOrigin(2)];
```

Compute new extrinsics.
[rotationMatrix, translationVector] = extrinsics(... imagePoints,worldPoints, cameraParams);

Compute camera pose.

```
[orientation, location] = extrinsicsToCameraPose(rotationMatrix, ...
    translationVector);
figure
plotCamera('Location',location,'Orientation',orientation,'Size',20);
hold on
pcshow([worldPoints,zeros(size(worldPoints,1),1)], ...
    'VerticalAxisDir','down','MarkerSize',40);
```


Input Arguments

imagePoints - Image coordinates of points
 M-by-2 array

Image coordinates of points, specified as an M-by- 2 array. The array contains M number of $[x, y]$ coordinates. The imagePoints and worldPoints inputs must both be double or both be single.
Data Types: single | double

worldPoints - World coordinates corresponding to image coordinates M-by-2 matrix

World coordinates corresponding to image coordinates, specified as an M-by- 2 matrix. The imagePoints and worldPoints inputs must both be double or both be single. The function assumes that the points are coplanar with $z=0$ and the number of points, M, must be at least 4 .

Data Types: single | double

cameraParams - Camera parameters

cameraParameters object|cameraIntrinsics object|fisheyeIntrinsics object
Object for storing camera parameters, specified as a cameraParameters, cameraIntrinsics, or fisheyeIntrinsics object. These objects are returned by the estimateCameraParameters function, the estimateFisheyeParameters function, or the Camera Calibrator app. The object contains the intrinsic, extrinsic, and lens distortion parameters of a camera.

Output Arguments

rotationMatrix - 3-D rotation

3-by-3 matrix
3-D rotation, returned as a 3-by-3 matrix. The rotation matrix together with the translation vector allows you to transform points from the world coordinate to the camera coordinate system.

If you set the imagePoints and worldPoints inputs to class double, then the function returns the rotationMatrix and translationVector as double. Otherwise, they are single.
translationVector - 3-D translation
3-D translation, returned as a 1-by-3 vector. The rotation matrix together with the translation vector allows you to transform points from the world coordinate to the camera coordinate system.

3-D translation, returned as a 1-by-3 vector.

If you set the imagePoints and worldPoints inputs to class double, then the function returns the rotationMatrix and translationVector as double. Otherwise, they are single.

Algorithms

The extrinsics function uses two different algorithms to compute the extrinsics depending on whether worldPoints are specified as an M-by-2 matrix. Use an M-by-2 matrix for coplanar points where $z=0$.

The extrinsics function computes the rotation matrix and translation vector for a single image in closed form. During calibration, the extrinsics are estimated numerically to minimize the reprojection errors for all calibration images. Therefore, using the extrinsics function on one of the calibration images returns rotation matrix and translation vector slightly different from the ones obtained during calibration.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathrm{Coder}^{\mathrm{TM}}$.
Usage notes and limitations:

- Use in a MATLAB Function block is not supported.
- Use of a fisheyeIntrinsics object as the cameraParams input is not supported.

See Also

Camera Calibrator | cameraIntrinsics | cameraMatrix|cameraParameters | cameraPoseToExtrinsics|estimateCameraParameters|
estimateFisheyeParameters|extrinsicsToCameraPose|fisheyeIntrinsics| plotCamera|pointsToWorld|worldToImage|worldToImage

Topics

"Code Generation for Depth Estimation From Stereo Video"

Introduced in R2014a

generateCheckerboardPoints

Generate checkerboard corner locations

Syntax

[worldPoints] = generateCheckerboardPoints(boardSize,squareSize)

Description

[worldPoints] = generateCheckerboardPoints(boardSize,squareSize) returns an M-by-2 matrix containing $M[x, y]$ corner coordinates for the squares on a checkerboard. The point $[0,0]$ corresponds to the lower-right corner of the top-left square of the board.

Examples

Generate and Plot Corners of an 8-by-8 Checkerboard

Generate the checkerboard, and obtain world coordinates.
I = checkerboard;
squareSize = 10;
worldPoints = generateCheckerboardPoints([8 8], squareSize);
Offset the points, placing the first point at the lower-right corner of the first square.

```
imshow(insertMarker(I, worldPoints + squareSize));
```


Input Arguments

boardSize - Generated checkerboard dimensions

2-element [height, width] vector

Generated checkerboard dimensions, specified as a 2-element [height, width] vector. You express the dimensions of the checkerboard in number of squares.

squareSize - Generated checkerboard square side length
scalar
Checkerboard square side length, specified as a scalar in world units. You express world units as a measurement, such as millimeters or inches.

x direction (long side)

Output Arguments

worldPoints - Generated checkerboard corner coordinates

M-by-2 matrix
Generated checkerboard corner coordinates, returned as an M-by-2 matrix of M number of $[x y]$ coordinates. The coordinates represent the corners of the squares on the checkerboard. The point $[0,0]$ corresponds to the lower-right corner of the top-left square
of the board. The number of points, M, that the function returns are based on the number of squares on the checkerboard. This value is set with the boardSize parameter.
$M=($ boardSize(1)-1) $*($ boardSize(2)-1)

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also
 Camera Calibrator | cameraParameters | detectCheckerboardPoints | estimateCameraParameters|stereoParameters

Topics

"Measuring Planar Objects with a Calibrated Camera"
"Single Camera Calibrator App"

Introduced in R2013b

indexImages

Create image search index

Syntax

```
imageIndex = indexImages(imds)
imageIndex = indexImages(imds,bag)
imageIndex = indexImages( __ ,Name,Value)
```


Description

imageIndex $=$ indexImages(imds) creates an invertedImageIndex object, imageIndex, that contains a search index for imds. Use imageIndex with the retrieveImages function to search for images.
imageIndex $=$ indexImages (imds,bag) returns a search index that uses a custom bag0fFeatures object, bag. Use this syntax with the bag you created when you want to modify the number of visual words or the feature type used to create the image search index for imds.
imageIndex = indexImages(\qquad ,Name, Value) uses additional options specified by one or more Name, Value pair arguments, using any of the preceding syntaxes.

This object supports parallel computing using multiple MATLAB workers. Enable parallel computing from the "Computer Vision Toolbox Preferences" dialog box. To open Computer Vision Toolbox preferences, on the Home tab, in the Environment section, click Preferences. Then select Computer Vision Toolbox .

Examples

Search Image Set Using a Query Image

Create an image set.

```
setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets','cups');
imds = imageDatastore(setDir);
Index the image set.
imageIndex = indexImages(imds)
Creating an inverted image index using Bag-Of-Features.
Creating Bag-Of-Features.
* Selecting feature point locations using the Detector method.
* Extracting SURF features from the selected feature point locations.
** detectSURFFeatures is used to detect key points for feature extraction.
* Extracting features from 6 images...done. Extracted 1708 features.
* Keeping 80 percent of the strongest features from each category.
* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 1366.
** Using the strongest }1366\mathrm{ features from each of the other image categories.
* Using K-Means clustering to create a 20000 word visual vocabulary.
* Number of features : 1366
* Number of clusters (K) : 1366
* Initializing cluster centers...100.00%.
* Clustering...completed 1/100 iterations (~0.09 seconds/iteration)...converged in 1 i
* Finished creating Bag-Of-Features
Encoding images using Bag-Of-Features.
* Encoding 6 images...done.
Finished creating the image index.
imageIndex =
    invertedImageIndex with properties:
    ImageLocation: {6x1 cell}
```

 3-575
    ```
    ImageWords: [6x1 vision.internal.visualWords]
    WordFrequency: [1x1366 double]
        BagOfFeatures: [1x1 bagOfFeatures]
    MatchThreshold: 0.0100
WordFrequencyRange: [0.0100 0.9000]
```

Display the image set using the montage function.
thumbnailGallery = [];
for i = 1:length(imds.Files)
I = readimage(imds,i);
thumbnail = imresize(I,[300 300]);
thumbnailGallery = cat(4,thumbnailGallery,thumbnail);
end
figure
montage(thumbnailGallery);

Select a query image.
queryImage $=$ readimage(imds,2); figure
imshow(queryImage)

Search the image set for similar image using query image. The best result is first. indices = retrieveImages(queryImage,imageIndex) indices $=5 \times 1$

2
1
4
3
5
bestMatchIdx = indices(1);
Display the best match from the image set.
bestMatch $=$ imageIndex.ImageLocation\{bestMatchIdx\}
bestMatch =
'B:\matlab\toolbox\vision\visiondata\imageSets\cups\blueCup.jpg'
figure
imshow(bestMatch)

Create Search Index Using Custom Bag of Features

Create an image set.

```
setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets','cups');
imgSets = imageSet(setDir, 'recursive');
```

Display image set.
thumbnailGallery = [];
for $i=1$:imgSets.Count
$I=r e a d(i m g S e t s, i) ;$
thumbnail = imresize(I, [300 300]);
thumbnailGallery = cat(4, thumbnailGallery, thumbnail);
end
figure
montage(thumbnailGallery);

Train a bag of features using a custom feature extractor.
extractor = @exampleBag0fFeaturesExtractor;
bag = bag0fFeatures(imgSets,'CustomExtractor',extractor);
Creating Bag-0f-Features.

* Image category 1: cups
* Extracting features using a custom feature extraction function: exampleBagOfFeatures
* Extracting features from 6 images in image set 1...done. Extracted 115200 features.
* Keeping 80 percent of the strongest features from each category.
* Using K-Means clustering to create a 500 word visual vocabulary.
* Number of features : 92160

```
* Number of clusters (K) : 500
* Initializing cluster centers...100.00%.
* Clustering...completed 16/100 iterations (~0.31 seconds/iteration)...converged in 16
* Finished creating Bag-Of-Features
Use the trained bag of features to index the image set.
imageIndex = indexImages(imgSets,bag,'Verbose',false)
imageIndex =
        invertedImageIndex with properties:
            ImageLocation: {6x1 cell}
                ImageWords: [6x1 vision.internal.visualWords]
            WordFrequency: [1x500 double]
            BagOfFeatures: [1x1 bag0fFeatures]
            MatchThreshold: 0.0100
            WordFrequencyRange: [0.0100 0.9000]
queryImage = read(imgSets,4);
figure
imshow(queryImage)
```


Search for the image from image index using query image.
indices = retrieveImages(queryImage,imageIndex); bestMatch = imageIndex.ImageLocation\{indices(1)\}; figure
imshow(bestMatch)

Input Arguments

imds - Images
 imageDatastore object

Images, specified as an imageDatastore object. The object stores a collection of images.

bag - Bag of visual words bag0fFeatures object

Bag of visual words, specified as a bag0fFeatures object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'Verbose',true sets the 'Verbose' property to true

SaveFeatureLocations - Save feature locations true (default) | false

Save feature locations, specified as the comma-separated pair consisting of 'SaveFeatureLocations' and a logical scalar. When set to true, the image feature locations are saved in the imageIndex output object. Use location data to verify spatial or geometric image search results. If you do not require feature locations, set this property to false to reduce memory consumption.

Verbose - Display progress information true (default) | false

Display progress information, specified as the comma-separated pair consisting of 'Verbose' and a logical scalar.

Output Arguments

imageIndex - Image search index

invertedImageIndex object
Image search index, returned as an invertedImageIndex object.

Algorithms

imageIndex uses the bag-of-features framework with the speeded-up robust features (SURF) detector and extractor to learn a vocabulary of 20,000 visual words. The visual words are then used to create an index that maps visual words to the images in imds. You can use the index to search for images within imds that are similar to a given query image.

See Also

bag0fFeatures |evaluateImageRetrieval|imageDatastore| invertedImageIndex|retrieveImages

Topics

"Image Retrieval Using Customized Bag of Features"
"Image Retrieval with Bag of Visual Words"

Introduced in R2015a

integralFilter

Filter using integral image

Syntax

J = integralFilter(intI, H)

Description

J = integralFilter(intI,H) filters an image, given its integral image, intI, and filter object, H . The integralKernel function returns the filter object used for the input to the integralFilter.

This function uses integral images for filtering an image with box filters. You can obtain the integral image, intI, by calling the integral Image function. The filter size does not affect the speed of the filtering operation. Thus, the integralFilter function is ideally suited to use for fast analysis of images at different scales, as demonstrated by the ViolaJones algorithm [1].

Tips

Because the integralFilter function uses correlation for filtering, the filter is not rotated before computing the result.

Input Arguments

intI

Integral image. You can obtain the integral image, intI, by calling the integral Image function. The class for this value can be double or single.

H

Filter object. You can obtain the filter object, H, by calling the integralKernel function.

Output Arguments

J

Filtered image. The filtered image, J, returns only the parts of correlation that are computed without padding. This results in size(J) = size(intI) - H. Size for an upright filter, and size(J) = size(intI) - H. Size-[01] for a rotated filter. This function uses correlation for filtering.

Examples

Blur an Image Using an Average Filter

Read and display the input image.

```
I = imread('pout.tif');
imshow(I);
```


Compute the integral image.

```
intImage = integralImage(I);
```

Apply a 7-by-7 average filter.
avgH = integralKernel([1 177 7], 1/49); J = integralFilter(intImage, avgH);

Cast the result back to the same class as the input image.
J = uint8(J);
figure
imshow(J);

Find Vertical and Horizontal Edges in Image

Construct Haar-like wavelet filters to find vertical and horizontal edges in an image.
Read the input image and compute the integral image.

```
I = imread('pout.tif');
```

intImage = integralImage(I);
Construct Haar-like wavelet filters. Use the dot notation to find the vertical filter from the horizontal filter.
horiH = integralKernel([1 1 4 3; 1 443$],[-1,1])$; vertH = horiH.'

```
vertH =
    integralKernel with properties:
        BoundingBoxes: [2x4 double]
            Weights: [-1 1]
        Coefficients: [4x6 double]
            Center: [2 3]
                        Size: [4 6]
        Orientation: 'upright'
```

Display the horizontal filter.
imtool(horiH.Coefficients, 'InitialMagnification','fit');

Compute the filter responses.

```
horiResponse = integralFilter(intImage,horiH);
```

vertResponse = integralFilter(intImage,vertH);

Display the results.
figure;
imshow(horiResponse, []);
title('Horizontal edge responses');

Horizontal edge responses

figure;

imshow(vertResponse,[]);
title('Vertical edge responses');

Vertical edge responses

Compute a Rotated Edge Response Using Integral Filter

Read the input image.
I = imread('pout.tif');
Compute 45 degree edge responses of the image.
intImage = integralImage(I,'rotated'); figure; imshow(I); title('Original Image');

Original Image

Construct 45 degree rotated Haar-like wavelet filters.
rotH = integralKernel([2 1 2 2;4 32 2],[1 -1],'rotated'); rotHTrans = roth.';

Visualize the filter rotH.
figure;
imshow(rotH.Coefficients, [],'InitialMagnification','fit');

Compute filter responses.
rotHResponse = integralFilter(intImage,rotH);
rotHTransResponse = integralFilter(intImage,rotHTrans);
Display results.
figure;
imshow(rotHResponse, []);
title('Response for SouthWest-NorthEast edges');

Response for SouthWest-NorthEast edges

figure;
imshow(rotHTransResponse, []); title('Response for NorthWest-SouthEast edges');

References

[1] Viola, Paul and Michael J. Jones, "Rapid Object Detection using a Boosted Cascade of Simple Features", Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. Volume: 1, pp.511-518.

See Also

cumsum | integralImage | integralKernel

Introduced in R2012a

insertMarker

Insert markers in image or video

Syntax

RGB = insertMarker(I, position)
RGB = insertMarker(I, position,marker)
RGB = insertMarker(, Name, Value)

Description

RGB = insertMarker(I, position) returns a truecolor image with inserted plus (+) markers. The input image, I, can be either a truecolor or grayscale image. You draw the markers by overwriting pixel values. The input position can be either an M-by- 2 matrix of M number of $[x y$] pairs or one of the "Point Feature Types".

RGB = insertMarker(I, position,marker) returns a truecolor image with the marker type of markers inserted.

RGB = insertMarker(\qquad ,Name, Value) uses additional options specified by one or more Name, Value pair arguments.

Examples

Draw Markers on an Image

Read the image.
I = imread('peppers.png');
Insert a plus (+) marker.
RGB = insertMarker(I,[147 279]);
Draw four x-marks.

```
pos = [120 248;195 246;195 312;120 312];
color = {'red','white','green','magenta'};
RGB = insertMarker(RGB,pos,'x','color',color,'size',10);
```

Display the image.
imshow(RGB);

Input Arguments

I - Input image
 M-by- N-by-3 truecolor | M-by-N 2-D grayscale image

Input image, specified in truecolor or 2-D grayscale.
Data Types: single | double | int16 | uint8|uint16
position - Position of marker
M-by-2 matrix | vector
Position of marker, specified as either an M-by-2 matrix of M number of $[x y]$ pairs or one of the "Point Feature Types". The center positions for the markers are defined by the [xy] pairs of the matrix or by the Location property of the point feature object.

Data Types: single | double|int8|int16|int32|int64|uint8|uint16| uint32 | uint64

marker - Type of marker

'plus ' (default) | character vector | string scalar
Type of marker, specified as a character vector. The vector can be full text or the corresponding symbol.

| Character Vector | Symbol |
| :--- | :--- |
| 'circle' | 'o' |
| 'x-mark' | 'x' |
| 'plus' | '+' |
| 'star' | '*' |
| 'square' | 's' |

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, . . . , NameN, ValueN.

Example: 'Color','yellow' specifies yellow for the marker color.

Size - Size of marker
 3 (default) | scalar value

Size of marker in pixels, specified as the comma-separated pair consisting of 'Size' and a scalar value in the range [1, inf).

```
Data Types: single|double| int8| int16|int32|int64|uint8|uint16|
uint32| uint64
```


Color - Marker color

```
'green' (default) | character vector | cell array of character vectors | string scalar |
string array
```

Marker color, specified as the comma-separated pair consisting of 'Color' and either a character vector, cell array of character vectors, vector, or matrix. You can specify a different color for each marker or one color for all markers.

To specify a color for each marker, set Color to a cell array of color character vectors or an M-by-3 matrix of M number of RGB (red, green, and blue) color values.

To specify one color for all markers, set Color to either a color character vector or an [R G B] vector. The [R G B] vector contains the red, green, and blue values.

Supported colors are: 'blue', 'green', 'red', 'cyan', 'magenta', 'yellow','black', and 'white'.
Data Types: cell|char|uint8|uint16|int16|double|single

Output Arguments

RGB - Output image

M-by- N-by-3 truecolor
Output image, returned as a truecolor image.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- 'Shape' and 'Color' must be compile-time constants.

See Also

"Point Feature Types" | BRISKPoints | MSERRegions | ORBPoints | SURFPoints | cornerPoints|insert0bjectAnnotation|insertShape|insertText

Topics

"Insert Circle and Filled Shapes on an Image" on page 3-615
"Insert Numbers and Text on Image" on page 3-623
Introduced in R2013a

insertObjectAnnotation

Annotate truecolor or grayscale image or video stream

Syntax

```
RGB = insertObjectAnnotation(I,shape,position,label)
RGB = insertObjectAnnotation(I,shape,position,label,Name,Value)
insertObjectAnnotation(I,'rectangle',position,label)
insertObjectAnnotation(I,'circle',position,label)
```


Description

RGB = insertObjectAnnotation(I, shape, position,label) returns a truecolor image annotated with shape and label at the location specified by position.

RGB = insertObjectAnnotation(I,shape,position,label,Name,Value) uses additional options specified by one or more Name, Value pair arguments.
insertObjectAnnotation(I,'rectangle', position,label) inserts rectangles and labels at the location indicated by the position matrix.
insert0bjectAnnotation(I, 'circle', position, label) inserts circles and corresponding labels at the location indicated by the position matrix.

Examples

Annotate Image with Numbers and Strings

Read image.
I = imread('board.tif');
Create labels of floating point numbers. The floating point numbers relate to confidence value labels.

```
label_str = cell(3,1);
conf_val = [85.212 98.76 78.342];
for ii=1:3
    label_str{ii} = ['Confidence: ' num2str(conf_val(ii),'%0.2f') '%'];
end
```

Set the position for the rectangles as [x y width height].

```
position = [23 373 60 66;35 185 77 81;77 107 59 26];
```

Insert the labels.

```
RGB = insertObjectAnnotation(I,'rectangle',position,label_str,...
    'TextBoxOpacity',0.9,'FontSize',18);
```

Display the annotated image.
figure
imshow(RGB)
title('Annotated chips');

Annotated chips

Annotate Image with Integer Numbers

Read image.
I = imread('coins.png');
Set positions for the circles. The first two values represents the center at (x, y) and the third value is the radius.

```
position = [96 146 31;236 173 26];
```

Set the label to display the integers 5 and 10 (U.S. cents).
label = [5 10];
Insert the annotations.
RGB = insertObjectAnnotation(I,'circle',position,label,'LineWidth',3,'Color',\{'cyan', Display.

```
figure
imshow(RGB)
title('Annotated coins');
```


Input Arguments

I - Truecolor or grayscale image

M-by- N-by-3 truecolor | M-by-N 2-D grayscale image
Truecolor or grayscale image, specified as an image or video stream. The input image can be either an M-by- N-by-3 truecolor or a M-by- $N 2$ 2-D grayscale image.

Data Types: double | single | uint8|uint16|int16

shape - Rectangle or circle annotation

'rectangle'|'circle'
Rectangle or circle annotation, specified as a character vector indicating the annotation shape.

Data Types: char

position - Location and size of the annotation shape

M-by-3 matrix | M-by-4 matrix
Location and size of the annotation shape, specified as an M-by- 3 or M-by- 4 matrix. When you specify a rectangle, the position input matrix must be an M-by- 4 matrix. Each row, M, specifies a rectangle as a four-element vector, [x y width height]. The elements, x and y, indicate the upper-left corner of the rectangle, and the width and height specify the size.

When you specify a circle, the position input matrix must be an M-by- 3 matrix, where each row, M, specifies a three-element vector [x y r]. The elements, x and y, indicate the center of the circle and r specifies the radius.

Example: position = [50 12075 75]
A rectangle with top-left corner located at $x=50, y=120$, with a width and height of 75 pixels.

Example: position = [96 146 31]
A circle with center located at $x=96, y=146$ and a radius of 31 pixels.
Example: position $=\left[\begin{array}{lll}23 & 373 & 6066 ; 3518577 \\ \text { 81;77 } 107 & 59 & 26\end{array}\right]$
Location and size for three rectangles.

label - Label to associate with a shape

M-element numeric vector | string | categorical labels | cell array of ASCII character vectors

Label to associate with a shape, specified as an M numeric vector, string, categorical labels, or a cell array of ASCII character vectors. The character, string, or categorical labels must be encoded as ASCII characters. The cell array must be the of length equal to the number of shape positions. You can specify a scalar label for all shapes as a numeric scalar, string, or categorical.

Example: label = [5 10], where the function marks the first shape with the label, 5, and the second shape with the label, 10.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.

You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: 'Color', 'white' sets the color for the label text box to white.

Font - Font face of text

'LucidaSansRegular' (default) | character vector | string scalar
Font face of text, specified as the comma-separated pair consisting of 'Font' and a character vector. The font face must be one of the available truetype fonts installed on your system. To get a list of available fonts on your system, type listTrueTypeFonts at the MATLAB command prompt.
Data Types: char

FontSize - Label text font size

12 (default) | integer in the range of [872]
Label text font size, specified as the comma-separated pair consisting of 'FontSize' and an integer corresponding to points in the range of [872].

Data Types: double | single | int8 | int16|int32|int64|uint8|uint16| uint32 | uint64

LineWidth - Shape border line width 1 (default)

Shape border line width, specified as the comma-separated pair consisting of 'LineWidth' and a positive scalar integer in pixels.

Color - Color for shape and corresponding label text box

'yellow' (default) | character vector | string scalar | [R G B] vector | cell array | string array | M-by-3 matrix

Color for shape and for corresponding label text box, specified as the comma-separated pair consisting of 'Color' and either a character vector, an [R G B] vector, a cell array, or an M-by-3 matrix.

To specify one color for all shapes, set this parameter to either a character vector or an $[R$ G B] vector. To specify a color for each of the M shapes, set this parameter to a cell array of M character vectors. Alternatively, you can specify an M-by-3 matrix of RGB values for each annotation. RGB values must be in the range of the input image data type.

Supported colors: 'blue', 'green', 'cyan', 'red', 'magenta', 'black', and 'white'.

Data Types: char|uint8|uint16|int16| double | single | cell

TextColor - Color of text in text label

'black' (default) | character vector | string scalar | [R G B] vector | cell array | string array | M-by-3 matrix

Color of text in text label, specified as the comma-separated pair consisting of 'TextColor' and either a character vector, an [R G B] vector, a cell array, or an M-by-3 matrix. To specify one color for all text, set this parameter to either a character vector or an [R G B] vector. To specify a color for each of the M text labels, set this parameter to a cell array of M character vectors. Alternatively, you can specify an M-by-3 matrix of RGB values for each annotation. RGB values must be in the range of the input image data type.

Supported colors: 'blue', 'green', 'cyan','red', 'magenta', 'yellow', and 'white'.

Data Types: char|uint8|uint16|int16| double | single | cell

TextBoxOpacity - Opacity of text label box background

0.6 (default) | range of [0 1]

Opacity of text label box background, specified as the comma-separated pair consisting of 'TextBoxOpacity' and a scalar defining the opacity of the background of the label text box. Specify this value in the range of 0 to 1 .
Data Types: double | single |int8|int16|int32|int64|uint8|uint16| uint32|uint64

Output Arguments

RGB - Truecolor or grayscale image with annotation

M-by-N-by-3 truecolor

Truecolor image with annotation, returned as an image or video stream.
Data Types: double | single | uint8 | uint16 |int16

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Input image must be bounded. See "Specify Upper Bounds for Variable-Size Arrays" (MATLAB Coder).
- See "System Objects in MATLAB Code Generation" (MATLAB Coder).

See Also

insertMarker|insertShape|insertText
Introduced in R2012b

insertShape

Insert shapes in image or video

Syntax

RGB = insertShape(I,shape,position)
RGB = insertShape (__ , Name, Value)

Description

RGB = insertShape(I, shape, position) returns a truecolor image with shape inserted. The input image, I, can be either a truecolor or grayscale image. You draw the shapes by overwriting pixel values.

RGB = insertShape(\qquad ,Name, Value) uses additional options specified by one or more Name, Value pair arguments.

Examples

Insert Circle and Filled Shapes on an Image

Read the image.

```
I = imread('peppers.png');
```

Draw a circle with a border line width of 5 .

```
RGB = insertShape(I,'circle',[150 280 35],'LineWidth',5);
```

Draw a filled triangle and a filled hexagon.

```
pos_triangle = [183 297 302 250 316 297];
pos-hexagon = [340 163 305 186 303 257 334 294 362 255 361 191];
RGB = insertShape(RGB,'FilledPolygon',{pos_triangle,pos_hexagon},...
    'Color', {'white','green'},'Opacity',0.7);
```

Display the image.
imshow(RGB);

Input Arguments

I - Input image
M-by- N-by-3 truecolor | M-by-N 2-D grayscale image
Input image, specified in truecolor or 2-D grayscale.
Data Types: single | double | int16|uint8|uint16

shape - Type of shape
 'Rectangle'|'FilledRectangle'|'Line'|'Polygon'|'FilledPolygon'| 'Circle'| 'FilledCircle'

Type of shape, specified as a character vector. The vector can be, 'Rectangle', 'FilledRectangle','Line', 'Polygon', 'FilledPolygon', 'Circle', or 'FilledCircle'.

Data Types: char

position - Position of shape

matrix | vector | cell array
Position of shape, specified according to the type of shape, described in the table.

| Shape | Position | Shape Drawn |
| :---: | :---: | :---: |
| 'Rectangle'
 'FilledRectangle | M-by-4 matrix where each row specifies a rectangle as [x y width height]. $\left[\begin{array}{cccc} x_{1} & y_{1} & \text { width }_{1} & \text { eight }_{1} \\ x_{2} & y_{2} & \text { width }_{2} & \text { height }_{2} \\ \vdots & \vdots & \vdots & \vdots \\ x_{M} & y_{M} & \text { width }_{M} & \text { height }_{M} \end{array}\right]$ | $\begin{aligned} & \text { For } M=2: \\ & \left(x_{1}, y_{1}\right) \end{aligned}$ $\left(x_{2}, y_{2}\right)$
 height 2 |
| 'Line' | For one or more disconnected lines, an M-by-4 matrix, where each four-element vector [x_{1}, y_{1}, $\left.x_{2}, y_{2}\right]$, describe a line with endpoints, $\left[x_{1} y_{1}\right]$ and $\left[\begin{array}{ll}x_{2} & y_{2}\end{array}\right]$. $\left[\begin{array}{cccc} x_{11} & y_{11} & x_{12} & y_{12} \\ x_{21} & y_{21} & x_{22} & y_{22} \\ \vdots & \vdots & \vdots & \vdots \\ x_{M 1} & y_{M 1} & x_{M 2} & x_{M 2} \end{array}\right]$ | |

| Shape | Position | Shape Drawn |
| :---: | :---: | :---: |
| | For one or more line segments, an M-by- $2 L$ matrix, where each row is a vector representing a polyline with L number of vertices. $\left[\begin{array}{ccccccc} x_{11} & y_{11} & x_{12} & y_{12} & \cdots & x_{1 L} & y_{1 L} \\ x_{21} & y_{21} & x_{22} & y_{22} & \cdots & x_{2 L} & y_{2 L} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{M 1} & y_{M 1} & x_{M 2} & y_{M 2} & \cdots & x_{M L} & y_{M L} \end{array}\right]$
 The polyline always contains ($L-1$) number of segments because the first and last vertex points do not connect. For lines with fewer segments, repeat the ending coordinates to fill the matrix.
 You can also specify the shapes as a cell array of M vectors. $\begin{aligned} & \left\{\left[x_{11}, y_{11}, x_{12}, y_{12}, \ldots, x_{1 \mathrm{p}}, y_{1 \mathrm{p}}\right],\right. \\ & {\left[x_{21}, y_{21}, x_{22}, y_{22}, \ldots \ldots, x_{2 \mathrm{q}}, y_{2 \mathrm{q}}\right], \ldots} \\ & \left.\left[x_{\mathrm{M} 1}, y_{\mathrm{M} 1}, x_{\mathrm{M} 2}, y_{\mathrm{M} 2}, \ldots .,, x_{\mathrm{Mr}}, y_{\mathrm{Mr}}\right]\right\} \end{aligned}$
 p, q, and r specify the number of vertices. | |

| Shape | Position | Shape Drawn |
| :---: | :---: | :---: |
| 'Polygon'
 'FilledPolygon' | An M-by- $2 L$ matrix, where each row represents a polygon with L number of vertices. Each row of the matrix corresponds to a polygon. For polygons with fewer segments, repeat the ending coordinates to fill the matrix. $\left[\begin{array}{ccccccc} x_{11} & y_{11} & x_{12} & y_{12} & \cdots & x_{1 L} & y_{1 L} \\ x_{21} & y_{21} & x_{22} & y_{22} & \cdots & x_{2 L} & y_{2 L} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{M 1} & y_{M 1} & x_{M 2} & y_{M 2} & \cdots & x_{M L} & y_{M L} \end{array}\right]$
 You can also specify the shapes as a cell array of M vectors: $\begin{aligned} & \left\{\left[x_{11}, y_{11}, x_{12}, y_{12}, \ldots, x_{1 \mathrm{p}}, y_{1 \mathrm{p}}\right],\right. \\ & {\left[x_{21}, y_{21}, x_{22}, y_{22}, \ldots, x_{2 \mathrm{q}}, y_{2 q}\right], \ldots} \\ & \left.\left[x_{\mathrm{M} 1}, y_{\mathrm{M} 1}, x_{\mathrm{M} 2}, y_{\mathrm{M} 2}, \ldots \ldots, x_{\mathrm{Mr}}, y_{\mathrm{Mr}}\right]\right\} \end{aligned}$
 p, q, and r specify the number of vertices. | For $\mathrm{M}=3: \mathrm{L}=5$ ́․ |
| 'Circle'
 'FilledCircle' | An M-by-3 matrix, where each row is a vector specifying a circle as [$\begin{array}{ll}x & y \\ \text { radius }\end{array}$. The [x y] coordinates represent the center of the circle. $\left[\begin{array}{ccc} x_{1} & y_{1} & \text { radius }_{1} \\ x_{2} & y_{2} & \text { radius }_{2} \\ \vdots & \vdots & \vdots \\ x_{M} & y_{M} & \text { radius }_{M} \end{array}\right]$ | For M=2: |

Data Types: single | double | int8| int16|int32|int64|uint8|uint16| uint32|uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: 'Color', 'yellow' specifies yellow for the shape color.

LineWidth - Shape border line width
1 (default) | positive scalar integer

Shape border line width, specified in pixels, as a positive scalar integer. This property only applies to the 'Rectangle', 'Line', 'Polygon', or 'Circle' shapes.

Data Types: uint8|uint16|int16|double|single

Color - Shape color

'yellow' (default) | character vector | cell array of character vectors | [R G B] vector | M-by-3 matrix

Shape color, specified as the comma-separated pair consisting of 'Color' and either a character vector, cell array of character vector, or matrix. You can specify a different color for each shape, or one color for all shapes.

To specify a color for each shape, set Color to a cell array of color character vectors or an M-by-3 matrix of M number of RGB (red, green, and blue) color values.

To specify one color for all shapes, set Color to either a color character vector or an [R G B] vector. The [R G B] vector contains the red, green, and blue values.

Supported colors: 'blue', 'green', 'red', 'cyan', 'magenta','black','black', and 'white'.
Data Types: cell|char|uint8|uint16|int16|double|single

Opacity - Opacity of filled shape

0.6 (default) | range of [0 1]

Opacity of filled shape, specified as the comma-separated pair consisting of 'Opacity' and a scalar value in the range [01]. The Opacity property applies for the FilledRectangle, FilledPolygon, and FilledCircle shapes.

Data Types: double | single | int8| int16|int32|int64|uint8|uint16| uint32 | uint64

SmoothEdges - Smooth shape edges

true (default) | false
Smooth shape edges, specified as the comma-separated pair consisting of 'SmoothEdges' and a logical value of true or false. A true value enables an anti-aliasing filter to smooth shape edges. This value applies only to nonrectangular shapes. Enabling antialiasing requires additional time to draw the shapes.

Data Types: logical

Output Arguments

RGB - Output image

M-by- N-by-3 truecolor
Output image, returned as a truecolor image.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- 'Color' and 'SmoothEdges ' must be compile-time constants.

See Also

insertMarker|insert0bjectAnnotation|insertText

Topics

"Draw Markers on an Image" on page 3-601
"Insert Numbers and Text on Image" on page 3-623

Introduced in R2014a

insertText

Insert text in image or video

Syntax

```
RGB = insertText(I,position,text)
RGB = insertText(I,position,numericValue)
RGB = insertText( ___,Name,Value)
```


Description

RGB = insertText(I, position,text) returns a truecolor image with text inserted. The input image, I, can be either a truecolor or grayscale image.

RGB = insertText(I, position, numericValue) returns a truecolor image with numeric values inserted.

RGB = insertText(__ , Name, Value) uses additional options specified by one or more Name, Value pair arguments.

Examples

Insert Numbers and Text on Image

Read the image.

```
I = imread('board.tif');
```

Create texts that contain fractions.

```
text_str = cell(3,1);
conf_val = [85.212 98.76 78.342];
for \overline{i}}\mathbf{i=1:3
    text_str{ii} = ['Confidence: ' num2str(conf_val(ii),'%0.2f') '%'];
end
```

Define the positions and colors of the text boxes.

```
position = [23 373;35 185;77 107];
box_color = {'red','green','yellow'};
```

Insert the text with new font size, box color, opacity, and text color.

```
RGB = insertText(I,position,text str,'FontSize',18,'BoxColor',...
    box_color,'BoxOpacity',0.4,'TextColor','white');
```

Display the image.
figure
imshow(RGB)
title('Board');

Board

Insert Numeric Text on Image

Read the image.

```
I = imread('peppers.png');
```

Define the (x, y_{-}) position for the text and the value.

```
position = [1 50; 100 50];
```

value = [555 pi];

Insert text using the bottom-left as the anchor point.
RGB = insertText(I, position,value,'AnchorPoint','LeftBottom');
Display the image with the numeric text inserted.
figure
imshow(RGB),title('Numeric values');

Numeric values

Display non-ASCII character ($\mathrm{U}+014 \mathrm{C}$)
OWithMacron=native2unicode([hex2dec('C5') hex2dec('8C')],'UTF-8'); RGB = insertText(RGB,[256 50],OWithMacron,'Font','LucidaBrightRegular','BoxColor','w')

Display the image with the numeric text inserted.
figure
imshow(RGB),title('Numeric values');

Input Arguments

I - Input image

M-by- N-by-3 truecolor | M-by- N 2-D grayscale image
Input image, specified as M-by- N-by-3 truecolor image or an M-by- N 2-D grayscale image.
Data Types: single | double | int16|uint8|uint16

text - Unicode text character vector

character vector | string scalar | cell array of character vectors | string array

Unicode text, specified as a single UNICODE text string or a cell array of UNICODE strings of length M, where M is the number of rows in position. The function overwrites pixels with the value of text. The length of the cell array must equal the number of rows in the position matrix. If you specify a single string, the function uses it for all positions in the position matrix. Most unicode fonts contain ASCII characters. You can display non-English and English characters, including English numeric values, with a single font.

Data Types: char

numericValue - Numeric value text

scalar | vector
Numeric value text, specified as a scalar or a vector. If you specify a scalar value, that value is used for all positions. The vector length must equal the number of rows in the position matrix. Numeric values are converted to a character vector using the sprintf format '\%0.5g'.

Data Types: char

position - Position of inserted text

vector | matrix
Position of inserted text, specified as a vector or an M-by-2 matrix of [x y] coordinates. Each row represents the $[x y]$ coordinate for the AnchorPoint of the text bounding box.
Data Types: single | double | int8|int16|int32|int64|uint8|uint16| uint32|uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, ..., NameN, ValueN.

Example: 'AnchorPoint','LeftTop'

Font - Font face of text

'LucidaSansRegular' (default)| character vector
Font face of text, specified as the comma-separated pair consisting of 'Font' and a character vector. The font face must be one of the available truetype fonts installed on
your system. To get a list of available fonts on your system, type listTrueTypeFonts at the MATLAB command prompt.
Data Types: char

FontSize - Font size

12 (default) | positive integer in the range $[1,200]$
Font size, specified as the comma-separated pair consisting of 'FontSize' and a positive integer in the range $[1,200]$.

Data Types: double|single | int8|int16|int32|int64|uint8|uint16| uint32|uint64

TextColor - Text color

'black' (default) | character vector | cell array of character vectors | [R G B] vector | M-by-3 matrix

Text color, specified as the comma-separated pair consisting of 'TextColor' and a character vector, cell array of character vectors, or matrix. You can specify a different color for each character vector or one color for all character vectors.

- To specify a color for each text character vector, set TextColor to a cell array of M number of color character vectors. Or, you can set it to an M-by- 3 matrix of RGB character vector color values.
- To specify one color for all text character vectors, set TextColor to either a color character vector or an [R G B] vector of red, green, and blue values.
- RGB values must be in the range of the image data type. Supported colors: ' blue ', 'green', 'red', 'cyan', 'magenta', 'yellow','black', and 'white'.

Data Types: cell|char|uint8|uint16|int16|double|single

BoxColor - Text box color

'yellow' (default) | character vector | cell array of character vectors | [R G B] vector | M-by-3 matrix

Text box color, specified as the comma-separated pair consisting of 'BoxColor' and a character vector, cell array of character vector, or matrix. You can specify a different color for each text box or one color for all the boxes.

- To specify a color for each text box, set BoxColor to a cell array of M number of color character vectors. Or, you can set it to an M-by- 3 matrix of M number of RGB (red, green, and blue) character vector color values.
- To specify one color for all the text boxes, set BoxColor to either a color character vector or an [R G B] vector. The [R G B] vector contains the red, green, and blue values.
- RGB values must be in the range of the image data type. Supported colors: 'blue ', 'green', 'red', 'cyan', 'magenta', 'yellow','black', and 'white'.

Data Types: cell|char|uint8|uint16|int16|double| single

BoxOpacity - Opacity of text box

0.6 (default) | scalar value in the range of [0 1]

Opacity of text box, specified as the comma-separated pair consisting of 'BoxOpacity' and a scalar value in the range [0,1]. A value of 0 corresponds to a fully transparent text box, or no box. A value of 1 corresponds to a fully opaque text box.

Data Types: double | single | int8 | int16|int32|int64|uint8|uint16| uint32 | uint64

AnchorPoint - Text box reference point

'LeftTop' (default) | 'LeftCenter' | 'LeftBottom' | 'CenterTop' | 'Center' | 'CenterBottom'|'RightTop'|'RightCenter'| 'RightBottom'

Text box reference point, specified as the comma-separated pair consisting of 'AnchorPoint' and a character vector value. The anchor point defines a relative location on the text box. You can position the text box by placing its anchor point at the $[x, y]$ coordinate defined by the corresponding position for the text. For example, to place the center of the text box to be at the $[x, y]$ coordinate you specified with the position input, then set AnchorPoint to Center.

Supported positions are LeftTop, LeftCenter, LeftBottom, CenterTop, Center, CenterBottom, RightTop, RightCenter, and RightBottom.

Data Types: char

Output Arguments

RGB - Output image

M-by- N-by-3 truecolor image

Output image, returned as an M-by- N-by- 3 truecolor image with the specified text inserted.

Limitations

- If you do not see characters in the output image, it means that the font did not contain the character. Select a different font. To get a list of available fonts on your system, at the MATLAB prompt, type listTrueTypeFonts.
- Increasing the font size also increases the preprocessing time and memory usage.
- The insertText function does not work for certain composite characters. For example, you cannot insert text when the rendering of one glyph corresponding to a character code influences the position, shape, or size of the adjacent glyph.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Font, FontSize must be compile-time constants.
- Non-ASCII characters are not supported.

See Also

insertMarker|insert0bjectAnnotation|insertShape|listTrueTypeFonts

Topics

"Draw Markers on an Image" on page 3-601
"Insert Circle and Filled Shapes on an Image" on page 3-615

Introduced in R2013a

isEpipoleInImage

Determine whether image contains epipole

Syntax

```
isIn = isEpipoleInImage(F,imageSize)
isIn = isEpipoleInImage(F',imageSize)
[isIn,epipole] = isEpipoleInImage(
```

\qquad

Description

isIn = isEpipoleInImage(F,imageSize) determines whether the first stereo image associated with the fundamental matrix F contains an epipole. imageSize is the size of the first image, and is in the format returned by the function size.
isIn = isEpipoleInImage(F',imageSize) determines whether the second stereo image associated with the fundamental matrix F^{\prime} contains an epipole.
[isIn,epipole] = isEpipoleInImage(__) also returns the epipole.

Examples

Determine Epipole Location in an Image

```
% Load stereo point pairs.
    load stereoPointPairs
    f = estimateFundamentalMatrix(matchedPoints1, matchedPoints2, 'NumTrials', 2000);
    imageSize = [200 300];
% Determine whether the image contains epipole and epipole location.
    [isIn,epipole] = isEpipoleInImage(f,imageSize)
isIn = logical
    1
```

```
epipole = 1\times2
```


Input Arguments

F - Fundamental matrix

3-by-3 matrix (default)
Fundamental matrix, specified as a 3-by-3 matrix computed from stereo images. F must be double or single. If P_{1} represents a point in the first image I_{1} that corresponds to P_{2}, a point in the second image I_{2}, then:
$\left[P_{2}, 1\right] * F *\left[P_{1}, 1\right]=0$
In computer vision, the fundamental matrix is a 3-by-3 matrix which relates corresponding points in stereo images. When two cameras view a 3-D scene from two distinct positions, there are a number of geometric relations between the 3-D points and their projections onto the 2-D images that lead to constraints between the image points. Two images of the same scene are related by epipolar geometry.

imageSize - Image size

row vector
Image size, specified in the format returned by the size function.

Output Arguments

isIn - Valid epipole

logical
Valid epipole logical, specified as true when the image contains an epipole, and false when the image does not contain an epipole.

When the image planes are at a great enough angle to each other, you can expect the epipole to be located in the image.

When the image planes are at a more subtle angle to each other, you can expect the epipole to be located outside of the image, (but still in the image plane).

epipole - Location of epipole

1-by-2 vector
Location of epipole, returned as a 1-by-2 vector.

Extended Capabilities

C/C++ Code Generation
Generate C and $C++$ code using MATLAB® $\operatorname{Coder}^{\text {TM }}$.

See Also
 epipolarLine|estimateFundamentalMatrix| estimateUncalibratedRectification

Topics

"Structure From Motion From Two Views"
"Structure From Motion From Multiple Views"

Introduced in R2011a

isfilterseparable

Determine whether filter coefficients are separable

Syntax

S = isfilterseparable(H)
[S, HCOL, HROW] = isfilterseparable(H)

Description

$S=$ isfilterseparable(H) takes in the filter kernel H and returns 1 (true) when the filter is separable, and 0 (false) otherwise.
[S, HCOL, HROW] = isfilterseparable(H) uses the filter kernel, H , to return its vertical coefficients HCOL and horizontal coefficients HROW when the filter is separable. Otherwise, HCOL and HROW are empty.

Input Arguments

H

H numeric or logical, 2-D, and nonsparse.

Output Arguments

HCOL

HCOL is the same data type as input H when H is either single or double floating point. Otherwise, HCOL becomes double floating point. If S is true, HCOL is a vector of vertical filter coefficients. Otherwise, HCOL is empty.

HROW

HROW is the same data type as input H when H is either single or double floating point. Otherwise, HROW becomes double floating point. If S is true, HROW is a vector of horizontal filter coefficients. Otherwise, HROW is empty.

S

Logical variable that is set to true, when the filter is separable, and false, when it is not.

Examples

Determine if Gaussian Filter is Separable

Determine if the Gaussian filter created using the fspecial function is separable.
Create a Gaussian filter.
twoDimensionalFilter = fspecial('gauss');
Test the filter.

```
[isseparable,hcol,hrow] = isfilterseparable(twoDimensionalFilter)
isseparable = logical
    l
hcol = 3\times1
    -0.1065
    -0.7870
    -0.1065
hrow = 1\times3
    -0.1065 -0.7870 -0.1065
```


More About

Separable two dimensional filters

Separable two-dimensional filters reflect the outer product of two vectors. Separable filters help reduce the number of calculations required.

A two-dimensional convolution calculation requires a number of multiplications equal to the width \times height for each output pixel. The general case equation for a two-dimensional convolution is:

$$
Y(m, n)=\sum_{k} \sum_{T} H(k, l) U(m-k, n-l)
$$

If the filter H is separable then,

$$
H(k, l)=H_{\text {row }}(k) H_{\text {col }}(l)
$$

Shifting the filter instead of the image, the two-dimensional equation becomes:

$$
Y(m, n)=\sum_{k} H_{\text {row }}(k) \sum_{l} H_{c o l}(l) U(m-k, n-l)
$$

This calculation requires only (width + height) number of multiplications for each pixel.

Algorithms

The isfilterseparable function uses the singular value decomposition svd function to determine the rank of the matrix.

See Also

2-D FIR Filter \| rank \| svd

External Websites

MATLAB Central - Separable Convolution

Introduced in R2006a

lineToBorderPoints

Intersection points of lines in image and image border

Syntax

```
points = lineToBorderPoints(lines,imageSize)
```


Description

points = lineToBorderPoints(lines,imageSize) computes the intersection points between one or more lines in an image with the image border.

Examples

Find Intersection Points Between a Line and Image Border

Load and display an image.
I = imread('rice.png');
figure;
imshow(I); hold on;

Define a line with the equation, $2 * \mathrm{x}+\mathrm{y}-300=0$.
aLine $=[2,1,-300]$;
Compute the intersection points of the line and the image border.
points $=$ lineToBorderPoints(aLine,size(I))
points $=1 \times 4$
$149.7500 \quad 0.5000 \quad 21.7500 \quad 256.5000$
line(points([1,3]), points([2,4]));

Input Arguments

lines - Line matrix

M-by-3 matrix (default)
Line matrix, specified as an M-by- 3 matrix, where each row must be in the format, $[A, B, C]$. This matrix corresponds to the definition of the line:
$A * x+B^{*} y+C=0$.
M represents the number of lines.
lines must be double or single.
imageSize - Image size
integer (default) | row vector
Image size, specified as a row vector in the format returned by the size function.

Output Arguments

points - Intersection points

M-by-4 matrix
Intersection points, returned as an M-by- 4 matrix. The function returns the matrix in the format of $\left[x_{1}, y_{1}, x_{2}, y_{2}\right]$. In this matrix, $\left[x_{1} y_{1}\right]$ and $\left[x_{2} y_{2}\right]$ are the two intersection points. When a line in the image and the image border do not intersect, the function returns $[-1,-1,-1,-1]$.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

See Also

epipolarLine|line|size

Introduced in R2011a

matchFeatures

Find matching features

Syntax

indexPairs = matchFeatures(features1,features2)
[indexPairs,matchmetric] = matchFeatures(features1,features2) [indexPairs,matchmetric] = matchFeatures(features1,features2, Name, Value)

Description

indexPairs = matchFeatures(features1,features2) returns indices of the matching features in the two input feature sets. The input feature must be either binaryFeatures objects or matrices.
[indexPairs,matchmetric] = matchFeatures(features1,features2) also returns the distance between the matching features, indexed by indexPairs.
[indexPairs,matchmetric] = matchFeatures(features1,features2, Name, Value) includes additional options specified by one or more Name, Value pair arguments.

Examples

Find Corresponding Interest Points Between Pair of Images

Find corresponding interest points between a pair of images using local neighbhorhoods and the Harris algorithm.

Read the stereo images.

```
I1 = rgb2gray(imread('viprectification_deskLeft.png'));
I2 = rgb2gray(imread('viprectification_deskRight.png'));
```

Find the corners.

```
points1 = detectHarrisFeatures(I1);
points2 = detectHarrisFeatures(I2);
```

Extract the neighborhood features.

```
[features1,valid points1] = extractFeatures(I1,points1);
[features2,valid_points2] = extractFeatures(I2,points2);
```

Match the features.

```
indexPairs = matchFeatures(features1,features2);
```

Retrieve the locations of the corresponding points for each image.

```
matchedPoints1 = valid points1(indexPairs(:,1),:);
matchedPoints2 = valid_points2(indexPairs(:,2),:);
```

Visualize the corresponding points. You can see the effect of translation between the two images despite several erroneous matches.
figure; showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2);

Find Corresponding Points Using SURF Features

Use the SURF local feature detector function to find the corresponding points between two images that are rotated and scaled with respect to each other.

Read the two images.

```
I1 = imread('cameraman.tif');
I2 = imresize(imrotate(I1,-20),1.2);
```

Find the SURF features.

```
points1 = detectSURFFeatures(I1);
points2 = detectSURFFeatures(I2);
```

Extract the features.

```
[f1,vpts1] = extractFeatures(I1,points1);
[f2,vpts2] = extractFeatures(I2,points2);
```

Retrieve the locations of matched points.
indexPairs = matchFeatures(f1,f2) ;
matchedPoints1 = vpts1(indexPairs(:,1));
matchedPoints2 = vpts2(indexPairs(:,2));
Display the matching points. The data still includes several outliers, but you can see the effects of rotation and scaling on the display of matched features.
figure; showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2);
legend('matched points 1','matched points 2');

Input Arguments

features1 - Feature set 1

binaryFeatures object | M_{1}-by- N matrix
Features set 1, specified as a binaryFeatures object or an M_{1}-by- N matrix. The matrix contains M_{1} features, and N corresponds to the length of each feature vector. You can
obtain the binaryFeatures object using the extractFeatures function with the fast retina keypoint (FREAK), Oriented FAST and Rotated BRIEF (ORB), or binary robust invariant scalable keypoints (BRISK) descriptor method.

features2 - Feature set 2

M_{2}-by- N matrix | binaryFeatures object
Features set 2, specified as a binaryFeatures object or an M_{2}-by- N matrix. The matrix contains M_{2} features and N corresponds to the length of each feature vector. You can obtain the binaryFeatures object using the extractFeatures function with the fast retina keypoint (FREAK), Oriented FAST and Rotated BRIEF (ORB), or binary robust invariant scalable keypoints (BRISK) descriptor method.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: 'Metric', 'SSD' specifies the sum of squared differences for the feature matching metric.

Method - Matching method

'Exhaustive' (default) |'Approximate'
Matching method, specified as the comma-separated pair consisting of 'Method' and either 'Exhaustive' or 'Approximate'. The method specifies how nearest neighbors between features 1 and features 2 are found. Two feature vectors match when the distance between them is less than the threshold set by the MatchThreshold parameter.

$$
\begin{array}{ll}
\text { 'Exhaustive' } & \begin{array}{l}
\text { Compute the pairwise distance between feature } \\
\\
\text { vectors in features1 and features2. }
\end{array} \\
\text { 'Approximate' } & \text { Use an efficient approximate nearest neighbor search. } \\
\text { Use this method for large feature sets. [3] }
\end{array}
$$

MatchThreshold - Matching threshold

10.0 or 1.0 (default) | percent value in the range (0,100]

Matching threshold threshold, specified as the comma-separated pair consisting of 'MatchThreshold' and a scalar percent value in the range (0,100]. The default values
are set to either 10.0 for binary feature vectors or to 1.0 for nonbinary feature vectors. You can use the match threshold for selecting the strongest matches. The threshold represents a percent of the distance from a perfect match.

Two feature vectors match when the distance between them is less than the threshold set by MatchThreshold. The function rejects a match when the distance between the features is greater than the value of MatchThreshold. Increase the value to return more matches.

Inputs that are binaryFeatures objects typically require a larger value for the match threshold. The extractFeatures function returns the binaryFeatures objects when extracting FREAK, ORB, or BRISK descriptors.

MaxRatio - Ratio threshold

0.6 (default) | ratio in the range $(0,1]$

Ratio threshold, specified as the comma-separated pair consisting of 'MaxRatio' and a scalar ratio value in the range $(0,1]$. Use the max ratio for rejecting ambiguous matches. Increase this value to return more matches.

Metric - Feature matching metric

```
'SSD' (default)|'SAD'
```

Feature matching metric, specified as the comma-separated pair consisting of 'Metric' and either 'SAD' or 'SSD'.
'SAD ' Sum of absolute differences
'SSD ' Sum of squared differences
This property applies when the input feature sets, features1 and features2, are not binaryFeatures objects. When you specify the features as binaryFeatures objects, the function uses the Hamming distance to compute the similarity metric.

Unique - Unique matches

false (default) | true
Unique matches, specified as the comma-separated pair consisting of 'Unique' and either false or true. Set this value to true to return only unique matches between features1 and features2.

When you set Unique to false, the function returns all matches between features 1 and features2. Multiple features in features1 can match to one feature in features2.
features 1

When you set Unique to true, the function performs a forward-backward match to select a unique match. After matching features1 to features2, it matches features2 to features 1 and keeps the best match.

Output Arguments

indexPairs - Indices to corresponding features

P-by-2 matrix
Indices of corresponding features between the two input feature sets, returned as a P -by- 2 matrix of P number of indices. Each index pair corresponds to a matched feature between the features 1 and features 2 inputs. The first element indexes the feature in features 1 . The second element indexes the matching feature in features2.

matchmetric - Distance between matching features

p-by-1 vector
Distance between matching features, returned as a p-by- 1 vector. The value of the distances are based on the metric selected. Each ith element in matchmetric corresponds to the ith row in the indexPairs output matrix. When Metric is set to either SAD or SSD, the feature vectors are normalized to unit vectors before computation.

| Metric | Range | Perfect Match Value |
| :--- | :--- | :--- |
| SAD | $[0,2 *$ sqrt(size(features 1,2$))]$. | 0 |
| SSD | $[0,4]$ | 0 |
| Hamming | $[0$, features1. NumBits $]$ | 0 |

Note You cannot select the Hamming metric. It is invoked automatically when features1 and features2 inputs are binaryFeatures.

References

[1] Lowe, David G. "Distinctive Image Features from Scale-Invariant Keypoints." International Journal of Computer Vision. Volume 60, Number 2, pp. 91-110.
[2] Muja, M., and D. G. Lowe. "Fast Matching of Binary Features. "Conference on Computer and Robot Vision. CRV, 2012.
[3] Muja, M., and D. G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration." International Conference on Computer Vision Theory and Applications.VISAPP, 2009.
[4] Rublee, E., V. Rabaud, K. Konolige and G. Bradski. "ORB: An efficient alternative to SIFT or SURF." In Proceedings of the 2011 International Conference on Computer Vision, 2564-2571. Barcelona, Spain, 2011.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Generates platform-dependent library for MATLAB host only when using the Exhaustive method.
- Generates portable C code for non-host target only when using the Exhaustive method.
- Generates portable C code using a C++ compiler that links to OpenCV (Version 3.4.0) libraries when not using the Exhaustive method. See "Portable C Code Generation for Functions That Use OpenCV Library".
- 'Method' and 'Metric' must be compile-time constants.

GPU Code Generation

Generate CUDA® code for NVIDIA® GPUs using GPU Coder ${ }^{\text {TM }}$.

Usage notes and limitations:

- CUDA code is generated only for the exhaustive matching method. If the Approximate method is selected, GPU Coder issues a warning and generates C/C++ code for this function.

See Also

binaryFeatures|detectBRISKFeatures| detectFASTFeatures | detectHarrisFeatures | detectMSERFeatures | detectMinEigenFeatures | detectORBFeatures| detectSURFFeatures |estimateFundamentalMatrix| estimateGeometricTransform|extractFeatures| showMatchedFeatures

Topics

"Structure from Motion"

Introduced in R2011a

mplay

View video from MATLAB workspace, multimedia file, or Simulink model.

Syntax

Description

Note The mplay function will be removed in a future release. Use the implay function with functionality identical to mplay.

Introduced in R2006a

OCr

Recognize text using optical character recognition

Syntax

```
txt = ocr(I)
txt = ocr(I, roi)
```

[___] $=\operatorname{ocr}(\ldots \quad$, Name, Value $)$

Description

txt $=\operatorname{ocr}(I)$ returns an ocrText object containing optical character recognition information from the input image, I. The object contains recognized text, text location, and a metric indicating the confidence of the recognition result.
txt $=\operatorname{ocr}(\mathrm{I}$, roi) recognizes text in I within one or more rectangular regions. The roi input contains an M-by- 4 matrix, with M regions of interest.
[__] = ocr (__ , Name, Value) uses additional options specified by one or more Name, Value pair arguments, using any of the preceding syntaxes.

Examples

Recognize Text Within an Image

```
businessCard = imread('businessCard.png');
ocrResults = ocr(businessCard)
```

ocrResults = ocrText with properties:

Text: '‘ MathWorks®...
CharacterBoundingBoxes: [103x4 double]

```
CharacterConfidences: [103x1 single]
    Words: {16x1 cell}
    WordBoundingBoxes: [16x4 double]
    WordConfidences: [16x1 single]
recognizedText = ocrResults.Text;
figure;
imshow(businessCard);
text(600, 150, recognizedText, 'BackgroundColor', [1 1 1]);
```


Recognize Text in Regions of Interest (ROI)

Read image.
I = imread('handicapSign.jpg');

Define one or more rectangular regions of interest within I.
roi = [360 118384 560];
You may also use IMRECT to select a region using a mouse: figure; imshow(I); roi = round(getPosition(imrect))
ocrResults = ocr(I, roi);
Insert recognized text into original image

```
Iocr = insertText(I,roi(1:2),ocrResults.Text,'AnchorPoint',...
    'RightTop','FontSize',16);
figure; imshow(Iocr);
```


Display Bounding Boxes of Words and Recognition Confidences

$$
\begin{aligned}
\text { businessCard } & =\text { imread('businessCard.png'); } \\
\text { ocrResults } & =\text { ocr(businessCard) }
\end{aligned}
$$

```
ocrResults =
    ocrText with properties:
    Text: '، MathWorks®...'
CharacterBoundingBoxes: [103x4 double]
```

```
CharacterConfidences: [103x1 single]
                    Words: {16x1 cell}
    WordBoundingBoxes: [16x4 double]
    WordConfidences: [16x1 single]
Iocr = insertObjectAnnotation(businessCard, 'rectangle', ...
                                    ocrResults.WordBoundingBoxes, ...
                                    ocrResults.WordConfidences);
figure; imshow(Iocr);
```


0.37843
 0.54653
 MathWorks

0.855070 .69394

Find and Highlight Text in an Image

```
businessCard = imread('businessCard.png');
ocrResults = ocr(businessCard);
bboxes = locateText(ocrResults, 'MathWorks', 'IgnoreCase', true);
```

Iocr = insertShape(businessCard, 'FilledRectangle', bboxes); figure; imshow(Iocr);

Input Arguments

I - Input image
 M-by- N-by-3 truecolor image | M-by- N 2-D grayscale image | M-by- N binary image

Input image, specified in M-by- N-by-3 truecolor, M-by- $N 2$ 2-D grayscale, or binary format. The input image must be a real, nonsparse value. The function converts truecolor or grayscale input images to a binary image, before the recognition process. It uses the Otsu's thresholding technique for the conversion. For best ocr results, the height of a lowercase ' x ', or comparable character in the input image, must be greater than 20 pixels. From either the horizontal or vertical axes, remove any text rotations greater than +/- 10 degrees, to improve recognition results.

Data Types: single |double | int16|uint8|uint16|logical

roi - Region of interest

M-by-4 element matrix
One or more rectangular regions of interest, specified as an M-by-4 element matrix. Each row, M, specifies a region of interest within the input image, as a four-element vector, [$x y$ width height]. The vector specifies the upper-left corner location, $[x y]$, and the size of a rectangular region of interest, [width height], in pixels. Each rectangle must be fully contained within the input image, I. Before the recognition process, the function uses the Otsu's thresholding to convert truecolor and grayscale input regions of interest to binary regions. The function returns text recognized in the rectangular regions as an array of objects.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: ocr(I,'TextLayout', 'Block')

TextLayout - Input text layout

'Auto'(default) |'Block' |'Line' | 'Word'
Input text layout, specified as the comma-separated pair consisting of 'TextLayout' and one of the following:

| TextLayout | Text Treatment |
| :--- | :--- |
| 'Auto ' | Determines the layout and reading order of
 text blocks within the input image. |
| 'Block' | Treats the text in the image as a single
 block of text. |
| 'Line ' | Treats the text in the image as a single line
 of text. |
| 'Word ' | Treats the text in the image as a single
 word of text. |

Use the automatic layout analysis to recognize text from a scanned document that contains a specific format, such as a double column. This setting preserves the reading order in the returned text. You may get poor results if your input image contains a few regions of text or the text is located in a cluttered scene. If you get poor OCR results, try a different layout that matches the text in your image. If the text is located in a cluttered scene, try specifying an ROI around the text in your image in addition to trying a different layout.

Language - Language
 'English' (default) | 'Japanese' | character vector | string scalar | cell array of character vectors \| string array

Language to recognize, specified as the comma-separated pair consisting of 'Language' and the character vector 'English', 'Japanese', or a cell array of character vectors. You can also install the "Install OCR Language Data Files" package for additional languages or add a custom language. Specifying multiple languages enables simultaneous recognition of all the selected languages. However, selecting more than one language may reduce the accuracy and increase the time it takes to perform ocr.

To specify any of the additional languages which are contained in the "Install OCR Language Data Files" package, use the language character vector the same way as the built-in languages. You do not need to specify the path.

```
txt = ocr(img,'Language','Finnish');
```


List of Support Package OCR Languages

- 'Afrikaans'
- 'Albanian'
- 'AncientGreek'
- 'Arabic'
- 'Azerbaijani'
- 'Basque'
- 'Belarusian'
- 'Bengali'
- 'Bulgarian'
- 'Catalan'
- 'Cherokee'
- 'ChineseSimplified'
- 'ChineseTraditional'
- 'Croatian'
- 'Czech'
- 'Danish'
- 'Dutch'
- 'English'
- 'Esperanto'
- 'EsperantoAlternative'
- 'Estonian'
- 'Finnish'
- 'Frankish'
- 'French'
- 'Galician'
- 'German'
- 'Greek'
- 'Hebrew'
- 'Hindi'
- 'Hungarian'
- 'Icelandic'
- 'Indonesian'
- 'Italian'
- 'Italian0ld'
- 'Japanese'
- 'Kannada'
- 'Korean'
- 'Latvian'
- 'Lithuanian'
- 'Macedonian'
- 'Malay'
- 'Malayalam'
- 'Maltese'
- 'MathEquation'
- 'MiddleEnglish'
- 'MiddleFrench'
- 'Norwegian'
- 'Polish'
- 'Portuguese'
- 'Romanian'
- 'Russian'
- 'SerbianLatin'
- 'Slovakian'
- 'Slovenian'
- 'Spanish'
- 'Spanish0ld'
- 'Swahili'
- 'Swedish'
- 'Tagalog'
- 'Tamil'
- 'Telugu'
- 'Thai'
- 'Turkish'
- 'Ukrainian'

To use your own custom languages, specify the path to the trained data file as the language character vector. You must name the file in the format, <language>.traineddata. The file must be located in a folder named 'tessdata'. For example:
txt = ocr(img,'Language','path/to/tessdata/eng.traineddata');
You can load multiple custom languages as a cell array of character vectors:

```
txt = ocr(img,'Language', ...
    {'path/to/tessdata/eng.traineddata',...
        'path/to/tessdata/jpn.traineddata'});
```

The containing folder must always be the same for all the files specified in the cell array. In the preceding example, all of the traineddata files in the cell array are contained in the folder 'path/to/tessdata'. Because the following code points to two different containing folders, it does not work.

```
txt = ocr(img,'Language', ...
    {'path/one/tessdata/eng.traineddata',...
        'path/two/tessdata/jpn.traineddata'});
```

Some language files have a dependency on another language. For example, Hindi training depends on English. If you want to use Hindi, the English traineddata file must also exist in the same folder as the Hindi traineddata file. The ocr only supports traineddata files created using tesseract-ocr 3.02 or using the OCR Trainer.

For deployment targets generated by MATLAB Coder: Generated ocr executable and language data file folder must be colocated. The tessdata folder must be named tessdata:

- For English: C:/path/tessdata/eng.traineddata
- For Japanese: C:/path/tessdata/jpn.traineddata
- For custom data files: C:/path/tessdata/customlang.traineddata
- C:/path/ocr_app.exe

You can copy the English and Japanese trained data files from:

```
fullfile(matlabroot, 'toolbox','vision','visionutilities','tessdata');
```


CharacterSet - Character subset

```
' ' all characters (default)| character vector | string scalar
```

Character subset, specified as the comma-separated pair consisting of 'CharacterSet' and a character vector. By default, CharacterSet is set to the empty character vector, ' '. The empty vector sets the function to search for all characters in the language specified by the Language property. You can set this property to a smaller set of known characters to constrain the classification process.

The ocr function selects the best match from the CharacterSet. Using deducible knowledge about the characters in the input image helps to improve text recognition
accuracy. For example, if you set CharacterSet to all numeric digits, ' 0123456789 ' , the function attempts to match each character to only digits. In this case, a non-digit character can incorrectly get recognized as a digit.

Output Arguments

txt - Recognized text and metrics
 ocrText object

Recognized text and metrics, returned as an ocrText object. The object contains the recognized text, the location of the recognized text within the input image, and the metrics indicating the confidence of the results. The confidence values range is [0 1] and represents a percent probability. When you specify an M-by- 4 roi, the function returns ocrText as an M-by-1 array of ocrText objects.

If your ocr results are not what you expect, try one or more of the following options:

- Increase the image 2-to-4 times the original size.
- If the characters in the image are too close together or their edges are touching, use morphology to thin out the characters. Using morphology to thin out the characters separates the characters.
- Use binarization to check for non-uniform lighting issues. Use the graythresh and imbinarize functions to binarize the image. If the characters are not visible in the results of the binarization, it indicates a potential non-uniform lighting issue. Try top hat, using the imtophat function, or other techniques that deal with removing nonuniform illumination.
- Use the region of interest roi option to isolate the text. Specify the roi manually or use text detection.
- If your image looks like a natural scene containing words, like a street scene, rather than a scanned document, try using an ROI input. Also, you can set the TextLayout property to 'Block' or 'Word'.

References

[1] R. Smith. An Overview of the Tesseract OCR Engine, Proceedings of the Ninth International Conference on Document Analysis and Recognition (ICDAR 2007) Vol 2 (2007), pp. 629-633.
[2] Smith, R., D. Antonova, and D. Lee. Adapting the Tesseract Open Source OCR Engine for Multilingual OCR. Proceedings of the International Workshop on Multilingual OCR, (2009).
[3] R. Smith. Hybrid Page Layout Analysis via Tab-Stop Detection. Proceedings of the 10th international conference on document analysis and recognition. 2009.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- 'TextLayout', 'Language', and 'CharacterSet' must be compile-time constants.
- Generated code for this function uses a precompiled platform-specific shared library.

See Also

OCR Trainer | graythresh |imbinarize |imtophat |insertShape |ocrText

Topics

"Automatically Detect and Recognize Text in Natural Images"
"Recognize Text Using Optical Character Recognition (OCR)"
"Train Optical Character Recognition for Custom Fonts"
"Install OCR Language Data Files"
"Install Computer Vision Toolbox Add-on Support Files"

Introduced in R2014a

pcdenoise

Remove noise from 3-D point cloud

Syntax

```
ptCloudOut = pcdenoise(ptCloudIn)
[ptCloudOut,inlierIndices,outlierIndices] = pcdenoise(ptCloudIn)
[ptCloudOut,
```

\qquad

``` ] = pcdenoise(
``` \(\qquad\)
``` Name, Value)
```


Description

ptCloudOut $=$ pcdenoise(ptCloudIn) returns a filtered point cloud that removes outliers.
[ptCloudOut,inlierIndices,outlierIndices] = pcdenoise(ptCloudIn) additionally returns the linear indices to the points that are identified as inliers and outliers.
[ptCloudOut, \qquad] = pcdenoise(\qquad Name, Value) uses additional options specified by one or more Name, Value pair arguments, using any of the preceding syntaxes.

Examples

Remove Outliers from Noisy Point Cloud

Create a plane point cloud.

```
gv = 0:0.01:1;
[X,Y] = meshgrid(gv,gv);
ptCloud = pointCloud([X(:),Y(:),0.5*ones(numel(X),1)]);
```

figure
pcshow(ptCloud);
title('Original Data');

Add uniformly distributed random noise.
noise $=$ rand (500, 3);
ptCloudA = pointCloud([ptCloud.Location; noise]);
figure
pcshow(ptCloudA);
title('Noisy Data');

Remove outliers.
ptCloudB = pcdenoise(ptCloudA);
figure;
pcshow(ptCloudB);
title('Denoised Data');

Input Arguments

ptCloudIn - Point cloud

pointCloud object
Point cloud, specified as a pointCloud object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes.

You can specify several name and value pair arguments in any order as Name1,Value1, ..., NameN, ValueN.

Example: 'Threshold','1.0' sets the threshold to 1.0.

NumNeighbors - Number of nearest neighbor points

4 (default) | positive integer
Number of nearest neighbor points, specified as the comma-separated pair consisting of 'NumNeighbors' and a positive integer in pixels. The value is used to estimate the mean of the average distance to neighbors of all points. Decreasing this value makes the filter more sensitive to noise. Increasing this value increases the number of computations.

Threshold - Outlier threshold

1.0 (default) | scalar

Outlier threshold, specified as the comma-separated pair consisting of 'Threshold' and a scalar. By default, the threshold is one standard deviation from the mean of the average distance to neighbors of all points. A point is considered to be an outlier if the average distance to its k-nearest neighbors is above the specified threshold.

Output Arguments

ptCloudOut - Filtered point cloud pointCloud object

Filtered point cloud, returned as a pointCloud object.

inlierIndices - Linear index of inlier points

1-by- N vector
Linear index of inlier points, returned as a 1-by- N vector.
Data Types: uint32
outlierIndices - Linear index of outlier points
1-by- N vector
Linear index of outlier points, returned as a 1-by- N vector of linear indices.
Data Types: uint32

References

[1] Rusu, R. B., Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz. "Towards 3D Point Cloud Based Object Maps for Household Environments". Robotics and Autonomous Systems Journal. 2008.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Supports code generation (requires MATLAB Coder) only in generic MATLAB Host Computer target platform.
- Generates code that uses a precompiled, platform-specific shared library.

See Also

affine3d | pcdownsample|pcfitplane | pcmerge | pcplayer | pcread | pcregistericp|pcshow|pctransform|pcwrite|planeModel|pointCloud

Topics

"3-D Point Cloud Registration and Stitching"

Introduced in R2015a

pcmerge

Merge two 3-D point clouds

Syntax

```
ptCloudOut = pcmerge(ptCloudA,ptCloudB,gridStep)
```


Description

ptCloudOut $=$ pcmerge(ptCloudA, ptCloudB, gridStep) returns a merged point cloud using a box grid filter. gridStep specifies the size of the 3-D box for the filter.

Examples

Merge Two Identical Point Clouds Using Box Grid Filter

Create two identical point clouds.

```
ptCloudA = pointCloud(100*rand(1000,3));
```

ptCloudB $=$ copy (ptCloudA);

Merge the two point clouds.

```
ptCloud = pcmerge(ptCloudA,ptCloudB,1);
pcshow(ptCloud);
```


Input Arguments

ptCloudA - Point cloud A

pointCloud object
Point cloud A, specified as a pointCloud object.
ptCloudB - Point cloud B
pointCloud object
Point cloud B, specified as a pointCloud object.

gridStep - Size of 3-D box for grid filter

 numeric valueSize of 3-D box for grid filter, specified as a numeric value. Increase the size of gridStep when there are not enough resources to construct a large fine-grained grid.

Data Types: single | double

Output Arguments

ptCloudOut - Merged point cloud
 pointCloud object

Merged point cloud, returned as a pointCloud object. The function computes the axisaligned bounding box for the overlapped region between two point clouds. The bounding box is divided into grid boxes of the size specified by gridStep. Points within each grid box are merged by averaging their locations, colors, and normals. Points outside the overlapped region are untouched.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Supports code generation (requires MATLAB Coder) only in generic MATLAB Host Computer target platform.
- Generates code that uses a precompiled, platform-specific shared library.

See Also
 pcdenoise | pcdownsample | pcfitplane | pcplayer | pcread | pcregistericp| pcshow| pctransform|pcwrite|planeModel|pointCloud

Topics
"3-D Point Cloud Registration and Stitching"
Introduced in R2015a

pcdownsample

Downsample a 3-D point cloud

Syntax

```
ptCloudOut = pcdownsample(ptCloudIn,'random',percentage)
ptCloudOut = pcdownsample(ptCloudIn,'gridAverage',gridStep)
ptCloudOut = pcdownsample(ptCloudIn,'nonuniformGridSample',
maxNumPoints)
```


Description

ptCloudOut = pcdownsample(ptCloudIn,'random', percentage) returns a downsampled point cloud with random sampling and without replacement. The percentage input specifies the portion of the input to return to the output.
ptCloudOut = pcdownsample(ptCloudIn,'gridAverage', gridStep) returns a downsampled point cloud using a box grid filter. The gridStep input specifies the size of a 3-D box.
ptCloudOut = pcdownsample(ptCloudIn,'nonuniformGridSample', maxNumPoints) returns a downsampled point cloud using nonuniform box grid filter. You must set the maximum number of points in the grid box, maxNumPoints, to at least 6 .

Examples

Downsample Point Cloud Using Box Grid Filter
Read a point cloud.
ptCloud = pcread('teapot.ply');
Set the 3-D resolution to be ($0.1 \times 0.1 \times 0.1$).

```
gridStep = 0.1;
ptCloudA = pcdownsample(ptCloud,'gridAverage',gridStep);
```

Visualize the downsampled data.
figure;
pcshow(ptCloudA);

Compare the point cloud to data that is downsampled using a fixed step size.

```
stepSize = floor(ptCloud.Count/ptCloudA.Count);
indices = 1:stepSize:ptCloud.Count;
ptCloudB = select(ptCloud, indices);
```

figure;
pcshow(ptCloudB);

Remove Redundant Points from Point Cloud

Create a point cloud with all points sharing the same coordinates.
ptCloud $=$ pointCloud(ones(100,3));
Set the 3-D resolution to a small value.
gridStep = 0.01;

The output now contains only one unique point.

```
ptCloudOut = pcdownsample(ptCloud,'gridAverage',gridStep)
ptCloudOut =
    pointCloud with properties:
    Location: [1 1 1]
            Color: [0x3 uint8]
            Normal: [0x3 double]
        Intensity: [0x1 double]
            Count: 1
            XLimits: [1 1]
            YLimits: [1 1]
            ZLimits: [1 1]
```


Input Arguments

ptCloudIn - Point cloud

pointCloud object
Point cloud, specified as a pointCloud object.

'random' - Random downsample method
 'random'

Random downsample method, specified as 'random'. The 'random' method is more efficient than the 'gridAverage' downsample method, especially when it is applied before point cloud registration.

Downsample the point cloud using 'random', 'gridAverage', or ' nonuniformGridSample' inputs, according to the Metric you use in the pcregistericp function for registration.

Metric	Moving PointCloud Downsample Method	Fixed Point Cloud Downsample Method
'pointToPoint'	'random'	'random'
	'gridAverage'	'gridAverage'

Metric	Moving PointCloud Downsample Method	Fixed Point Cloud Downsample Method
'pointToPlane'	'gridAverage'	'gridAverage'
	'random'	'nonuniformGridSample

percentage - Percentage of input

positive scalar
Percentage of input, specified as a positive scalar in the range [0,1]. The percentage input specifies the portion of the input for the function to return.

'gridAverage' - Grid average downsample method

'gridAverage'
Grid average downsample method, specified as 'gridAverage '. Points within the same box are merged to a single point in the output. Their color and normal properties are averaged accordingly. This method preserves the shape of the point cloud better than the ' random' downsample method.

The function computes the axis-aligned bounding box for the entire point cloud. The bounding box is divided into grid boxes of size specified by gridStep. Points within each grid box are merged by averaging their locations, colors, and normals.

Downsample the point cloud using 'random', 'gridAverage', or ' nonuniformGridSample' inputs, according to the Metric you use in the pcregistericp function for registration.

Metric	Moving PointCloud Downsample Method	Fixed Point Cloud Downsample Method
'pointToPoint'	'random'	'random'
	'gridAverage'	'gridAverage'
'pointToPlane'	'gridAverage'	'gridAverage'
	'random'	'nonuniformGridSample '

gridStep - Size of 3-D box for grid filter

numeric value

Size of 3-D box for grid filter, specified as a numeric value. Increase the size of gridStep when there are not enough resources to construct a large fine-grained grid.

Data Types: single | double

```
'nonuniformGridSample' - Nonuniform grid sample method
'nonuniformGridSample'
```

Nonuniform grid sample method, specified as 'nonuniformGridSample'. The best use of this method is to apply it as a preprocessing step to the pcregistericp function for point cloud registration, when you use the ' pointToPlane' metric. When you use the ' nonuniformGridSample' algorithm, the normals are computed on the original data prior to downsampling. The downsampled output preserves more accurate normals.

Downsample the point cloud using 'random', 'gridAverage', or ' nonuniformGridSample' inputs, according to the Metric you use in the pcregistericp function for registration.

Metric	Moving PointCloud Downsample Method	Fixed Point Cloud Downsample Method
'pointToPoint'	'random'	'random'
	'gridAverage'	'gridAverage'
'pointToPlane'	'gridAverage'	'gridAverage'
	'random'	'nonuniformGridSample '

maxNumPoints - Maximum number of points in grid box
integer
Maximum number of points in grid box, specified as an integer greater than 6 . The method randomly selects a single point from each box. If the normal was not provided in the input point cloud, this method automatically fills in the normal property in the ptCloudOut output.

Output Arguments

ptCloudOut - Downsampled point cloud
pointCloud object

Downsampled point cloud, returned as a pointCloud object.

References

[1] Pomerleau, F., F. Colas, R. Siegwart, and S. Magnenat. "Comparing ICP variants on real-world data sets." Autonomous Robots. Vol. 34, Issue 3, April 2013, pp. 133148.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathrm{Coder}^{\mathrm{TM}}$.
Usage notes and limitations:

- Supports code generation (requires MATLAB Coder) only in generic MATLAB Host Computer target platform.
- Generates code that uses a precompiled, platform-specific shared library.

See Also

affine3d | pcdenoise | pcfitplane | pcmerge | pcplayer|pcread | pcregistericp|pcregisterndt|pcshow|pctransform|pcwrite|planeModel| pointCloud

Topics

"3-D Point Cloud Registration and Stitching"

Introduced in R2015a

pcread

Read 3-D point cloud from PLY or PCD file

Syntax

ptCloud $=$ pcread(filename)

Description

ptCloud $=$ pcread(filename) reads a point cloud from the PLY or PCD file specified by the input filename. The function returns a pointCloud object, ptCloud.

Examples

Read Point Cloud from a PLY File

```
ptCloud = pcread('teapot.ply');
pcshow(ptCloud);
```


Input Arguments

filename - File name

character vector | string scalar
File name, specified as a character vector or a string scalar. The input file type must be a PLY or a PCD format file.

The polygon (PLY) file format , also known as the Stanford triangle format stores threedimensional data from 3-D scanners. It is a format for storing graphical objects that are described as a collection of polygons. A PLY file consists of a header, followed by a list of
vertices and then, a list of polygons. The header specifies how many vertices and polygons are in the file. It also states what properties are associated with each vertex, such as (x, y, z) coordinates, normals, and color. The file format has two sub-formats: an ASCII representation and a binary version for compact storage and for rapid saving and loading. The header of both ASCII and binary files is ASCII text. Only the numeric data that follows the header is different between the two versions. See "The PLY Format" for details on the contents of a PLY file.

The point cloud data (PCD) file format also stores three-dimensional data. It was created by the authors of the widely used point cloud library (PCL) to accommodate additional point cloud data requirements. See The PCD (Point Cloud Data) file format.

Note This function only supports PCD file formats saved in version 0.7 (PCD_V7). It also only supports the header entries with the COUNT entry set to 1 . It does not support the COUNT entry set to a feature descriptor.

Output Arguments

ptCloud - Object for storing point cloud
 pointCloud object

Object for storing point cloud, returned as a pointCloud object that contains the following PLY or PCD fields:

- Location property, stores the x, y, and z values.
- Color property, stores the red, green, and blue values.
- Normal property, stores the normal vectors for each point.
- Intensity property, stores the grayscale intensity for each point.

See Also

pcdenoise|pcdownsample|pcfitplane|pcmerge|pcplayer|pcregistericp| pcshow | pctransform | pcwrite | planeModel | pointCloud

Topics

"3-D Point Cloud Registration and Stitching"
"The PLY Format"

External Websites

The PCD (Point Cloud Data) file format

Introduced in R2015a

pcregistericp

Register two point clouds using ICP algorithm

Syntax

```
tform = pcregistericp(moving,fixed)
[tform,movingReg] = pcregistericp(moving,fixed)
[
```

\qquad

``` ,rmse] = pcregistericp(moving,fixed)
```

```] = pcregistericp(moving,fixed,Name,Value)
```


Description

tform = pcregistericp(moving, fixed) returns a rigid transformation that registers a moving point cloud to a fixed point cloud.

The registration algorithm is based on the "iterative closest point" (ICP) algorithm. Best performance of this iterative process requires adjusting properties for your data. Consider downsampling point clouds using pcdownsample before using pcregistericp to improve accuracy and efficiency of registration.

Point cloud normals are required by the registration algorithm when you select the ' pointToPlane' metric. Therefore, if the input point cloud's Normal property is empty, the function fills it. When the function fills the Normal property, it uses 6 points to fit the local plane. Six points may not work under all circumstances. If registration with the ' pointToPlane ' metric fails, consider calling the pcnormals function which allows you to select the number of points to use.
[tform,movingReg] = pcregistericp(moving,fixed) additionally returns the transformed point cloud that aligns with the fixed point cloud.
[\qquad ,rmse] = pcregistericp(moving,fixed) additionally returns the root mean squared error of the Euclidean distance between the aligned point clouds, using any of the preceding syntaxes.
[___] = pcregistericp(moving,fixed,Name,Value) uses additional options specified by one or more Name, Value pair arguments.

Examples

Align Two Point Clouds Using ICP Algorithm

Load point cloud data.

```
ptCloud = pcread('teapot.ply');
pcshow(ptCloud);
title('Teapot');
```


Create a transform object with 30 degree rotation along z-axis and translation [5,5,10].

```
A = [cos(pi/6) sin(pi/6) 0 0; ...
    -sin(pi/6) cos(pi/6
    0
    5
    0 1 0; ...
    5 10 1];
tform1 = affine3d(A);
```

Transform the point cloud.
ptCloudTformed $=$ pctransform(ptCloud,tform1);
pcshow(ptCloudTformed);
title('Transformed Teapot');

Apply the rigid registration.

```
tform = pcregistericp(ptCloudTformed,ptCloud,'Extrapolate',true);
```

Compare the result with the true transformation.

```
disp(tform1.T);
\begin{tabular}{rrrr}
0.8660 & 0.5000 & 0 & 0 \\
-0.5000 & 0.8660 & 0 & 0 \\
0 & 0 & 1.0000 & 0 \\
5.0000 & 5.0000 & 10.000 & 1.0000
\end{tabular}
tform2 = invert(tform);
disp(tform2.T);
\begin{tabular}{rrrr}
0.8660 & 0.5000 & 0.0000 & 0 \\
-0.5000 & 0.8660 & -0.0000 & 0 \\
-0.0000 & -0.0000 & 1.0000 & 0 \\
5.0000 & 5.0000 & 10.0000 & 1.0000
\end{tabular}
```


Input Arguments

moving - Moving point cloud

pointCloud object
Moving point cloud, specified as a pointCloud object.

fixed - Fixed point cloud

pointCloud object
Fixed point cloud, specified as a pointCloud object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'Metric',' pointToPoint' sets the metric for the ICP algorithm to the ' pointToPoint' character vector.

Metric - Minimization metric

```
'pointToPoint' (default)| 'pointToPlane'
```

Minimization metric, specified as the comma-separated pair consisting of 'Metric' and the 'pointToPoint' or 'pointToPlane' character vector. The rigid transformation between the moving and fixed point clouds are estimated by the iterative closest point (ICP) algorithm. The ICP algorithm minimizes the distance between the two point clouds according to the given metric.

Setting 'Metric' to 'pointToPlane' can reduce the number of iterations to process. However, this metric requires extra algorithmic steps within each iteration. The ' pointToPlane' metric improves the registration of planar surfaces.

Downsample Method Selection:

Downsample the point clouds using the pcdownsample function. Use either the 'random' or 'gridAverage' input for the pcdownsample function according to the Metric table below.

Metric	Moving PointCloud Downsample Method	Fixed Point Cloud Downsample Method
'pointToPoint '	'random'	'random'
	'gridAverage'	'gridAverage'
'pointToPlane'	'gridAverage'	'gridAverage'
	'random'	'nonuniformGridSample '

Extrapolate - Extrapolation

false (default)|true
Extrapolation, specified as the comma-separated pair consisting of 'Extrapolate' and the boolean true or false. When you set this property to true, the function adds an extrapolation step that traces out a path in the registration state space, that is described in [2]. Setting this property to true can reduce the number of iterations to converge.

InlierRatio - Percentage of inliers

1 (default) | scalar
Percentage of inliers, specified as the comma-separated pair consisting of 'InlierRatio' and a scalar value. Use this value to set a percentage of matched pairs as inliers. A pair of
matched points is considered an inlier if its Euclidean distance falls within the percentage set of matching distances. By default, all matching pairs are used.

MaxIterations - Maximum number of iterations

20 (default) | positive integer
Maximum number of iterations, specified as the comma-separated pair consisting of 'MaxIterations' and a positive integer. This value specifies the maximum number of iterations before ICP stops.

Tolerance - Tolerance between consecutive ICP iterations

[0.01, 0.05] (default) | 2-element vector

Tolerance between consecutive ICP iterations, specified as the comma-separated pair consisting of 'Tolerance' and a 2 -element vector. The 2-element vector, [Tdiff, Rdiff], represents the tolerance of absolute difference in translation and rotation estimated in consecutive ICP iterations. Tdiff measures the Euclidean distance between two translation vectors. Rdiff measures the angular difference in degrees. The algorithm stops when the average difference between estimated rigid transformations in the three most recent consecutive iterations falls below the specified tolerance value.

InitialTransform - Initial rigid transformation
 affine3d() object (default)

Initial rigid transformation, specified as the comma-separated pair consisting of 'InitialTransform' and an affine3d object. The initial rigid transformation is useful when you provide an external coarse estimation.

Verbose - Display progress information true (default) | false

Display progress information, specified as the comma-separated pair consisting of 'Verbose' and a logical scalar. Set Verbose to true to display progress information.

Output Arguments

tform - Rigid transformation

affine3d object
Rigid transformation, returned as an affine3d object. The rigid transformation registers a moving point cloud to a fixed point cloud. The affine3d object describes the rigid 3-D
transform. The iterative closest point (ICP) algorithm estimates the rigid transformation between the moving and fixed point clouds.

movingReg - Transformed point cloud pointCloud object

Transformed point cloud, returned as a pointCloud object. The transformed point cloud is aligned with the fixed point cloud.

rmse - Root mean square error

positive numeric
Root mean square error, returned as the Euclidean distance between the aligned point clouds.

Algorithms

References

[1] Chen, Y. and G. Medioni. "Object Modelling by Registration of Multiple Range Images." Image Vision Computing. Butterworth-Heinemann . Vol. 10, Issue 3, April 1992, pp. 145-155.

[2] Besl, Paul J., N. D. McKay. "A Method for Registration of 3-D Shapes." IEEE Transactions on Pattern Analysis and Machine Intelligence. Los Alamitos, CA: IEEE Computer Society. Vol. 14, Issue 2, 1992, pp. 239-256.

See Also

Functions

pcdenoise | pcdownsample | pcfitplane | pcmerge | pcregistercpd| pcregisterndt|pcshow|pcshowpair|pctransform

Objects

affine3d | pointCloud

Topics

"3-D Point Cloud Registration and Stitching"
"Point Cloud Registration Overview"

Introduced in R2018a

pcregisterndt

Register two point clouds using NDT algorithm

Syntax

```
tform = pcregisterndt(moving,fixed,gridStep)
[tform,movingReg] = pcregisterndt(moving,fixed,gridStep)
[___,rmse] = pcregisterndt(moving,fixed,gridStep)
[___] = pcregisterndt(moving,fixed,gridStep,Name,Value)
```


Description

tform = pcregisterndt(moving,fixed,gridStep) returns the rigid transformation that registers the moving point cloud with the fixed point cloud. The point clouds are voxelized into cubes of size gridStep.

The registration algorithm is based on the normal-distributions transform (NDT) algorithm [1] [2]. Best performance of this iterative process requires adjusting properties for your data. To improve accuracy and efficiency of registration, consider downsampling the point clouds by using pcdownsample before using pcregisterndt.
[tform,movingReg] = pcregisterndt(moving,fixed,gridStep) also returns the transformed point cloud that aligns with the fixed point cloud.
[\qquad ,rmse] = pcregisterndt(moving,fixed,gridStep) also returns the root mean square error of the Euclidean distance between the aligned point clouds, using any of the preceding syntaxes.
[___] = pcregisterndt(moving,fixed,gridStep,Name,Value) uses additional options specified by one or more Name, Value pair arguments.

Examples

Align Two Point Clouds Using NDT Algorithm

Load point cloud data.
ld = load('livingRoom.mat');
moving = ld.livingRoomData\{1\};
fixed $=$ ld.livingRoomData\{2\};
pcshowpair(moving, fixed,'VerticalAxis', 'Y','VerticalAxisDir','Down')

To improve the efficiency and accuracy of the NDT registration algorithm, downsample the moving point cloud.
movingDownsampled = pcdownsample(moving,'gridAverage',0.1);

Voxelize the point cloud into cubes of sidelength 0.5 . Apply the rigid registration using the NDT algorithm.

```
gridStep = 0.5;
tform = pcregisterndt(movingDownsampled,fixed,gridStep);
```

Visualize the alignment.
movingReg $=$ pctransform(moving,tform);
pcshowpair(movingReg,fixed,'VerticalAxis', 'Y','VerticalAxisDir','Down')

Input Arguments

moving - Moving point cloud

pointCloud object
Moving point cloud, specified as a pointCloud object.

fixed - Fixed point cloud
 pointCloud object

Fixed point cloud, specified as a pointCloud object.
gridStep - Size of voxels
positive scalar
Size of the 3-D cube that voxelizes the fixed point cloud, specified as a positive scalar.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'MaxIterations' , 20 stops the NDT algorithm after 20 iterations.

InitialTransform - Initial rigid transformation affine3d object

Initial rigid transformation, specified as the comma-separated pair consisting of 'InitialTransform' and an affine3d object. The initial rigid transformation is useful when you provide an external coarse estimation.

OutlierRatio - Percentage of outliers

0.55 (default) | scalar in the range [0,1)

Expected percentage of outliers with respect to a normal distribution, specified as the comma-separated pair consisting of 'OutlierRatio' and a scalar in the range [0, 1). The NDT algorithm assumes a point is generated by a mixture of a normal distribution for
inliers and a uniform distribution for outliers. A larger value of 'OutlierRatio' reduces the influence of outliers.

Data Types: single | double

MaxIterations - Maximum number of iterations

30 (default) | nonnegative integer

Maximum number of iterations before NDT stops, specified as the comma-separated pair consisting of 'MaxIterations' and a nonnegative integer.

Data Types: single |double

Tolerance - Tolerance between consecutive NDT iterations

```
[0.01 0.5] (default) | 2-element vector
```

Tolerance between consecutive NDT iterations, specified as the comma-separated pair consisting of 'Tolerance' and a 2 -element vector with nonnegative values. The vector, [Tdiff Rdiff], represents the tolerance of absolute difference in translation and rotation estimated in consecutive NDT iterations. Tdiff measures the Euclidean distance between two translation vectors. Rdiff measures the angular difference in degrees. The algorithm stops when the difference between estimated rigid transformations in the most recent consecutive iterations falls below the specified tolerance value.
Data Types: single | double

Verbose - Display progress information false (default) | true

Display progress information, specified as the comma-separated pair consisting of 'Verbose' and a logical scalar. Set Verbose to true to display progress information.

Data Types: logical

Output Arguments

tform - Rigid transformation

affine3d object
Rigid transformation, returned as an affine3d object. tform describes the rigid 3-D transformation that registers the moving point cloud, moving, to the fixed point cloud, fixed.

movingReg - Transformed point cloud pointCloud object

Transformed point cloud, returned as a pointCloud object. The transformed point cloud is aligned with the fixed point cloud, fixed.

rmse - Root mean square error

positive number
Root mean square error, returned as a positive number. rmse is the Euclidean distance between the aligned point clouds.

Algorithms

References

[1] Biber, P., and W. Straßer. "The Normal Distributions Transform: A New Approach to Laser Scan Matching." Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, NV. Vol. 3, November 2003, pp. 2743-2748.
[2] Magnusson, M. "The Three-Dimensional Normal-Distributions Transform - an Efficient Representation for Registration, Surface Analysis, and Loop Detection." Ph.D. Thesis. Örebro University, Örebro, Sweden, 2013.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Supports code generation (requires MATLAB Coder) only in generic MATLAB Host Computer target platform.
- Generates code that uses a precompiled, platform-specific shared library.

See Also

Functions

pcdenoise | pcdownsample|pcfitplane|pcmerge|pcregistercpd| pcregistericp|pcshow|pcshowpair|pctransform

Objects

affine3d | pointCloud

Topics

"3-D Point Cloud Registration and Stitching"
"Point Cloud Registration Overview"

Introduced in R2018a

pcregrigid

Register two point clouds using ICP algorithm

Note pcregrigid is not recommended. Use pcregistericp instead.

Syntax

```
tform = pcregrigid(moving,fixed)
[tform,movingReg] = pcregrigid(moving,fixed)
[___,rmse] = pcregrigid(moving,fixed)
[___] = pcregrigid(moving,fixed,Name,Value)
```


Description

tform = pcregrigid(moving, fixed) returns a rigid transformation that registers a moving point cloud to a fixed point cloud.

The registration algorithm is based on the "iterative closest point" (ICP) algorithm. Best performance of this iterative process requires adjusting properties for your data. Consider downsampling point clouds using pcdownsample before using pcregrigid to improve accuracy and efficiency of registration.

Point cloud normals are required by the registration algorithm when you select the ' pointToPlane ' metric. Therefore, if the input point cloud's Normal property is empty, the function fills it. When the function fills the Normal property, it uses 6 points to fit the local plane. Six points may not work under all circumstances. If registration with the ' pointToPlane' metric fails, consider calling the pcnormals function which allows you to select the number of points to use.
[tform, movingReg] = pcregrigid(moving,fixed) additionally returns the transformed point cloud that aligns with the fixed point cloud.
[\qquad ,rmse] = pcregrigid(moving,fixed) additionally returns the root mean squared error of the Euclidean distance between the aligned point clouds, using any of the preceding syntaxes.
[___] = pcregrigid(moving,fixed, Name, Value) uses additional options specified by one or more Name, Value pair arguments.

Examples

Align Two Point Clouds

Load point cloud data.

```
ptCloud = pcread('teapot.ply');
figure
pcshow(ptCloud);
title('Teapot');
```


Create a transform object with 30 degree rotation along z-axis and translation [5,5,10].

```
A = [cos(pi/6) sin(pi/6) 0 0; ...
    -sin(pi/6) cos(pi/6) 0 0; ...
        0
tform1 = affine3d(A);
```

Transform the point cloud.
ptCloudTformed = pctransform(ptCloud,tform1);
figure
pcshow(ptCloudTformed);
title('Transformed Teapot');

Apply the rigid registration.
tform $=$ pcregrigid(ptCloudTformed, ptCloud,'Extrapolate',true);
Compare the result with the true transformation.
disp(tform1.T);

0.8660	0.5000	0	0
-0.5000	0.8660	0	0
0	0	1.0000	0
5.0000	5.0000	10.0000	1.0000

tform2 = invert(tform);
disp(tform2.T);

0.8660	0.5000	0.0000	0
-0.5000	0.8660	-0.0000	0
-0.0000	-0.0000	1.0000	0
5.0000	5.0000	10.0000	1.0000

Input Arguments

moving - Moving point cloud

pointCloud object
Moving point cloud, specified as a pointCloud object.

fixed - Fixed point cloud
 pointCloud object

Fixed point cloud, specified as a pointCloud object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Example: 'Metric',' pointToPoint' sets the metric for the ICP algorithm to the 'pointToPoint'.

Metric - Minimization metric 'pointToPoint' (default)|'pointToPlane'

Minimization metric, specified as the comma-separated pair consisting of 'Metric' and 'pointToPoint' or 'pointToPlane'. The rigid transformation between the moving and fixed point clouds are estimated by the iterative closest point (ICP) algorithm. The ICP algorithm minimizes the distance between the two point clouds according to the given metric.

Setting 'Metric' to 'pointToPlane' can reduce the number of iterations to process. However, this metric requires extra algorithmic steps within each iteration. The ' pointToPlane' metric improves the registration of planar surfaces.

Downsample Method Selection:

Downsample the point clouds using the pcdownsample function. Use either the 'random' or 'gridAverage' input for the pcdownsample function according to the Metric table below.

Metric	Point Cloud A Downsample Method	Point Cloud B Downsample Method
'pointToPoint'	'random'	'random '
	'gridAverage'	'gridAverage'
'pointToPlane'	'gridAverage'	'gridAverage'
	'random'	'nonuniformGridSample'

Extrapolate - Extrapolation

false (default)|true
Extrapolation, specified as the comma-separated pair consisting of 'Extrapolate' and the boolean true or false. When you set this property to true, the function adds an extrapolation step that traces out a path in the registration state space, that is described in [2]. Setting this property to true can reduce the number of iterations to converge.

InlierRatio - Percentage of inliers

1 (default) | scalar
Percentage of inliers, specified as the comma-separated pair consisting of 'InlierRatio' and a scalar value. Use this value to set a percentage of matched pairs as inliers. A pair of matched points is considered an inlier if its Euclidean distance falls within the percentage set of matching distances. By default, all matching pairs are used.

MaxIterations - Maximum number of iterations

20 (default) | positive integer
Maximum number of iterations, specified as the comma-separated pair consisting of 'MaxIterations' and a positive integer. This value specifies the maximum number of iterations before ICP stops.

Tolerance - Tolerance between consecutive ICP iterations

[0.01, 0.009] (default) | 2 -element vector
Tolerance between consecutive ICP iterations, specified as the comma-separated pair consisting of 'Tolerance' and a 2 -element vector. The 2 -element vector, [Tdiff, Rdiff],
represents the tolerance of absolute difference in translation and rotation estimated in consecutive ICP iterations. Tdiff measures the Euclidean distance between two translation vectors. Rdiff measures the angular difference in radians. The algorithm stops when the average difference between estimated rigid transformations in the three most recent consecutive iterations falls below the specified tolerance value.

InitialTransform - Initial rigid transformation affine3d() object (default)

Initial rigid transformation, specified as the comma-separated pair consisting of 'InitialTransform' and an affine3d object. The initial rigid transformation is useful when you provide an external coarse estimation.

Verbose - Display progress information

true (default) | false
Display progress information, specified as the comma-separated pair consisting of 'Verbose' and a logical scalar. Set Verbose to true to display progress information.

Output Arguments

tform - Rigid transformation
 affine3d object

Rigid transformation, returned as an affine3d object. The rigid transformation registers a moving point cloud to a fixed point cloud. The affine3d object describes the rigid 3-D transform. The iterative closest point (ICP) algorithm estimates the rigid transformation between the moving and fixed point clouds.

movingReg - Transformed point cloud

```
pointCloud object
```

Transformed point cloud, returned as a pointCloud object. The transformed point cloud is aligned with the fixed point cloud.

rmse - Root mean square error

positive numeric
Root mean square error, returned as the Euclidean distance between the aligned point clouds.

References

[1] Chen, Y. and G. Medioni. "Object Modelling by Registration of Multiple Range Images." Image Vision Computing. Butterworth-Heinemann . Vol. 10, Issue 3, April 1992, pp. 145-155.
[2] Besl, Paul J., N. D. McKay. "A Method for Registration of 3-D Shapes." IEEE Transactions on Pattern Analysis and Machine Intelligence. Los Alamitos, CA: IEEE Computer Society. Vol. 14, Issue 2, 1992, pp. 239-256.

See Also

pcregistericp|pcregisterndt|pointCloud

Topics

"3-D Point Cloud Registration and Stitching"

Introduced in R2015a

pcsegdist

Segment point cloud into clusters based on Euclidean distance

Syntax

labels = pcsegdist(ptCloud, minDistance)
[labels, numClusters] = pcsegdist(ptCloud,minDistance)

Description

labels $=$ pcsegdist(ptCloud, minDistance) segments a point cloud into clusters, with a minimum Euclidean distance of minDistance between points from different clusters. pcsegdist assigns an integer cluster label to each point in the point cloud, and returns the labels of all points.
[labels,numClusters] = pcsegdist(ptCloud,minDistance) also returns the number of clusters.

Examples

Cluster Point Cloud Based on Euclidean Distance

Create two concentric spheres and combine them into a point cloud.

```
[X,Y,Z] = sphere(100);
loc1 = [X(:),Y(:),Z(:)];
loc2 = 2*loc1;
ptCloud = pointCloud([loc1;loc2]);
pcshow(ptCloud)
title('Point Cloud')
```


Set the minimum Euclidean distance between clusters.
minDistance $=0.5$;
Segment the point cloud.
[labels,numClusters] = pcsegdist(ptCloud,minDistance);
Plot the labeled results. The points are grouped into two clusters.

```
pcshow(ptCloud.Location,labels)
colormap(hsv(numClusters))
title('Point Cloud Clusters')
```


Cluster Lidar Point Cloud Based on Euclidean Distance

Load an organized lidar point cloud named ptCloud.

```
load('drivingLidarPoints.mat')
pcshow(ptCloud)
title('Unclustered Point Cloud')
```


Detect the ground plane and store the points in inliers. Distance is measured in meters.

```
maxDistance = 0.3;
```

referenceVector $=[0,0,1]$;
[~,inliers,outliers] = pcfitplane(ptCloud,maxDistance,referenceVector);

Cluster the points, ignoring the ground plane points. Specify a minimum Euclidean distance of 0.5 meters between clusters.
ptCloudWithoutGround = select(ptCloud,outliers,'OutputSize','full'); distThreshold = 0.5;
[labels, numClusters] = pcsegdist(ptCloudWithoutGround,distThreshold);

Add an additional label for the ground plane.

```
numClusters = numClusters+1;
```

labels(inliers) = numClusters;

Plot the labeled results. Display the ground plane in black.
labelColorIndex = labels+1;
pcshow(ptCloud.Location, labelColorIndex)
colormap([hsv(numClusters);[0 0 0]])
title('Point Cloud Clusters')

Point Cloud Clusters

Input Arguments

ptCloud - Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

minDistance - Minimum Euclidean distance
 positive scalar

Minimum Euclidean distance between points from two different clusters, specified as a positive scalar.

Data Types: single | double

Output Arguments

labels - Cluster labels

M-by-1 vector | M-by- N matrix
Cluster labels, returned as one of the following.

- If the point cloud, ptCloud, stores point locations as an unorganized M-by-3 matrix, then labels is an M-by- 1 vector.
- If the point cloud, ptCloud, stores point locations as an organized M-by- N-by- 3 array, then labels is an M-by- N matrix.

Each point in the point cloud has a cluster label, specified by the corresponding element in labels. The value of each label is an integer from 0 to the number of clusters of valid points, numClusters. The value 0 is reserved for invalid points, such as points with Inf or NaN coordinates.

numClusters - Number of clusters
 positive integer

Number of clusters, returned as a positive integer. The number of clusters does not include the cluster corresponding to invalid points.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Supports code generation (requires MATLAB Coder) only in generic MATLAB Host Computer target platform.
- Generates code that uses a precompiled, platform-specific shared library.

See Also

pcdenoise|pcfitplane|pcshow|pointCloud

Introduced in R2018a

pcwrite

Write 3-D point cloud to PLY or PCD file

Syntax

```
pcwrite(ptCloud,filename)
pcwrite(ptCloud,filename,'Encoding',encodingType)
```


Description

pcwrite(ptCloud,filename) writes the point cloud object, ptCloud, to the PLY or PCD file specified by the input filename.
pcwrite(ptCloud,filename,'Encoding', encodingType) writes a pointCloud object, ptCloud, to a PLY file that is in the specified format.

Examples

Write 3-D Point Cloud to PLY File

```
ptCloud = pcread('teapot.ply');
pcshow(ptCloud);
```


pcwrite(ptCloud,'teapot0ut','PLYFormat','binary');

Write 3-D Organized Point Cloud to PCD File

load('object3d.mat');
pcwrite(ptCloud,'object3d.pcd','Encoding','ascii');
pc = pcread('object3d.pcd');
pcshow(pc);

Input Arguments

filename - File name

character vector | string scalar
File name, specified as a character vector or string scalar. The input file type must be a PLY or PCD format file.

For a PLY-file, the pcwrite function converts an organized M-by- N-by-3 point cloud to an unorganized M-by-3 format. It converts the format because PLY files do not support
organized point clouds. To preserve the organized format, you can save the point cloud as a PCD-file.

If you do not specify the file name with an extension, the function writes the file in a PLYformat.

ptCloud - Object for storing point cloud

pointCloud object
Object for storing point cloud, specified as a pointCloud object.

encodingType - PLY or PCD file

'ascii' (default) |'binary'|'compressed'
PLY or PCD formatted file, specified as the comma-separated pair consisting of 'Encoding', and either 'ascii', 'binary', 'compressed' for the file format.

File Format	Valid Encodings
PLY	'ascii', 'binary '
PCD	'ascii', 'binary', or 'compressed '

See Also

pcdenoise|pcdownsample|pcfitplane|pcmerge|pcplayer|pcread| pcregistericp|pcshow|pctransform|planeModel|pointCloud

Topics

"3-D Point Cloud Registration and Stitching"

Introduced in R2015a

pctransform

Transform 3-D point cloud

Syntax

```
ptCloudOut = pctransform(ptCloudIn,tform)
ptCloudOut = pctransform(ptCloudIn,D)
```


Description

ptCloudOut $=$ pctransform(ptCloudIn, tform) applies the specified 3-D affine transform, tform to the point cloud, ptCloudIn. The transformation can be a rigid or nonrigid transform.
ptCloudOut $=$ pctransform(ptCloudIn, D) applies the displacement field D to the point cloud. Point cloud transformation using a displacement field define translations with respect to each point in the point cloud.

Examples

Affine Transformations of 3-D Point Cloud

This example shows affine transformation of a 3-D point cloud. The specified forward transform can be a rigid or nonrigid transform. The transformations shown includes rotation (rigid transform) and shearing (nonrigid transform) of the input point cloud.

Read a point cloud into the workspace.
ptCloud $=$ pcread('teapot.ply');

Rotation of 3-D Point Cloud

Create an affine transform object that defines a 45 degree rotation along the z-axis.

```
A = [cos(pi/4) sin(pi/4) 0 0; ...
    -sin(pi/4) cos(pi/4) 0 0; ...
    0 0 1 0; ...
    0 0 0 1];
tform = affine3d(A);
```

Transform the point cloud.

```
ptCloudOut1 = pctransform(ptCloud,tform);
```


Shearing of 3-D point cloud

Create an affine transform object that defines shearing along the x-axis.

```
A = [1 0 0 0; ...
    0.75 1 0 0; ...
    0.75 0 1 0; ...
    0 0 0 1];
tform = affine3d(A);
```

Transform the point cloud.
ptCloudOut2 = pctransform(ptCloud,tform);

Display the Original and Affine Transformed 3-D Point Clouds

Plot the original 3-D point cloud.

```
figure1 = figure('WindowState','normal');
axes1 = axes('Parent',figure1);
pcshow(ptCloud,'Parent',axes1);
xlabel('X');
ylabel('Y');
zlabel('Z');
title('3-D Point Cloud','FontSize',14)
```


\% Plot the rotation and shear affine transformed 3-D point clouds.
figure2 = figure('WindowState','normal');
axes2 = axes('Parent',figure2);
pcshow(ptCloudOut1,'Parent', axes2);
xlabel('X');
ylabel('Y');
zlabel('Z');
title(\{'Rotation of 3-D Point Cloud'\},'FontSize',14)

Rotation of 3-D Point Cloud

figure3 = figure('WindowState','normal');
axes3 = axes('Parent',figure3);
pcshow(ptCloudOut2,'Parent',axes3);
xlabel('X');
ylabel('Y');
zlabel('Z');
title(\{'Shearing of 3-D Point Cloud'\},'FontSize',14)

Point Cloud Transformation Using Displacement Field

Read a point cloud into the workspace.
ptCloud $=$ pcread('teapot.ply');
Create a displacement field D of same size as the point cloud.
D = zeros(size(ptCloud.Location));
Set the displacement field value along x-axis for the first half of the points to 7 .

```
pthalf = ptCloud.Count/2;
D(1:pthalf,1) = 7;
```

Extract the indices of points within a region-of-interest (ROI) using the pointCloud method findNeighborsInRadius. Set the displacement field value along the $x-y$-, and z-axis for points within the ROI to 4,4 , and -2 , respectively.
indices = findNeighborsInRadius(ptCloud,[0 0 3.1],1.5);
D(indices,1:2) = 4;
D(indices, 3) = -2;
Transform the point cloud using the displacement field.
ptCloudOut = pctransform(ptCloud,D);
Display the original and transformed point cloud.
figure
pcshow(ptCloud)
xlabel('X');
ylabel('Y');
zlabel('Z');
title('Original 3-D Point Cloud')


```
figure
pcshow(ptCloudOut)
xlabel('X');
ylabel('Y');
zlabel('Z');
title('Transformed 3-D Point Cloud Using Displacement Field')
```

Transformed 3-D Point Cloud Using Displacement Field

Input Arguments

ptCloudIn - Point cloud
pointCloud object
Point cloud, specified as a pointCloud object.
tform - 3-D affine geometric transformation
affine3d object

3-D affine geometric transformation, specified as an affine3d object. See "Define Transformation Matrix" (Image Processing Toolbox) for details on how to set up the tform input.

D - Displacement field

M-by-3 matrix | M-by- N-by-3 array
Displacement field, specified as either M-by- 3 or an M-by- N-by-3 array. The displacement field is a set of displacement vectors that specify the magnitude and direction of translation for each point in the point cloud. The size of the displacement field must be the same as the size of the Location property of the pointCloud object.

Data Types: single|double

Output Arguments

ptCloudOut - Transformed point cloud
pointCloud object
Transformed point cloud, returned as a pointCloud object. The transformation applies to the coordinates of points and their normal vectors.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{Tm}}$.
Usage notes and limitations:

- Supports code generation (requires MATLAB Coder) only in generic MATLAB Host Computer target platform.
- Generates code that uses a precompiled, platform-specific shared library.

See Also

Classes
pointCloud

Objects
affine3d | planeModel

Functions

pcdenoise | pcdownsample | pcfitplane | pcmerge | pcplayer | pcread | pcregistericp|pcshow|pcwrite

Topics

"3-D Point Cloud Registration and Stitching"

Introduced in R2015a

pcnormals

Estimate normals for point cloud

Syntax

```
normals = pcnormals(ptCloud)
```

normals $=$ pcnormals(ptCloud,k)

Description

normals $=$ pcnormals(ptCloud) returns a matrix that stores a normal for each point in the input $p t C l o u d$. The function uses six neighboring points to fit a local plane to determine each normal vector.
normals = pcnormals(ptCloud,k) additionally specifies k, the number of points used for local plane fitting.

Examples

Estimate Normals of Point Cloud

Load a point cloud.
load('object3d.mat');
Estimate the normal vectors.

```
normals = pcnormals(ptCloud);
figure
pcshow(ptCloud)
title('Estimated Normals of Point Cloud')
hold on
```


$x=p t C l o u d . L o c a t i o n(1: 10: e n d, 1: 10: e n d, 1) ;$
y = ptCloud.Location(1:10:end,1:10:end,2);
z = ptCloud.Location(1:10:end,1:10:end,3);
u = normals(1:10:end,1:10:end,1);
$\mathrm{v}=$ normals(1:10:end, $1: 10:$ end, 2);
$\mathrm{w}=$ normals(1:10:end, $1: 10:$ end, 3);
Plot the normal vectors.
quiver3($x, y, z, u, v, w)$;
hold off

Estimated Normals of Point Cloud

Flip the normals to point towards the sensor location. This step is necessary only for determining the inward or outward direction of the surface. The sensor center is set in x, y, z coordinates.

```
sensorCenter = [0,-0.3,0.3];
for k = 1 : numel(x)
    p1 = sensorCenter - [x(k),y(k),z(k)];
    p2 = [u(k),v(k),w(k)];
    % Flip the normal vector if it is not pointing towards the sensor.
    angle = atan2(norm(cross(p1,p2)),p1*p2');
    if angle > pi/2 || angle < -pi/2
        u(k) = -u(k);
        v(k) = -v(k);
        w(k) = -w(k);
```

end
Plot the adjusted normals.
figure
pcshow(ptCloud)
title('Adjusted Normals of Point Cloud')
hold on
quiver3(x, y, z, u, v, w); hold off

Input Arguments

ptCloud - Object for storing point cloud pointCloud object

Object for storing point cloud, returned as a pointCloud object.

k - Number of points used for local plane fitting
 integer greater than or equal to 3

Number of points used for local plane fitting, specified as an integer greater than or equal to 3 . Increasing this value improves accuracy but slows down computation time.

Output Arguments

normals - Normals used to fit a local plane

M-by-3 | M-by- N-by-3
Normals used to fit a local plane, returned as an M-by- 3 or an M-by- N-by-3 vector. The normal vectors are computed locally using six neighboring points. The direction of each normal vector can be set based on how you acquired the points. The "Estimate Normals of Point Cloud" on page 3-737 example, shows how to set the direction when the normal vectors are pointing towards the sensor.

References

[1] Hoppe, H., T. DeRose, T. Duchamp, J. Mcdonald, and W. Stuetzle. "Surface Reconstruction from Unorganized Points". Computer Graphics (SIGGRAPH 1992 Proceedings). 1992, pp. 71-78.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\text {Coder }}{ }^{\mathrm{TM}}$.
Usage notes and limitations:

- Supports code generation (requires MATLAB Coder) only in generic MATLAB Host Computer target platform.
- Generates code that uses a precompiled, platform-specific shared library.

See Also

pcdenoise | pcdownsample | pcfitplane | pcmerge | pcplayer | pcregistericp| pcshow | pctransform | pcwrite | planeModel | pointCloud

Topics

"3-D Point Cloud Registration and Stitching" "The PLY Format"

Introduced in R2015b

pcfitcylinder

Fit cylinder to 3-D point cloud

Syntax

```
model = pcfitcylinder(ptCloudIn,maxDistance)
model = pcfitcylinder(ptCloudIn,maxDistance,referenceVector)
model = pcfitcylinder(ptCloudIn,maxDistance,referenceVector,
maxAngularDistance)
[model,inlierIndices,outlierIndices] = pcfitcylinder(ptCloudIn,
maxDistance)
[___,meanError] = pcfitcylinder(ptCloudIn,maxDistance)
```

\qquad

``` ] = pcfitcylinder( __ ,Name, Value)
```


Description

model = pcfitcylinder(ptCloudIn,maxDistance) fits a cylinder to a point cloud with a maximum allowable distance from an inlier point to the cylinder. This function uses the M-estimator SAmple Consensus (MSAC) algorithm to find the cylinder.
model = pcfitcylinder(ptCloudIn,maxDistance, referenceVector) fits a cylinder to the point cloud with additional orientation constraints specified by the 1-by-3 reference orientation input vector.
model = pcfitcylinder(ptCloudIn, maxDistance, referenceVector, maxAngularDistance) additionally specifies the maximum allowed absolute angular distance.
[model,inlierIndices,outlierIndices] = pcfitcylinder(ptCloudIn, maxDistance) additionally returns linear indices to the inlier and outlier points in the point cloud input.
[\qquad ,meanError] = pcfitcylinder(ptCloudIn,maxDistance) additionally returns the mean error of the distance of the inlier points to the model.

```
[___] = pcfitcylinder(___,Name,Value) uses additional options specified by one or more Name, Value pair arguments.
```


Examples

Extract Cylinder from Point Cloud

Load the point cloud.
load('object3d.mat');
Display the point cloud.

```
figure
pcshow(ptCloud)
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')
title('Original Point Cloud')
```


Set the maximum point-to-cylinder distance (5 mm) for cylinder fitting.
maxDistance = 0.005;
Set the region of interest to constrain the search.

```
roi = [0.4,0.6,-inf,0.2,0.1,inf];
sampleIndices = findPointsInROI(ptCloud,roi);
```

Set the orientation constraint.
referenceVector $=[0,0,1]$;
Detect the cylinder and extract it from the point cloud by specifying the inlier points.
[model,inlierIndices] = pcfitcylinder(ptCloud,maxDistance,... referenceVector,'SampleIndices',sampleIndices);
pc = select(ptCloud,inlierIndices);
Plot the extracted cylinder.
figure
pcshow(pc)
title('Cylinder Point Cloud')

Cylinder Point Cloud

Detect Cylinder in Point Cloud

Load the point cloud.
load('object3d.mat');
Display point cloud.

```
figure
pcshow(ptCloud)
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')
title('Detect a Cylinder in a Point Cloud')
```


Detect a Cylinder in a Point Cloud

Set the maximum point-to-cylinder distance (5 mm) for the cylinder fitting. maxDistance = 0.005;

Set the region of interest to constrain the search.
roi $=[0.4,0.6 ;-i n f, 0.2 ; 0.1, i n f] ;$
sampleIndices $=$ findPointsInROI(ptCloud,roi);
Set the orientation constraint.
referenceVector $=[0,0,1]$;
Detect the cylinder in the point cloud and extract it.

```
model = pcfitcylinder(ptCloud,maxDistance,referenceVector,...
```

 'SampleIndices',sampleIndices);
 Plot the cylinder.
hold on
plot(model)

Input Arguments

ptCloudIn - Point cloud

pointCloud object
Point cloud, specified as a pointCloud object. If the Normal property of the input ptCloud is empty, the function populates it with values to meet the requirements of the fitting algorithm.
maxDistance - Maximum distance from an inlier point to the cylinder
scalar value

Maximum distance from an inlier point to the cylinder, specified as a scalar value. Specify the distance in units that are consistent with the units you are using for the point cloud.
Data Types: single | double
referenceVector - Reference orientation
1-by-3 vector
Reference orientation, specified as a 1-by-3 vector.

maxAngularDistance - Maximum absolute angular distance 5 (default) | scalar value

Maximum absolute angular distance, specified as a scalar value. The maximum angular distance is measured in degrees between the direction of the fitted cylinder and the reference orientation.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'SampleIndices',[].

SampleIndices - Linear indices of points to sample [] (default) | column vector

Linear indices of points to sample in the input point cloud, specified as the commaseparated pair consisting of 'SampleIndices' and a column vector. An empty vector means that all points are candidates to sample when fitting the cylinder during the RANSAC iteration. If you specify a subset of points, the function fits the model by sampling only those points in the subset. Providing a subset of points can significantly speed up the process by reducing the number of trials. You can generate the indices vector using the findPointsInROI method of the pointCloud object.

MaxNumTrials - Maximum number of random trials
 1000 (default) | positive integer

Maximum number of random trials for finding inliers, specified as the comma-separated pair consisting of 'MaxNumTrials' and a positive integer. To improve robustness of the output, increase this value. However, doing so adds additional computations.

Confidence - Percentage for finding maximum number of inliers
 99 (default) | numeric scalar in the range (0,100)

Percentage for finding maximum number of inliers, specified as the comma-separated pair consisting of 'Confidence' and a numeric scalar, in the range (0 100). To improve the robustness of the output, increase this value. However, doing so adds additional computations.

Output Arguments

model - Geometric model of cylinder

cylinderModel object.
Geometric model of cylinder, returned as a cylinderModel object.
The coefficients for the output model are set to zero when:

- The input point cloud does not contain enough valid points.
- The algorithm cannot find enough inlier points.

inlierIndices - Linear indices of inlier points column vector

Linear indices of the inlier points in the input point cloud, returned as a column vector.

outlierIndices - Linear indices of outlier points

column vector
Linear indices of the outlier points in the input point cloud returned as a column vector.

meanError - Mean square error

scalar value
Mean error of the distance of inlier points to the model, returned as a scalar value.

Algorithms

The function returns a geometric model that describes the cylinder. This function uses the M-estimator SAmple Consensus (MSAC) algorithm to find the cylinder. The MSAC algorithm is a variant of the RANdom SAmple Consensus (RANSAC) algorithm.

The fitting algorithm for the pcfitcylinder function requires point cloud normals. Therefore, if the Normal property for the input point cloud is empty, the function fills it. When the function fills the Normal property, it uses six points to fit the local cylinder. If six points do not work and the fitting fails, consider calling the penormals function which enables you to select the number of points to use.

References

[1] Torr, P. H. S., and A. Zisserman. "MLESAC: A New Robust Estimator with Application to Estimating Image Geometry." Computer Vision and Image Understanding. Volume 78, Issue 1, April 2000, pp. 138-156.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathbb{C o d e r}^{\mathrm{TM}}$.
Usage notes and limitations:

- Supports code generation (requires MATLAB Coder) only in generic MATLAB Host Computer target platform.
- Generates code that uses a precompiled, platform-specific shared library.

See Also

affine3d|cylinderModel|pcdenoise|pcfitplane|pcfitsphere|pcmerge| pcplayer|pcread|pcregistericp|pcshow|pctransform|pcwrite| planeModel|pointCloud

Topics

"3-D Point Cloud Registration and Stitching"

Introduced in R2015b

pcfitplane

Fit plane to 3-D point cloud

Syntax

```
model = pcfitplane(ptCloudIn,maxDistance)
model = pcfitplane(ptCloudIn,maxDistance,referenceVector)
model = pcfitplane(ptCloudIn,maxDistance,referenceVector,
maxAngularDistance)
[model,inlierIndices,outlierIndices] = pcfitplane(ptCloudIn,
maxDistance)
[ ___,meanError] = pcfitplane(ptCloudIn,maxDistance)
[___] = pcfitplane(ptCloudIn,maxDistance,Name,Value)
```


Description

model $=$ pcfitplane(ptCloudIn, maxDistance) fits a plane to a point cloud that has a maximum allowable distance from an inlier point to the plane. The function returns a geometrical model that describes the plane.

This function uses the M-estimator SAmple Consensus (MSAC) algorithm to find the plane. The MSAC algorithm is a variant of the RANdom SAmple Consensus (RANSAC) algorithm.
model $=$ pcfitplane(ptCloudIn, maxDistance, referenceVector) fits a plane to a point cloud that has additional orientation constraints specified by the 1-by-3 referenceVector input.
model = pcfitplane(ptCloudIn,maxDistance, referenceVector, maxAngularDistance) fits a plane to a point cloud that has a specified maximum angular distance.
[model,inlierIndices,outlierIndices] = pcfitplane(ptCloudIn, maxDistance) additionally returns the linear indices to the inlier and outlier points in the point cloud input.
[\qquad , meanError] = pcfitplane(ptCloudIn, maxDistance) additionally returns the mean error of the distance of inlier points to the model, using any of the preceding syntaxes.
$[\quad]=$ pcfitplane(ptCloudIn, maxDistance,Name,Value) uses additional
options specified by one or more Name, Value pair arguments.

Examples

Detect Multiple Planes from Point Cloud

Load the point cloud.
load('object3d.mat')
Display and label the point cloud.

```
figure
pcshow(ptCloud)
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')
title('Original Point Cloud')
```


Set the maximum point-to-plane distance $(2 \mathrm{~cm})$ for plane fitting.
maxDistance $=0.02$;
Set the normal vector of the plane.
referenceVector = [0,0,1];
Set the maximum angular distance to 5 degrees.
maxAngularDistance $=5$;
Detect the first plane, the table, and extract it from the point cloud.
[modell,inlierIndices,outlierIndices] = pcfitplane(ptCloud,...
maxDistance, referenceVector, maxAngularDistance);

```
plane1 = select(ptCloud,inlierIndices);
remainPtCloud = select(ptCloud,outlierIndices);
```

Set the region of interest to constrain the search for the second plane, left wall.

```
roi = [-inf,inf;0.4,inf;-inf,inf];
sampleIndices = findPointsInROI(remainPtCloud,roi);
```

Detect the left wall and extract it from the remaining point cloud.

```
[model2,inlierIndices,outlierIndices] = pcfitplane(remainPtCloud,...
    maxDistance,'SampleIndices',sampleIndices);
plane2 = select(remainPtCloud,inlierIndices);
remainPtCloud = select(remainPtCloud,outlierIndices);
```

Plot the two planes and the remaining points.

```
figure
pcshow(planel)
title('First Plane')
```

First Plane

figure
pcshow(plane2)
title('Second Plane')

figure
pcshow(remainPtCloud)
title('Remaining Point Cloud')

Input Arguments

ptCloudIn - Point cloud

pointCloud object
Point cloud, specified as a pointCloud object.
maxDistance - Maximum distance from an inlier point to the plane scalar value

Maximum distance from an inlier point to the plane, specified as a scalar value. Specify the distance in units that are consistent with the units you are using for the point cloud.

Data Types: single | double

referenceVector - Reference orientation constraint 1-by-3 vector

Reference orientation constraint, specified as a 1-by-3 vector.
Data Types: single | double
maxAngularDistance - Maximum absolute angular distance
5 degrees (default) | scalar value
Maximum absolute angular distance between the normal vector of the fitted plane and the reference orientation, specified as a scalar value in degrees.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: 'SampleIndices',[].

SampleIndices - Linear indices of points to be sampled

 [] (default) | column vectorLinear indices of points to sample in the input point cloud, specified as the commaseparated pair consisting of 'SampleIndices' and a column vector. An empty vector means that all points are candidates to sample in the RANSAC iteration to fit the plane. When you specify a subset, only points in the subset are sampled to fit a model.

Providing a subset of points can significantly speed up the process and reduce the number of trials. You can generate the indices vector using the findPointsInROI method of the pointCloud object.

MaxNumTrials - Maximum number of random trials

1000 (default) | positive integer

Maximum number of random trials for finding inliers, specified as the comma-separated pair consisting of 'MaxNumTrials' and a positive integer. Increasing this value makes the output more robust but adds additional computations.

Confidence - Confidence percentage for finding maximum number of inliers 99 (default) | numeric scalar

Confidence percentage for finding maximum number of inliers, specified as the commaseparated pair consisting of 'Confidence' and a numeric scalar, in the range [0 100]. Increasing this value makes the output more robust but adds additional computations.

Output Arguments

model - Geometric model of plane

planeModel object
Geometric model of plane, returned as a planeModel object.
When the input point cloud does not contain enough valid points, or when the function cannot find enough inlier points, the coefficients for the output model are set to zero.

inlierIndices - Linear indices of inlier points

column vector
Linear indices of inlier points within the input point cloud, returned as a column vector.

outlierIndices - Linear indices of outlier points

column vector
Linear indices of outlier points within the input point cloud, returned as a column vector.

meanError - Mean square error

scalar value
Mean error of the distance of inlier points to the model, returned as a scalar value.

References

[1] Torr, P. H. S., and A. Zisserman. "MLESAC: A New Robust Estimator with Application to Estimating Image Geometry." Computer Vision and Image Understanding. 2000.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathbb{C o d e r}^{\mathrm{TM}}$.
Usage notes and limitations:

- Supports code generation (requires MATLAB Coder) only in generic MATLAB Host Computer target platform.
- Generates code that uses a precompiled, platform-specific shared library.

See Also

affine3d|pcdenoise|pcfitcylinder|pcfitsphere|pcmerge|pcplayer| pcread | pcregistericp|pcshow|pctransform|pcwrite|planeModel| pointCloud

Topics

"3-D Point Cloud Registration and Stitching"
Introduced in R2015b

pcfitsphere

Fit sphere to 3-D point cloud

Syntax

```
model = pcfitsphere(ptCloudIn,maxDistance)
[model,inlierIndices,outlierIndices] = pcfitsphere(ptCloudIn,
maxDistance)
[___,meanError] = pcfitsphere(ptCloudIn,maxDistance)
[____] = pcfitsphere(
```

\qquad

``` ,Name, Value)
```


Description

model $=$ pcfitsphere(ptCloudIn,maxDistance) fits a sphere to a point cloud that has a maximum allowable distance from an inlier point to the sphere. The function returns a geometrical model that describes the sphere.

This function uses the M-estimator SAmple Consensus (MSAC) algorithm to find the sphere. The MSAC algorithm is a variant of the RANdom SAmple Consensus (RANSAC) algorithm.
[model,inlierIndices,outlierIndices] = pcfitsphere(ptCloudIn, maxDistance) additionally returns linear indices to the inlier and outlier points in the point cloud input.
[\qquad ,meanError] = pcfitsphere(ptCloudIn,maxDistance) additionally returns the mean error of the distance of inlier points to the model, using any of the preceding syntaxes.
\square] = pcfitsphere(\qquad ,Name, Value) uses additional options specified by one or more Name, Value pair arguments.

Examples

Detect Sphere from Point Cloud

Load data file.
load('object3d.mat');
Display original point cloud.

```
figure
pcshow(ptCloud)
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')
title('Original Point Cloud')
```


Set a maximum point-to-sphere distance of 1 cm for sphere fitting.
maxDistance = 0.01;
Set the roi to constrain the search.
roi $=[-i n f, 0.5,0.2,0.4,0.1, i n f] ;$
sampleIndices = findPointsInROI(ptCloud,roi);
Detect the sphere, a globe, and extract it from the point cloud.
[model,inlierIndices] = pcfitsphere(ptCloud,maxDistance,.. .
'SampleIndices', sampleIndices);
globe $=$ select(ptCloud,inlierIndices);
Plot the globe.
hold on
plot(model)

figure
pcshow(globe)
title('Globe Point Cloud')

Input Arguments

ptCloudIn - Point cloud
 pointCloud object

Point cloud, specified as a pointCloud object.
maxDistance - Maximum distance from an inlier point to the sphere
scalar value
Maximum distance from an inlier point to the sphere, specified as a scalar value. Specify the distance in units that are consistent with the units you are using for the point cloud.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Example: 'SampleIndices',[].

SampleIndices - Linear indices of points to be sampled [] (default) | column vector

Linear indices of points to sample in the input point cloud, specified as the commaseparated pair consisting of 'SampleIndices' and a column vector. An empty vector means that all points are candidates to sample in the RANSAC iteration to fit the sphere. When you specify a subset, only points in the subset are sampled to fit a model. Providing a subset of points can significantly speed up the process and reduce the number of trials. You can generate the indices vector using the findPointsInROI method of the pointCloud object.

MaxNumTrials - Maximum number of random trials 1000 (default) | positive integer

Maximum number of random trials for finding inliers, specified as the comma-separated pair consisting of 'MaxNumTrials' and a positive integer. Increasing this value makes the output more robust but adds additional computations.

Confidence - Confidence percentage for finding maximum number of inliers

 99 (default) | numeric scalar in the range [0,100]Confidence percentage for finding maximum number of inliers, specified as the commaseparated pair consisting of 'Confidence' and a numeric scalar representing percentage, in the range $[0,100]$. Increasing this value makes the output more robust but adds additional computations.

Output Arguments

model - Geometric model of sphere sphereModel object

Geometric model of sphere, returned as a sphereModel object.
When the input point cloud does not contain enough valid points, or when the function cannot find enough inlier points, the coefficients for the output model are set to zero.

inlierIndices - Linear indices of inlier points
 column vector

Linear indices of inlier points within the input point cloud, returned as a column vector.

outlierIndices - Linear indices of outlier points

column vector
Linear indices of outlier points within the input point cloud, returned as a column vector.

meanError - Mean square error
 scalar value

Mean error of the distance of inlier points to the model, returned as a scalar value.

References

[1] Torr, P. H. S. and A. Zisserman. "MLESAC: A New Robust Estimator with Application to Estimating Image Geometry." Computer Vision and Image Understanding. 2000.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Supports code generation (requires MATLAB Coder) only in generic MATLAB Host Computer target platform.
- Generates code that uses a precompiled, platform-specific shared library.

```
See Also
affine3d|pcdenoise|pcfitcylinder|pcfitplane|pcmerge|pcplayer| pcread | pcregistericp| pcshow| pctransform|pcwrite|planeModel| pointCloud
```


Topics

"3-D Point Cloud Registration and Stitching"

Introduced in R2015b

pixelLabellmageSource

(To be removed) Create datastore for semantic segmentation networks

Note pixelLabelImageSource will be removed in a future release. Create a pixel label image datastore using the pixelLabelImageDatastore function instead. For more information, see "Compatibility Considerations".

Syntax

```
pximds = pixelLabelImageSource(gTruth)
pximds = pixelLabelImageSource(imds,pxds)
pximds = pixelLabelImageSource(
```

\qquad

``` , Name, Value)
```


Description

pximds = pixelLabelImageSource(gTruth) returns a pixel label image datastore for training a semantic segmentation network based on the input array of groundTruth objects. Use the output pixelLabelImageDatastore object with the Deep Learning Toolbox function trainNetwork to train convolutional neural networks for semantic segmentation.
pximds = pixelLabelImageSource(imds,pxds) returns a pixel label image datastore based on the input image datastore and the pixel label datastore objects. imds is an ImageDatastore object that represents the training input to the network. pxds is a PixelLabelDatastore object that represents the required network output.
pximds = pixelLabelImageSource(\qquad ,Name, Value) sets properties of the returned pixel label image datastore using name-value pairs. You can specify multiple name-value pairs. Enclose each argument name in quotes.

Examples

Augment Data While Training Using PixelLabelImageSource

Configure a pixel label image datastore to augment data while training. This example uses the pixelLabelImageSource function to create a pixel label image datastore object. For an example of the recommended workflow that uses the pixelLabelImageDatastore function to create a pixel label image datastore object, see "Augment Data While Training" on page 2-22.

Load training images and pixel labels.

```
dataSetDir = fullfile(toolboxdir('vision'),'visiondata','triangleImages');
imageDir = fullfile(dataSetDir,'trainingImages');
labelDir = fullfile(dataSetDir,'trainingLabels');
```

Create an imageDatastore object to hold the training images.
imds = imageDatastore(imageDir);
Define the class names and their associated label IDs.

```
classNames = ["triangle","background"];
labelIDs = [255 0];
```

Create a pixelLabelDatastore object to hold the ground truth pixel labels for the training images.

```
pxds = pixelLabelDatastore(labelDir, classNames, labelIDs);
```

Create an imageDataAugmenter object to randomly rotate and mirror image data.

```
augmenter = imageDataAugmenter('RandRotation',[-10 10],'RandXReflection',true)
```

augmenter =
imageDataAugmenter with properties:

FillValue: 0
RandXReflection: 1 RandYReflection: 0

RandRotation: [-10 10]
RandScale: [11]
RandXScale: [1 1]

```
RandYScale: [1 1]
RandXShear: [0 0]
RandYShear: [0 0]
RandXTranslation: [0 0]
RandYTranslation: [0 0]
```

Use the pixelLabelImageSource function to create a pixelLabelImageDatastore object that can be used to train the network with augmented data.

```
plimds = pixelLabelImageSource(imds,pxds,'DataAugmentation',augmenter)
plimds =
    pixelLabelImageDatastore with properties:
                            Images: {200x1 cell}
            PixelLabelData: {200x1 cell}
                                    ClassNames: {2x1 cell}
                DataAugmentation: [1x1 imageDataAugmenter]
            ColorPreprocessing: 'none'
            OutputSize: []
                OutputSizeMode: 'resize'
                    MiniBatchSize:
            NumObservations: 200
        DispatchInBackground: 0
```


Input Arguments

gTruth - Ground truth data

groundTruth object
Ground truth data, specified as a groundTruth object. You can use the Image Labeler to create a groundTruth object for training a semantic segmentation network.

imds - Collection of images

ImageDatastore object
Collection of images, specified as an ImageDatastore object.

pxds - Collection of pixel labeled images

PixelLabelDatastore object

Collection of pixel labeled images, specified as a PixelLabelDatastore object. The object contains the pixel labeled images for each image contained in the imds input object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Example: 'ColorProcessing','rgb2gray'

DataAugmentation - Image data augmentation

' none ' (default) | imageDataAugmenter object
Image data augmentation, specified as 'none' or an imageDataAugmenter object. This argument sets the DataAugmentation on page 2-0 property of the returned pixel label image datastore, pximds.

ColorPreprocessing - Color channel preprocessing

'none' (default)|'gray2rgb'|'rgb2gray'
Color channel preprocessing, specified as 'none', 'gray2rgb', or 'rgb2gray'. This argument sets the ColorPreprocessing on page 2-0 property of the returned pixel label image datastore, pximds. Use this property when you need the image data created by the data source must be only color or grayscale, but the training set includes both. Suppose you need to train a network that expects color images but some of your training images are grayscale. Set ColorPreprocessing to 'gray2rgb' to replicate the color channels of the grayscale images in the input image set. Using the 'gray2rgb' option creates M-by- N-by-3 output images.

OutputSize - Size of images produced by data source
 [] (default) | 2-element vector

Size of images produced by data source, specified as a 2 -element vector indicating the number of rows and columns. This argument sets the OutputSize on page 2-0 property of the returned pixel label image datastore, pximds. When you specify the OutputSize, image sizes are adjusted as necessary. By default, this property is empty, which means that the images are not adjusted.

OutputSizeMode - Technique used to adjust image sizes
 'false' (default)|'resize'|'centercrop'|'randcrop'

Technique used to adjust image sizes, specified as 'false', 'resize', 'centercrop', or 'randcrop'. This argument sets the OutputSizeMode on page 2-0 property of the returned pixel label image datastore, pximds. This property applies only when you set OutputSize to a value other than [].

BackgroundExecution - Preprocess images in parallel false (default)| true

Preprocess images in parallel, specified as false or true. This argument sets the DispatchInBackground on page 2-0 property of the returned pixel label image datastore object, pximds. If BackgroundExecution is true and you have Parallel Computing Toolbox, then the pixel label image datastore asynchronously reads, augments, and queues pixel labeled images for use in training.

Output Arguments

pximds - Pixel label image datastore
pixelLabelImageDatastore object
Pixel label image datastore, returned as a pixelLabelImageDatastore object.

Compatibility Considerations

pixelLabelImageSource object is removed

In R2017b, you could create a pixelLabelImageSource object for training semantic segmentation networks. Starting in R2018a, the pixelLabelImageSource object has been removed. Use a pixelLabelImageDatastore object instead.

A pixelLabelImageDatastore has additional properties and methods to assist with data preprocessing. Unlike pixelLabelImageSource, which could be used for training only, you can use a pixelLabelImageDatastore for both training and prediction.

To create a pixelLabelImageDatastore object, you can use either the pixelLabelImageDatastore function (recommended) or the pixelLabelImageSource function.

pixelLabelImageSource function will be removed
 Not recommended starting in R2018a

The pixelLabelImageSource function will be removed in a future release. Create a pixelLabelImageDatastore using the pixelLabelImageDatastore function instead.

To update your code, change instances of the function name pixelLabelImageSource to pixelLabelImageDatastore. You do not need to change the input arguments.

See Also

pixelLabelImageDatastore
Introduced in R2017b

pixelLabelTrainingData

Create training data for semantic segmentation from ground truth

Syntax

[imds,pxds] = pixelLabelTrainingData(gTruth)
[imds,pxds] = pixelLabelTrainingData(gTruth,Name,Value)

Description

[imds,pxds] = pixelLabelTrainingData(gTruth) creates image datastore imds and pixel label datastore pxds from the specified ground truth. You can combine the returned datastores into a pixelLabelImageDatastore and use the trainNetwork function to train deep learning segmentation networks. You can also use these datastores with the evaluateSemanticSegmentation function to evaluate the result from deep learning or classical segmentation methods.

This function supports parallel computing using multiple MATLAB workers. Enable parallel computing using the "Computer Vision Toolbox Preferences" dialog box.
[imds,pxds] = pixelLabelTrainingData(gTruth,Name,Value) returns image and pixel label datastores with additional options specified by one or more name-value pair arguments.

- If the groundTruth objects in gTruth were created using a video file or a custom data source, then you can specify any combination of name-value pair arguments.
- If the groundTruth objects were created from an image collection or image sequence data source, then you can specify only the SamplingFactor name-value pair argument

Examples

Prepare Data for Evaluating Semantic Segmentation Algorithm

Load a groundTruth object named gTruth. The ground truth contains pixel labels for triangles and background, annotated on a video with 100 frames.

```
visiondataPath = fullfile(matlabroot,'toolbox','vision','visiondata');
addpath(fullfile(visiondataPath,'triangleImages'));
addpath(fullfile(visiondataPath, 'triangleImages', 'testLabels'));
load(fullfile(visiondataPath,'triangleImages','triangleGroundTruth.mat'));
```

Create a temporary folder.

```
tempf = 'C:\temp\';
```

mkdir(tempf)

```
Warning: Directory already exists.
```

Create an imageDatastore and a pixelLabelDatastore from the video file and corresponding pixel labels. Write every fifth image to the temporary folder.

```
[imds,pxdsTruth] = pixelLabelTrainingData(gTruth,...
    'SamplingFactor',5,'WriteLocation',tempf);
Write images extracted for training to folder:
    C:\temp\
```

Writing 20 images extracted from triangleVideo.avi...Completed.

Confirm that the temporary folder contains every fifth image.

```
imds.Files
ans = 20\times1 cell array
    {'C:\temp\triangleVideo01.png'}
    {'C:\temp\triangleVideo06.png'}
    {'C:\temp\triangleVideo11.png'}
    {'C:\temp\triangleVideo16.png'}
    {'C:\temp\triangleVideo21.png'}
    {'C:\temp\triangleVideo26.png'}
    {'C:\temp\triangleVideo31.png'}
    {'C:\temp\triangleVideo36.png'}
    {'C:\temp\triangleVideo41.png'}
    {'C:\temp\triangleVideo46.png'}
    {'C:\temp\triangleVideo51.png'}
    {'C:\temp\triangleVideo56.png'}
```

```
{'C:\temp\triangleVideo61.png'}
{'C:\temp\triangleVideo66.png'}
{'C:\temp\triangleVideo71.png'}
{'C:\temp\triangleVideo76.png'}
{'C:\temp\triangleVideo81.png'}
{'C:\temp\triangleVideo86.png'}
{'C:\temp\triangleVideo91.png'}
{'C:\temp\triangleVideo96.png'}
```

Remove the video and images from the path.

```
rmpath(fullfile(visiondataPath,'triangleImages','testImages'));
```

Warning: "D:\jobarchive\Bvision\2018_11_29_h16m30s59_job1011195_pass\matlab\toolbox\vi
delete([tempf,'triangleVideo*.png'])

Input Arguments

gTruth - Ground truth data

scalar groundTruth object | array of groundTruth objects
Ground truth data, specified as a scalar groundTruth object or an array of groundTruth objects. When gTruth is an array of groundTruth objects, the LabelDefinitions property of each object must contain the same pixel label names.

If you use custom data sources in gTruth with parallel computing enabled, then the reader function is expected to work with a pool of MATLAB workers to read images from the data source in parallel.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, ... , NameN, ValueN.

Example: 'SamplingFactor',5

SamplingFactor - Factor at which to subsample images 1 (default) | integer | vector of integers

Factor at which to subsample images in the ground truth data source, specified as the comma-separated pair consisting of 'SamplingFactor' and an integer or a vector of integers. For a sampling factor of N, the returned image datastore imds includes every N th image in the ground truth data source. Ground truth images with empty pixel labels are ignored.

SamplingFactor	Sampling Factor Applied
Integer	All ground truth data sources in gTruth are sampled with the same sampling factor, N.
Vector of integers	The k th ground truth data source in gTruth is sampled with a sampling factor of $N(k)$.

WriteLocation - Folder name
 pwd (current working folder) (default) | string scalar | character vector

Folder name to which extracted images are written, specified as the comma-separated pair consisting of 'WriteLocation' and a string scalar or character vector. The specified folder must exist and have write permissions. This argument applies only for groundTruth objects created using a video file or a custom data source.

ImageFormat - Image file format

PNG (default) | string scalar | character vector
Image file format, specified as the comma-separated pair consisting of ' ImageFormat ' and a string scalar or character vector. File formats must be supported by imwrite. This argument applies only for groundTruth objects created using a video file or a custom data source.

NamePrefix - Prefix applied to file names

string scalar | character vector
Prefix applied to file names of the output images, specified as the comma-separated pair consisting of 'NamePrefix' and a string scalar or character vector. The image files are named as:
<name_prefix><image_number>.<image_format>

The default value of NamePrefix is the name of the video file or data source containing the images. This argument applies only for groundTruth objects created using a video file or a custom data source.

Verbose - Display training progress
 true (default) | false

Display training progress on the MATLAB command line, specified as the commaseparated pair consisting of 'Verbose' and true or false. This argument applies only for groundTruth objects created using a video file or a custom data source.

Output Arguments

imds - Collection of images

ImageDatastore object
Collection of images extracted from the ground truth, gTruth, returned as an ImageDatastore object. Each image in imds has annotations with at least one class of pixel labels. imds ignores images that with no annotations.

pxds - Collection of pixel-labeled images

PixelLabelDatastore object
Collection of pixel-labeled images extracted from the ground truth, gTruth, returned as a PixelLabelDatastore object. The object contains a categorical matrix of pixel labels for each image contained in the image datastore, imds. Labels that do not correspond to pixel labels are ignored.

See Also

Apps
Ground Truth Labeler | Image Labeler | Video Labeler
Functions
evaluateSemanticSegmentation|objectDetectorTrainingData|semanticseg | trainNetwork

Objects
 ImageDatastore|PixelLabelDatastore|PixelLabelImageDatastore| groundTruth

Topics

"Training Data for Object Detection and Semantic Segmentation"
Introduced in R2018a

plotCamera

Plot a camera in 3-D coordinates

Syntax

```
cam = plotCamera()
cam = plotCamera(cameraTable)
cam = plotCamera(Name,Value)
```


Description

cam $=$ plotCamera() creates a camera visualization object rendered in the current axes.
cam $=$ plotCamera(cameraTable) returns an array of camera visualization objects rendered in the current axes.
cam = plotCamera(Name,Value) creates a camera visualization object with the property values specified by one or more Name, Value pair arguments.

Examples

Create Animated Camera Plot

Plot a camera pointing along the y-axis.

$$
\begin{array}{rrr}
\mathrm{R}=\begin{array}{rr}
{[1} & 0 \\
0 & 0 \\
0 & 1
\end{array} & -1 ; \\
0] ;
\end{array}
$$

Set the opacity of the camera to zero for faster animation.

```
cam = plotCamera('Location',[10 0 20],'Orientation',R,'Opacity',0);
```


Set the view properties.

```
grid on
```

axis equal
axis manual

Make the space large enough for the animation.

$$
\begin{aligned}
& x \lim ([-15,20]) ; \\
& y \lim ([-15,20]) ; \\
& z \lim ([15,25]) ;
\end{aligned}
$$

Rotate the camera about the camera's y-axis.

```
for theta = 0:pi/64:10*pi
    T = [cos(theta) 0 sin(theta);
            0 1 0;
            -sin(theta) 0 cos(theta)];
        cam.Orientation = T * R;
        cam.Location = [10 * cos(theta),10 * sin(theta),20];
        drawnow();
end
```


Visualize Camera Extrinsics

Create a set of calibration images.

```
images = imageSet(fullfile(toolboxdir('vision'),'visiondata',...
    calibration','slr'));
```

Detect the checkerboard corners in the images.
[imagePoints, boardSize] = detectCheckerboardPoints(images.ImageLocation);
Generate the world coordinates of the checkerboard corners in the pattern-centric coordinate system, with the upper-left corner at (0,0). Set the square size to 29 mm .

```
squareSize = 29;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);
```

Calibrate the camera.
cameraParams = estimateCameraParameters(imagePoints,worldPoints);
Load an image at its new location.
imOrig = imread(fullfile(toolboxdir('vision'),'visiondata',...
'calibration','slr','image9.jpg'));
figure; imshow(imOrig,'InitialMagnification',50);
title('Input Image');

Undistort the image.
im = undistortImage(imOrig,cameraParams);

Find the reference object in the new image.
[imagePoints,boardSize] = detectCheckerboardPoints(im);
Compute the new extrinsics.
[rotationMatrix,translationVector] = extrinsics(imagePoints,... worldPoints,cameraParams);

Plot the world points.
figure;
plot3(worldPoints(:,1),worldPoints(:,2),zeros(size(worldPoints, 1),1),'*'); hold on

Mark the origin.
plot3(0,0,0,'g*');

Compute the camera location and orientation.

```
orientation = rotationMatrix';
location = -translationVector * orientation;
```

Plot the camera.
cam = plotCamera('Location',location,'Orientation',orientation,'Size', 20);

Make the z-axis point down.
set(gca,'CameraUpVector',[0 0-1]);

Set the view parameters.
camorbit(gca,-110,60,'data',[0 0 1]);
axis equal
grid on

Turn on 3-D rotation.
cameratoolbar('SetMode','orbit');

Label the axes.
xlabel('X (mm)');
ylabel('Y (mm)');
zlabel('Z (mm)');

Input Arguments

cameraTable - Camera visualization object properties

table
Camera visualization object properties, specified as a table. The columns contain the Name, Value properties of the camera visualization object except for Parent, which specifies the axes for display. If the table contains a 'ViewId ' column, then the view IDs are used as camera labels.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'Location', [0,0,0]

Location - Camera location coordinates

[0,0,0] (default) | three-element vector
Camera location coordinates, specified as the comma-separated pair consisting of 'Location' and a three-element vector. The $[x, y, z]$ coordinates are specified in the data units of the parent axes.

Orientation - Matrix orientation

eye(3) (default) | 3-by-3 3-D rotation matrix
Matrix orientation, specified as the comma-separated pair consisting of 'Orientation' and a 3-by-3 3-D rotation matrix.

Size - Camera base width

1 | scalar
Camera base width, specified as the comma-separated pair consisting of 'Size' and a scalar.

Label - Camera label

' ' (default) | character vector | string scalar
Camera label, specified as the comma-separated pair consisting of 'Label' and a character vector or a string scalar.

Color - Camera color

[1 0 0] (default) |three-element vector

Camera color, specified as the comma-separated pair consisting of 'Color' and a threeelement vector of RGB values in the range [0 1]. See colorspec for more information on how to specify an RGB color.

Opacity - Camera opacity

0.2 | scalar in the range [0 1]

Camera opacity, specified as the comma-separated pair consisting of 'Opacity' and a scalar in the range [01].

Visible - Camera visibility

true (default) | false
Camera visibility, specified as the comma-separated pair consisting of 'Visible' and the logical true or false.

AxesVisible - Camera axes visibility false (default)|true

Camera axes visibility, specified as the comma-separated pair consisting of 'AxesVisible' and the logical true or false.

ButtonDownFcn - Callback function

' ' | function name

Callback function, specified as the comma-separated pair consisting of 'ButtonDownFcn' and a function name that executes when you click the camera.

Parent - Output axes

gca handle

Output axes, specified as the comma-separated pair consisting of 'Parent' and an axes handle. The default is set to the current axes handle, gca.

See Also

extrinsics|showExtrinsics

Topics

"Structure From Motion From Two Views"
"3-D Coordinate Systems"
"Single Camera Calibrator App"
"Stereo Camera Calibrator App"

Introduced in R2015a

ransac

Fit model to noisy data

Syntax

```
[model,inlierIdx] = ransac(data,fitFcn,distFcn,sampleSize,
maxDistance)
[___] = ransac( ___ ,Name,Value)
```


Description

[model,inlierIdx] = ransac(data,fitFcn,distFcn,sampleSize, maxDistance) fits a model to noisy data using the M-estimator sample consensus (MSAC) algorithm, a version of the random sample consensus (RANSAC) algorithm.

Specify your function for fitting a model, fitFcn, and your function for calculating distances from the model to your data, distFcn. The ransac function takes random samples from your data using sampleSize and uses the fit function to maximize the number of inliers within maxDistance.
[__] = ransac (__ , Name, Value) additionally specifies one or more Name, Value pair arguments.

Examples

Fit Line to 2-D Points Using Least Squares and RANSAC Algorithms
Load and plot a set of noisy 2-D points.
load pointsForLineFitting.mat
plot(points(:,1), points(:,2),'o');
hold on

Fit a line using linear least squares. Due to outliers, the line is not a good fit.

```
modelLeastSquares = polyfit(points(:,1),points(:,2),1);
```

$x=[m i n(p o i n t s(:, 1))$ max(points(:,1))];
$y=\operatorname{modelLeastSquares(1)*x}+$ modelLeastSquares(2);
plot(x,y,'r-')

Fit a line to the points using the MSAC algorithm. Define the sample size, the maximum distance for inliers, the fit function, and the distance evaluation function. Call ransac to run the MSAC algorithm.

```
sampleSize = 2; % number of points to sample per trial
maxDistance = 2; % max allowable distance for inliers
fitLineFcn = @(points) polyfit(points(:,1),points(:,2),1); % fit function using polyfi
evalLineFcn = ... % distance evaluation function
    @(model, points) sum((points(:, 2) - polyval(model, points(:,1))).^2,2);
[modelRANSAC, inlierIdx] = ransac(points,fitLineFcn,evalLineFcn, ...
    sampleSize,maxDistance);
```

Refit a line to the inliers using polyfit.

```
modelInliers = polyfit(points(inlierIdx,1),points(inlierIdx,2),1);
```

Display the final fit line. This line is robust to the outliers that ransac identified and ignored.

```
inlierPts = points(inlierIdx,:);
x = [min(inlierPts(:,1)) max(inlierPts(:,1))];
y = modelInliers(1)*x + modelInliers(2);
plot(x, y, 'g-')
legend('Noisy points','Least squares fit','Robust fit');
hold off
```


Input Arguments

data - Data to be modeled
 m-by-n matrix

Data to be modeled, specified as an m-by-n matrix. Each row corresponds to a data point in the set to be modeled. For example, to model a set of 2-D points, specify the point data as an m-by- 2 matrix.

Data Types: single | double

fitFen - Function to fit a subset of data
 function handle

Function to fit a subset of data, specified as a function handle. The function must be of the form:

```
model = fitFcn(data)
```

If it is possible to fit multiple models to the data, then fitFcn returns the model parameters as a cell array.

distFen - Function to compute distances from model

function handle
Function to compute distances from the model to the data, specified as a function handle. The function must be of the form:

```
distances = distFcn(model,data)
```

If model is an n-element array, then distances must be an m-by- n matrix. Otherwise, distances must be an m-by- 1 vector.

sampleSize - Minimum sample size

positive scalar
Minimum sample size from data that is required by fitFcn, specified as a positive scalar.

maxDistance - Maximum distance for inlier points
 positive scalar

Maximum distance from the polynomial fit curve to an inlier point, specified as a positive scalar. Any points further away than this distance are considered outliers. The RANSAC
algorithm creates a fit from a small sample of points, but tries to maximize the number of inlier points. Lowering the maximum distance improves the polynomial fit by putting a tighter tolerance on inlier points.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, . . . , NameN, ValueN.

Example: 'MaxNumTrials',2000

ValidateModelFcn - Function to validate model
 function handle

Function to validate model, specified as the comma-separated pair consisting of 'ValidateModelFcn' and a function handle. The function returns true if the model is accepted based on criteria defined in the function. Use this function to reject specific fits. The function must be of the form:

```
isValid = validateModelFcn(model,varargin)
```

If no function is specified, all polynomials are assumed to be valid.

MaxSamplingAttempts - Maximum number of sampling attempts 100 (default) | integer

Maximum number of attempts to find a sample that yields a valid polynomial, specified as the comma-separated pair consisting of 'MaxSamplingAttempts' and an integer.

MaxNumTrials - Maximum number of random trials 1000 (default) | integer

Maximum number of random trials, specified as the comma-separated pair consisting of 'MaxNumTrials' and an integer. A single trial uses a minimum number of random points from data to fit a parabolic model. Then, the trial checks the number of inliers within the maxDistance from the model. After all trials, the model with the highest number of inliers is selected. Increasing the number of trials improves the robustness of the output at the expense of additional computation.

Confidence - Confidence of final solution
 99 (default) | scalar from 0 to 100

Confidence that the final solution finds the maximum number of inliers for the polynomial fit, specified as the comma-separated pair consisting of 'Confidence' and a scalar from 0 to 100 . Increasing this value improves the robustness of the output at the expense of additional computation.

Output Arguments

model - Best fit model

parameters defined in fitFcn
Best fit model, returned as the parameters defined in the fitFcn input. This model maximizes the number of inliers from all the sample attempts.

inlierIdx - Inlier points

logical vector
Inlier points, returned as a logical vector. The vector is the same length as data, and each element indicates if that point is an inlier for the model fit based on maxDistance.

References

[1] Torr, P. H. S., and A. Zisserman. "MLESAC: A New Robust Estimator with Application to Estimating Image Geometry." Computer Vision and Image Understanding. Vol. 18, Issue 1, April 2000, pp. 138-156.

See Also

fitPolynomialRANSAC|polyfit|polyval
Introduced in R2017a

reconstructScene

Reconstruct 3-D scene from disparity map

Syntax

```
xyzPoints = reconstructScene(disparityMap,stereoParams)
```


Description

xyzPoints $=$ reconstructScene(disparityMap,stereoParams) returns an array of 3-D world point coordinates that reconstruct a scene from a disparity map. The stereoParams input must be the same input that you use to rectify the stereo images corresponding to the disparity map.

Examples

Reconstruct 3-D Scene from Disparity Map

Load the stereo parameters.
load('webcamsSceneReconstruction.mat');
Read in the stereo pair of images.

```
I1 = imread('sceneReconstructionLeft.jpg');
I2 = imread('sceneReconstructionRight.jpg');
```

Rectify the images.

```
[J1, J2] = rectifyStereoImages(I1,I2,stereoParams);
```

Display the images after rectification.
figure
imshow(cat(3,J1(:,:,1),J2(:,:,2:3)),'InitialMagnification',50);

Compute the disparity.

```
disparityMap = disparitySGM(rgb2gray(J1),rgb2gray(J2));
figure
imshow(disparityMap,[0,64],'InitialMagnification',50);
```


Reconstruct the 3-D world coordinates of points corresponding to each pixel from the disparity map.

```
xyzPoints = reconstructScene(disparityMap,stereoParams);
```

Segment out a person located between 3.2 and 3.7 meters away from the camera.

```
Z = xyzPoints(:,:,3);
mask = repmat(Z > 3200 & Z < 3700,[1,1,3]);
J1(~mask) = 0;
imshow(J1,'InitialMagnification',50);
```


Input Arguments

disparityMap - Disparity image

2-D array
Disparity image, specified as a 2-D array of disparity values for pixels in image 1 of a stereo pair. You can use either disparityBM or disparitySGM functions to generate the disparity image.

The disparity image can contain invalid values marked as NaN. These values correspond to pixels in image 1 that did not match with image 2 . The function sets the world coordinates corresponding to invalid disparity value to NaN .

Pixels with zero disparity correspond to world points that are too far away to measure, given the resolution of the camera. The function sets the world coordinates corresponding to zero disparity to Inf.

When you specify the disparityMap input as a double, the function returns the coordinates as double. Otherwise, the function returns the coordinates as single.

Data Types: single | double

stereoParams - Stereo camera system parameters
 stereoParameters object

Stereo camera system parameters, specified as a stereoParameters object.
Data Types: uint8|uint16|int16| single | double

Output Arguments

xyzPoints - Coordinates of world points
M-by- N-by-3 array
Coordinates of world points, returned as an M-by- N-by-3 array. The 3-D world coordinates are relative to the optical center of camera 1 in the stereo system represented by stereoParams.

The output array contains the $[x, y, z]$ coordinates of world points that correspond to the pixels in the disparityMap input. xyzPoints(:,:,1) contains the x world coordinates of points corresponding to the pixels in the disparity map. xyzPoints(:, : , 2) contains the y world coordinates, and xyzPoints(:, : , 3) contains the z world coordinates. The 3-D world coordinates are relative to the optical center of camera 1 in the stereo system.

When you specify the disparityMap input as double, the function returns the xyzPoints output as double. Otherwise, the function returns it as single.
Data Types: single \| double

References

[1] G. Bradski and A. Kaehler, Learning OpenCV : Computer Vision with the OpenCV Library, Sebastopol, CA: O'Reilly, 2008.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® $\mathbb{C o d e r}^{\mathrm{TM}}$.
Usage notes and limitations:

- Use in a MATLAB Function block is not supported.

See Also

cameraParameters|disparityBM|disparitySGM|estimateCameraParameters | lineToBorderPoints|rectifyStereoImages|size|stereoParameters

Topics

"Structure From Motion From Two Views"
"Code Generation for Depth Estimation From Stereo Video"
"Coordinate Systems"

Introduced in R2014a

rectifyStereolmages

Rectify a pair of stereo images

Syntax

```
[J1,J2] = rectifyStereoImages(I1,I2,stereoParams)
[J1,J2] = rectifyStereoImages(I1,I2,tform1,tform2)
[J1,J2] = rectifyStereoImages(
```

\qquad

``` ,interp) [J1,J2] = rectifyStereoImages(
``` \(\qquad\)
``` ,Name, Value)
```


Description

[J1,J2] = rectifyStereoImages(I1,I2,stereoParams) returns undistorted and rectified versions of I1 and I2 input images using the stereo parameters stored in the stereoParams object.

Stereo image rectification projects images onto a common image plane in such a way that the corresponding points have the same row coordinates. This image projection makes the image appear as though the two cameras are parallel. Use the disparityBM or disparitySGM functions to compute a disparity map from the rectified images for 3-D scene reconstruction.
[J1,J2] = rectifyStereoImages(I1,I2,tform1,tform2) returns rectified versions of I1 and I2 input images by applying projective transformations tform1 and tform2. The projective transformations are returned by the estimateUncalibratedRectification function.
[J1,J2] = rectifyStereoImages(\qquad ,interp) additionally specifies the interpolation method to use for rectified images. You can specify the method as 'nearest','linear', or 'cubic'.
[J1,J2] = rectifyStereoImages(\qquad ,Name,Value) uses additional options specified by one or more Name, Value pair arguments.

Examples

Rectify Stereo Images

Specify images containing a checkerboard for calibration.

```
imageDir = fullfile(toolboxdir('vision'),'visiondata', ...
    'calibration','stereo');
leftImages = imageDatastore(fullfile(imageDir,'left'));
rightImages = imageDatastore(fullfile(imageDir,'right'));
```

Detect the checkerboards.

```
[imagePoints,boardSize] = detectCheckerboardPoints(...
    leftImages.Files,rightImages.Files);
```

Specify world coordinates of checkerboard keypoints.

```
squareSizeInMillimeters = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSizeInMillimeters);
```

Read in the images.

```
I1 = readimage(leftImages,1);
I2 = readimage(rightImages,1);
imageSize = [size(I1,1),size(I1,2)];
```

Calibrate the stereo camera system.

```
stereoParams = estimateCameraParameters(imagePoints,worldPoints, ...
    'ImageSize',imageSize);
```

Rectify the images using 'full' output view.

```
[J1_full,J2_full] = rectifyStereoImages(I1,I2,stereoParams, ...
    'ŌutputView','full');
```

Display the result for 'full' output view.

figure;

imshow(stereoAnaglyph(J1_full,J2_full));

Rectify the images using 'valid' output view. This is most suitable for computing disparity.
[J1_valid,J2_valid] = rectifyStereoImages(I1,I2,stereoParams, ...
'0̄utputView', 'valid');
Display the result for 'valid' output view.
figure;
imshow(stereoAnaglyph(J1_valid,J2_valid));

Input Arguments

I1 - Input image 1

M-by- N-by-3 truecolor image | M-by- N 2-D grayscale image
Input image corresponding to camera 1 , specified as an M-by- N-by- 3 truecolor image or an M-by- N 2-D grayscale array. Input images I1 and I2 must also be real, finite, and nonsparse. The input images must be the same class.
Data Types: uint8|uint16|int16| single|double|logical

I2 - Input image 2
 M-by- N-by-3 truecolor image | M-by- N 2-D truecolor image

Input image corresponding to camera 2 , specified as an M-by- N-by- 3 truecolor image or an M-by- N 2-D grayscale array. Input images I1 and I2 must be real, finite, and nonsparse. The input images must also be the same class.

Data Types: uint8|uint16|int16|single | double|logical

stereoParams - Stereo camera system parameters

stereoParameters object
Stereo camera system parameters, specified as a stereoParameters object.
Data Types: uint8|uint16|int16| single | double

tform1 - Projective transformation

3-by-3 matrix | projective2d object
Projective transformations for image 1, specified as a 3-by-3 matrix returned by the estimateUncalibratedRectification function or a projective2d object.

tform2 - Projective transformation

3-by-3 matrix | projective2d object
Projective transformations for image 2, specified as a 3-by-3 matrix returned by the estimateUncalibratedRectification function or a projective2d object.

interp - Interpolation method

'linear' (default)|'nearest'|'cubic'
Interpolation method, specified as either 'linear', 'nearest', or 'cubic'.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Example: 'OutputView', 'valid' sets the 'OutputView' property to 'valid'.

OutputView - Size of rectified images
 'valid' (default)|'full'

Size of rectified images, specified as the comma-separated pair consisting of 'OutputView' and either 'full' or 'valid'. When you set this parameter to 'full', the rectified images include all pixels from the original images. When you set this value to 'valid', the output images are cropped to the size of the largest common rectangle containing valid pixels.

When there is no overlap between rectified images, set the OutputView to 'full'.

FillValues - Output pixel fill values

array of scalar values
Output pixel fill values, specified as the comma-separated pair consisting of 'FillValues' and an array of one or more scalar values. When the corresponding inverse-transformed location in the input image is completely outside the input image boundaries, use the fill values for output pixels. If I1 and I2 are 2-D grayscale images, then you must set 'FillValues' to a scalar. If I1 and I2 are truecolor images, then you can set 'FillValues' to a scalar or a 3-element vector of RGB values.

Output Arguments

J1 - Undistorted and rectified image 1

M-by- N-by-3 truecolor image | M-by- N 2-D grayscale image
Undistorted and rectified version of I1, returned as an M-by- N-by-3 truecolor image or as an M-by- N 2-D grayscale image.

Stereo image rectification projects images onto a common image plane in such a way that the corresponding points have the same row coordinates. This image projection makes the image appear as though the two cameras are parallel. Use the disparityBM or disparitySGM functions to compute a disparity map from the rectified images for 3-D scene reconstruction.

J2 - Undistorted and rectified image 2

M-by- N-by-3 truecolor image | M-by- N 2-D grayscale image
Undistorted and rectified version of I2, returned as an M-by- N-by-3 truecolor image or as an M-by- N 2-D grayscale image.

Stereo image rectification projects images onto a common image plane in such a way that the corresponding points have the same row coordinates. This image projection makes the image appear as though the two cameras are parallel. Use the disparityBM or disparitySGM functions to compute a disparity map from the rectified images for 3-D scene reconstruction.

References

[1] G. Bradski and A. Kaehler, Learning OpenCV : Computer Vision with the OpenCV Library. Sebastopol, CA: O'Reilly, 2008.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Use in a MATLAB Function block is not supported.
- 'interp' and 'OutputView' must be compile-time constants.
- Use the toStruct function to pass stereoParameters to the rectifyStereoImages function to generate code.

See Also

Camera Calibrator | Stereo Camera Calibrator | disparityBM | disparitySGM | estimateCameraParameters|estimateUncalibratedRectification| reconstructScene|stereoParameters

Topics

"Structure From Motion From Two Views"
"Structure From Motion From Multiple Views"
"Uncalibrated Stereo Image Rectification"
"Code Generation for Depth Estimation From Stereo Video"
"Coordinate Systems"

Introduced in R2014a

retrievelmages

Search image set for similar image

Syntax

```
imageIDs = retrieveImages(queryImage,imageIndex)
[imageIDs,scores] = retrieveImages(queryImage,imageIndex)
[imageIDs,scores,imageWords] = retrieveImages(queryImage,imageIndex)
[imageIDs,___] = retrieveImages(queryImage,imageIndex,Name,Value)
```


Description

imageIDs = retrieveImages(queryImage,imageIndex) returns the indices corresponding to images within imageIndex that are visually similar to the query image. The imageIDs output contains the indices in ranked order, from the most to least similar match.
[imageIDs,scores] = retrieveImages(queryImage,imageIndex) optionally returns the similarity scores used to rank the image retrieval results. The scores output contains the corresponding scores from 0 to 1.
[imageIDs,scores,imageWords] = retrieveImages(queryImage,imageIndex) optionally returns the visual words in queryImage that are used to search for similar images.
[imageIDs, \qquad] = retrieveImages(queryImage,imageIndex, Name, Value) uses additional options specified by one or more Name, Value pair arguments, using any of the preceding syntaxes.

Examples

Search Image Set Using Query Image

Create an image set of book covers.

```
dataDir = fullfile(toolboxdir('vision'),'visiondata','bookCovers');
bookCovers = imageDatastore(dataDir);
```

Display the data set.
thumbnailGallery = [];
for i = 1:length(bookCovers.Files)
I = readimage(bookCovers,i);
thumbnail = imresize(I,[300 300]);
thumbnailGallery $=$ cat (4, thumbnailGallery, thumbnail);
end
figure
montage(thumbnailGallery);

Index the image set. This step may take a few minutes.
imageIndex = indexImages(bookCovers);

```
Creating an inverted image index using Bag-Of-Features.
Creating Bag-Of-Features.
* Selecting feature point locations using the Detector method.
* Extracting SURF features from the selected feature point locations.
** detectSURFFeatures is used to detect key points for feature extraction.
* Extracting features from 58 images...done. Extracted 29216 features.
* Keeping 80 percent of the strongest features from each category.
* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 23373.
** Using the strongest 23373 features from each of the other image categories.
* Using K-Means clustering to create a 20000 word visual vocabulary.
* Number of features : 23373
* Number of clusters (K) : 20000
* Initializing cluster centers...100.00%.
* Clustering...completed 11/100 iterations (~1.79 seconds/iteration)...converged in 11
* Finished creating Bag-Of-Features
```

Encoding images using Bag-Of-Features.

* Encoding 58 images...done.
Finished creating the image index.

Select and display the query image.

```
queryDir = fullfile(dataDir,'queries',filesep);
queryImage = imread([queryDir 'query3.jpg']);
```

imageIDs = retrieveImages(queryImage,imageIndex);

Show the query image and its best match, side-by-side.

```
bestMatch = imageIDs(1);
bestImage = imread(imageIndex.ImageLocation{bestMatch});
```

figure
imshowpair(queryImage, bestImage, 'montage')

Search Image Set for Specific Object Using ROIs

Search an image set for an object using a region of interest (ROI) for the query image.
Define a set of images to search.

```
imageFiles = ...
    {'elephant.jpg', 'cameraman.tif', ...
    'peppers.png', 'saturn.png',...
    'pears.png', 'stapleRemover.jpg', ...
```

```
    'football.jpg', 'mandi.tif',...
    'kids.tif', 'liftingbody.png', ...
    'office_5.jpg', 'gantrycrane.png',...
    'moon.tif', 'circuit.tif', ...
    'tape.png', 'coins.png'};
imds = imageDatastore(imageFiles);
Create a search index.
    imageIndex = indexImages(imds);
Creating an inverted image index using Bag-Of-Features.
Creating Bag-Of-Features.
* Selecting feature point locations using the Detector method.
* Extracting SURF features from the selected feature point locations.
** detectSURFFeatures is used to detect key points for feature extraction.
* Extracting features from 16 images...done. Extracted 3680 features.
* Keeping 80 percent of the strongest features from each category.
* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 2944.
** Using the strongest }2944\mathrm{ features from each of the other image categories.
* Using K-Means clustering to create a 20000 word visual vocabulary.
* Number of features : 2944
* Number of clusters (K) : 2944
* Initializing cluster centers...100.00%.
* Clustering...completed 1/100 iterations (~0.15 seconds/iteration)...converged in 1 i
* Finished creating Bag-Of-Features
Encoding images using Bag-Of-Features.
* Encoding 16 images...done.
Finished creating the image index.
```

Specify a query image and an ROI. The ROI outlines the object, an elephant, for the search.

```
queryImage = imread('clutteredDesk.jpg');
```

queryROI = [130 175330 365];
figure
imshow(queryImage)
rectangle('Position',queryROI,'EdgeColor', 'yellow')

You can also use the imrect function to select an ROI interactively. For example, queryROI = getPosition(imrect)

```
Find images that contain the object.
imageIDs = retrieveImages(queryImage,imageIndex,'ROI',queryROI)
imageIDs = 12×1
```

 1
 11
 6
 12
 3
 14
 2
 8
 10
 13
 Display the best match.
bestMatch = imageIDs(1);
figure
imshow(imageIndex.ImageLocation\{bestMatch\})

Geometric Verification Using estimateGeometricTransform Function

Use the locations of visual words to verify the best search result. To rerank the search results based on geometric information, repeat this procedure for the top N search results.

Specify the location of the images.

```
dataDir = fullfile(toolboxdir('vision'),'visiondata','bookCovers');
bookCovers = imageDatastore(dataDir);
Index the image set. This process can take a few minutes.
```

```
imageIndex = indexImages(bookCovers);
```

imageIndex = indexImages(bookCovers);
Creating an inverted image index using Bag-Of-Features.
Creating Bag-Of-Features.

* Selecting feature point locations using the Detector method.
* Extracting SURF features from the selected feature point locations.
** detectSURFFeatures is used to detect key points for feature extraction.
* Extracting features from 58 images...done. Extracted 29216 features.
* Keeping 80 percent of the strongest features from each category.
* Balancing the number of features across all image categories to improve clustering.
** Image category 1 has the least number of strongest features: 23373.
** Using the strongest }23373\mathrm{ features from each of the other image categories.
* Using K-Means clustering to create a 20000 word visual vocabulary.
* Number of features : 23373
* Number of clusters (K) : 20000
* Initializing cluster centers...100.00%.
* Clustering...completed 11/100 iterations (~1.72 seconds/iteration)...converged in 11
* Finished creating Bag-Of-Features

```
Encoding images using Bag-Of-Features.
* Encoding 58 images...done.
Finished creating the image index.

Select and display the query image.
```

queryDir = fullfile(dataDir,'queries',filesep);

```
queryImage = imread([queryDir 'query3.jpg']);
figure
imshow(queryImage)


Retrieve the best matches. The queryWords output contains visual word locations information for the query image. Use this information to verify the search results.
```

[imageIDs, ~, queryWords] = retrieveImages(queryImage,imageIndex);

```

Find the best match for the query image by extracting the visual words from the image index. The image index contains the visual word information for all images in the index.
```

bestMatch = imageIDs(1);
bestImage = imread(imageIndex.ImageLocation{bestMatch});
bestMatchWords = imageIndex.ImageWords(bestMatch);

```

Generate a set of tentative matches based on visual word assignments. Each visual word in the query can have multiple matches due to the hard quantization used to assign visual words.
```

queryWordsIndex = queryWords.WordIndex;
bestMatchWordIndex = bestMatchWords.WordIndex;
tentativeMatches = [];
for i = 1:numel(queryWords.WordIndex)
idx = find(queryWordsIndex(i) == bestMatchWordIndex);
matches = [repmat(i, numel(idx), 1) idx];
tentativeMatches = [tentativeMatches; matches];

```
end

Show the point locations for the tentative matches. There are many poor matches.
```

points1 = queryWords.Location(tentativeMatches(:,1),:);
points2 = bestMatchWords.Location(tentativeMatches(:,2),:);
figure
showMatchedFeatures(queryImage,bestImage,points1,points2,'montage')

```


Remove poor visual word assignments using estimateGeometricTransform function. Keep the assignments that fit a valid geometric transform.
[tform,inlierPoints1,inlierPoints2] = ...
estimateGeometricTransform(points1, points2,'affine', ...
'MaxNumTrials', 2000) ;
Rerank the search results by the percentage of inliers. Do this when the geometric verification procedure is applied to the top \(N\) search results. Those images with a higher percentage of inliers are more likely to be relevant.
percentageOfInliers = size(inlierPoints1,1)./size(points1,1);
figure
showMatchedFeatures(queryImage, bestImage,inlierPoints1,... inlierPoints2,'montage')


Apply the estimated transform.
outputView = imref2d(size(bestImage));
Ir = imwarp(queryImage, tform, 'OutputView', outputView);
figure
imshowpair(Ir,bestImage,'montage')


\section*{Modify Search Parameters For Image Search}

Use the evaluateImageRetrieval function to help select proper search parameters.
Create an image set.
setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets','cups');
imds = imageDatastore(setDir, 'IncludeSubfolders', true, 'LabelSource', 'foldernames')
Index the image set.
imageIndex = indexImages(imds,'Verbose',false);
Tune image search parameters.
```

imageIndex.MatchThreshold = 0.2;
imageIndex.WordFrequencyRange = [0 1]
imageIndex =
invertedImageIndex with properties:
ImageLocation: {6x1 cell}
ImageWords: [6x1 vision.internal.visualWords]
WordFrequency: [1x1366 double]
BagOfFeatures: [1\times1 bagOfFeatures]
MatchThreshold: 0.2000
WordFrequencyRange: [0 1]
queryImage = readimage(imds, 1);
indices = retrieveImages(queryImage,imageIndex);

```

\section*{Input Arguments}

\section*{queryImage - Input query image}
\(M\)-by- \(N\)-by-3 truecolor image | \(M\)-by- \(N\) 2-D grayscale image
Input query image, specified as either an \(M\)-by- \(N\)-by-3 truecolor image or an \(M\)-by- \(N\) 2-D grayscale image.

Data Types: single | double | int16|uint8|uint16|logical

\section*{imageIndex - Image search index}
invertedImageIndex object
Image search index, specified as an invertedImageIndex object. The indexImages function creates the invertedImageIndex object, which stores the data used for the image search.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, . . . , NameN, ValueN.

\section*{Example: 'NumResults',25 sets the 'NumResults' property to 25}

\section*{NumResults - Maximum number of results}

20 (default) | numeric value
Maximum number of results to return, specified as the comma-separated pair consisting of 'NumResults' and a numeric value. Set this value to Inf to return as many matching images as possible.

\section*{ROI - Query image search region}
```

[1 1 size(queryImage,2) size(queryImage,1)] (default)|[x y width height]
vector

```

Query image search region, specified as the comma-separated pair consisting of 'ROI' and an [x y width height] vector.

\section*{Output Arguments}

\section*{imageIDs - Ranked index of retrieved images}

\author{
M-by-1 vector
}

Ranked index of retrieved images, returned as an \(M\)-by- 1 vector. The image IDs are returned in ranked order, from the most to least similar matched image.

\section*{scores - Similarity metric}
\(N\)-by-1 vector
Similarity metric, returned as an \(N\)-by-1 vector. This output contains the scores that correspond to the retrieved images in the imageIDs output. The scores are computed using the cosine similarity and range from 0 to 1 .

\section*{imageWords - Object for storing visual word assignments}
visualWords object
Object for storing visual word assignments, returned as a visualWords object. The object stores the visual word assignments of queryImage and their locations within that image.

\section*{References}
[1] Sivic, J. and A. Zisserman. Video Google: A text retrieval approach to object matching in videos. ICCV (2003) pg 1470-1477.
[2] Philbin, J., O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. CVPR (2007).

\section*{See Also \\ bag0fFeatures |evaluateImageRetrieval|imageDatastore |imageSet| invertedImageIndex}

\section*{Topics}
"Image Retrieval Using Customized Bag of Features"
"Image Retrieval with Bag of Visual Words"

\section*{Introduced in R2015a}

\section*{rotationMatrixToVector}

Convert 3-D rotation matrix to rotation vector
```

Syntax
rotationVector = rotationMatrixToVector(rotationMatrix)

```

\section*{Description}
rotationVector \(=\) rotationMatrixToVector (rotationMatrix) returns an axisangle rotation vector that corresponds to the input 3-D rotation matrix. The function uses the Rodrigues formula for the conversion.

\section*{Examples}

\section*{Convert Rotation Matrix to Rotation Vector}

Create a matrix representing a 90-degree rotation about the \(Z\)-axis.
```

rotationMatrix = [0, -1, 0; 1, 0, 0; 0, 0, 1];

```

Find the equivalent rotation vector.
```

rotationVector = rotationMatrixToVector(rotationMatrix)
rotationVector = 1×3

```
    \(0 \quad 0 \quad-1.5708\)

\section*{Input Arguments}

\section*{rotationMatrix - Rotation of camera}

3-by-3 matrix
Rotation of camera, specified as a 3-by-3 matrix. You can obtain this matrix by using the extrinsics function.

\section*{Output Arguments}

\section*{rotationVector - Rotation vector}
three-element vector
Rotation vector, returned as a three-element vector. The vector represents the axis of rotation in 3-D, where the magnitude corresponds to the rotation angle in radians.

Data Types: single | double

\section*{References}
[1] Trucco, E., and A. Verri. Introductory Techniques for 3-D Computer Vision." Prentice Hall, 1998.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}
extrinsics|relativeCameraPose|rotationVectorToMatrix|triangulate

\section*{Topics}
"Evaluating the Accuracy of Single Camera Calibration"

\author{
"Structure From Motion From Two Views" \\ "Structure From Motion From Multiple Views"
}

\section*{Introduced in R2016a}

\section*{rotationVectorToMatrix}

Convert 3-D rotation vector to rotation matrix
```

Syntax
rotationMatrix = rotationVectorToMatrix(rotationVector)

```

\section*{Description}
rotationMatrix = rotationVectorToMatrix(rotationVector) returns a 3-D rotation matrix that corresponds to the input axis-angle rotation vector. The function uses the Rodrigues formula for the computation.

\section*{Examples}

\section*{Convert Rotation Vector to Rotation Matrix}

Create a vector representing a 90-degree rotation about the \(Z\)-axis.
```

rotationVector = pi/2 * [0, 0, 1];

```

Find the equivalent rotation matrix.
```

rotationMatrix = 3×3

0.0000	1.0000	0
-1.0000	0.0000	0
0	0	1.0000

```
rotationMatrix = rotationVectorToMatrix(rotationVector)

\section*{Input Arguments}

\author{
rotationVector - Rotation vector
}
three-element vector
Rotation vector, specified as a three-element vector. The vector represents the axis of rotation in 3-D, where the magnitude corresponds to the rotation angle in radians.

Data Types: single | double

\section*{Output Arguments}
rotationMatrix - Rotation of camera
3-by-3 matrix
Rotation of camera, returned as a 3-by-3 matrix that corresponds to the input axis-angle rotation vector.

\section*{References}
[1] Trucco, E., and A. Verri. Introductory Techniques for 3-D Computer Vision." Prentice Hall, 1998.

\section*{Extended Capabilities}

\section*{C/C++ Code Generation}

Generate C and \(\mathrm{C}++\) code using MATLAB® \({ }^{\circledR}\) Coder \(^{\mathrm{TM}}\).

\section*{See Also}
extrinsics|relativeCameraPose|rotationMatrixToVector|triangulate

\section*{Topics}
"Evaluating the Accuracy of Single Camera Calibration"

\title{
"Structure From Motion From Two Views" \\ "Structure From Motion From Multiple Views"
}

Introduced in R2016a

\section*{segmentLidarData}

Segment organized 3-D range data into clusters

\section*{Syntax}
```

labels = segmentLidarData(ptCloud,distThreshold)
labels = segmentLidarData(ptCloud,distThreshold,angleThreshold)
[labels,numClusters] = segmentLidarData(

```
\(\qquad\)
``` )
```


## Description

labels = segmentLidarData(ptCloud,distThreshold) segments organized 3-D range data, ptCloud, into clusters. The function assigns an integer cluster label to each point in the point cloud, and returns the cluster label of all points in labels. Two neighboring points are grouped into the same cluster if their Euclidean distance is less than distThreshold.
labels = segmentLidarData(ptCloud,distThreshold,angleThreshold) segments the data using an additional constraint based on the angle between the sensor and two neighboring points. The line passing through the sensor and one point forms the first side of the angle. The line passing through the two neighboring points forms the second side of the angle. The two points are grouped into the same cluster if the angle is greater than angleThreshold.
[labels, numClusters] = segmentLidarData( ___ ) also returns the number of clusters.

## Examples

## Cluster Organized Synthetic Lidar Data

Create organized synthetic lidar data containing two objects.

```
ldr = zeros(5,100);
ldr(:,1:50) = 10;
ldr(:,51:end) = 20;
pitch = linspace(-18,18,5);
pitch = repmat(pitch',1,100);
yaw = linspace(-90,90,100);
yaw = repmat(yaw,5,1);
```

Convert to Cartesian coordinates.
X = ldr .* cosd(pitch) .* sind(yaw);
Y = ldr .* cosd(pitch) .* cosd(yaw);
Z = ldr .* sind(pitch);
pc = pointCloud(cat(3,X,Y,Z));
figure
pcshow(pc.Location,'r')
title('Unclustered Point Cloud')


Set the threshold.
distThreshold = 5;
Segment the lidar data.
labels = segmentLidarData(pc,distThreshold);
Plot the results.
figure
hold on
title('Segmented Clusters')

```
pc1 = select(pc,find(labels == 1));
pcshow(pc1.Location,'g')
pc2 = select(pc,find(labels == 2));
pcshow(pc2.Location,'y')
```



## Cluster Organized Lidar Point Cloud

Set up the PCAP file reader.
veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

Wait for 0.3 seconds from the beginning of the file, then read the point cloud from the next frame.

```
veloReader.CurrentTime = veloReader.StartTime + seconds(0.3);
ptCloud = readFrame(veloReader);
```

Segment and remove the ground plane.
groundPtsIdx = segmentGroundFromLidarData(ptCloud);
ptCloudWithoutGround = select(ptCloud, ~groundPtsIdx,'OutputSize','full');
Cluster the remaining points. Distance is in meters.

```
distThreshold = 0.5;
```

[labels, numClusters] = segmentLidarData(ptCloudWithoutGround,distThreshold);

Add an additional label for the ground plane.

```
numClusters = numClusters+1;
labels(groundPtsIdx) = numClusters;
```

Plot the labeled results. Display the ground plane in black.

```
labelColorIndex = labels+1;
pcshow(ptCloud.Location,labelColorIndex)
colormap([hsv(numClusters);[0 0 0]])
title('Point Cloud Clusters')
```



## Input Arguments

## ptCloud - Point cloud

pointCloud object
Point cloud, specified as a pointCloud object. ptCloud is an organized point cloud that stores point coordinates in an $M$-by- $N$-by-3 matrix. The points must be organized by pitch and yaw angles in a sequential scanning order, as is typically returned by laser range finders or velodyneFileReader.

## distThreshold - Distance threshold <br> nonnegative scalar

Distance threshold in world units, specified as a nonnegative scalar. To reduce the number of output clusters, increase the value of distThreshold.

Data Types: single | double

## angleThreshold - Angle threshold

5 (default) | scalar in the range [0, 180]
Angle threshold in degrees, specified as a scalar in the range [0, 180]. To reduce the number output clusters, decrease the value of angleThreshold.

Data Types: single | double

## Output Arguments

## labels - Cluster labels

$M$-by- $N$ matrix
Cluster labels of all points in the point cloud ptCloud, returned as an $M$-by- $N$ matrix of integers. Each valid point in ptCloud belongs to a cluster. All points in a cluster are assigned the same integer cluster label, ranging from 1 to numClusters. Invalid points, such as points with Inf or NaN coordinates, are assigned the label 0.

## numClusters - Number of clusters

nonnegative integer
Number of clusters of valid points, returned as a nonnegative integer. The number of clusters does not include the cluster corresponding to invalid points.

## References

[1] Bogoslavskyi, I. "Efficient Online Segmentation for Sparse 3D Laser Scans." Journal of Photogrammetry, Remote Sensing and Geoinformation Science. Vol. 85, Issue 1, 2017, pp. 41-52.

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Supports code generation (requires MATLAB Coder) only in generic MATLAB Host Computer target platform.
- Generates code that uses a precompiled, platform-specific shared library.


## See Also

pcfitplane|pcsegdist|pointCloud|segmentGroundFromLidarData| velodyneFileReader

## Introduced in R2018a

## selectStrongestBbox

Select strongest bounding boxes from overlapping clusters

## Syntax

```
[selectedBbox,selectedScore] = selectStrongestBbox(bbox,score)
[selectedBbox,selectedScore,index] = selectStrongestBbox(bbox,score)
[___] = selectStrongestBbox(
```

$\qquad$

``` ,Name, Value)
```


## Description

[selectedBbox,selectedScore] = selectStrongestBbox(bbox,score) returns selected bounding boxes that have a high confidence score. The function uses nonmaximal suppression to eliminate overlapping bounding boxes from the bbox input.
[selectedBbox,selectedScore,index] = selectStrongestBbox(bbox,score) additionally returns the index vector associated with selectedBbox. This vector contains the indices of the selected boxes in the bbox input.
[___ ] = selectStrongestBbox ( $\qquad$ , Name, Value) uses additional options specified by one or more Name, Value pair arguments.

## Examples

Run Nonmaximal Suppression on Bounding Boxes Using People Detector
Load the pretrained people detector and disable bounding box merging.

```
peopleDetector = vision.PeopleDetector('ClassificationThreshold',...
 0,'MergeDetections',false);
```

Read an image, run the people detector, and then insert bounding boxes with confidence scores.

```
I = imread('visionteam1.jpg');
[bbox,score] = step(peopleDetector,I);
I1 = insertObjectAnnotation(I,'rectangle',bbox,...
 cellstr(num2str(score)),'Color','r');
```

Run nonmaximal suppression on the bounding boxes.

```
[selectedBbox,selectedScore] = selectStrongestBbox(bbox,score);
I2 = insertObjectAnnotation(I,'rectangle',selectedBbox,...
 cellstr(num2str(selectedScore)),'Color','r');
```

Display detection before and after suppression.

```
figure, imshow(I1);
title('Detected people and detection scores before suppression');
```

Detected people and detection scores before suppression

figure, imshow(I2); ...
title('Detected people and detection scores after suppression');

Detected people and detection scores after suppression


## Input Arguments

## bbox - Bounding boxes

M-by-4 matrix
Bounding boxes, specified as an $M$-by- 4 matrix defining $M$ bounding boxes. Each row is specified in the format [ $x y$ width height], where $x$ and $y$ correspond to the upper left corner of the bounding box. The bbox input must be real, finite, and nonsparse.
Data Types: single|double | int8|int16|int32|uint8|uint16|uint32

## score - Confidence score

$M$-by-1 vector
Confidence score, specified as an $M$-by- 1 vector. The $M$ th score corresponds to the $M$ th bounding box in the bbox input. The selectStrongestBbox function uses nonmaximal suppression to eliminate overlapping bounding boxes and associate the confidence score with the boxes. A higher score represents a higher confidence in keeping the bounding box. The score input must be real, finite, and nonsparse.

Data Types: single|double|int8|int16|int32|uint8|uint16|uint32

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: 'RatioType','Union' sets the 'RatioType' property to 'Union'.

## RatioType - Bounding box overlap ratio denominator

'Union' (default) | 'Min'
Ratio type, specified as the character vector 'Union ' or 'Min'.

- Set the ratio type to 'Union ' to compute the ratio as the area of intersection between bboxA and bboxB, divided by the area of the union of the two.
- Set the ratio type to 'Min' to compute the ratio as the area of intersection between bboxA and bboxB, divided by the minimum area of the two bounding boxes.


Data Types: char

## OverlapThreshold - Overlap ratio threshold

0.5 (default) | scalar in the range [0 1]

Overlap ratio threshold, specified as the comma-separated pair consisting of 'OverlapThreshold' and a scalar in the range [0 1]. When the overlap ratio is above the threshold you set, the function removes bounding boxes around the reference box.
Decrease this value to reduce the number of selected bounding boxes. However, if you decrease the overlap ratio too much, you might eliminate boxes that represent objects close to each other in the image.

Data Types: single | double

## Output Arguments

## selectedBbox - Selected bounding boxes

M-by-4 matrix
Selected bounding boxes, returned as an $M$-by- 4 matrix. The selectedBbox output returns the selected bounding boxes from the bbox input that have the highest confidence score. The function uses nonmaximal suppression to eliminate overlapping bounding boxes.
Data Types: single | double | int8|int16|int32|uint8|uint16|uint32
selectedScore - Scores of selected bounding boxes
$M$-by-1 vector
Scores of selected bounding boxes, returned as an $M$-by- 1 vector. The $M$ th score in the selectedScore output corresponds to the Mth bounding box in the selectedBbox output.

Data Types: single|double| int8|int16|int32|uint8|uint16|uint32

## index - Index of selected bounding boxes

$M$-by-1 vector
Index of selected bounding boxes, returned as an $M$-by- 1 vector. The index vector contains the indices to the selected boxes in the bbox input.

Data Types: double

## Extended Capabilities

C/C++ Code Generation<br>Generate $C$ and $C++$ code using MATLAB® $\operatorname{Coder}^{\text {TM }}$.

## See Also

bbox0verlapRatio| selectStrongestBboxMulticlass
Introduced in R2014b

## selectStrongestBboxMulticlass

Select strongest multiclass bounding boxes from overlapping clusters

## Syntax

```
selectedBboxes = selectStrongestBboxMulticlass(bboxes,scores,labels)
[selectedBboxes,selectedScores,selectedLabels,index] =
selectStrongestBboxMulticlass(bboxes,scores,labels)
[___] = selectStrongestBboxMulticlass(
```

$\qquad$

``` ,Name, Value)
```


## Description

selectedBboxes = selectStrongestBboxMulticlass(bboxes,scores,labels) returns selected bounding boxes that have high confidence scores. The function uses greedy nonmaximal suppression (NMS) to eliminate overlapping bounding boxes from the bboxes input, only if they have the same class label.
[selectedBboxes,selectedScores,selectedLabels,index] = selectStrongestBboxMulticlass(bboxes,scores,labels) additionally returns the scores, labels, and index associated with the selected bounding boxes.
$\qquad$ ] = selectStrongestBboxMulticlass( $\qquad$ ,Name, Value) uses additional options specified by one or more Name, Value pair arguments.

## Examples

## Run Multiclass Nonmaximal Suppression on Bounding Boxes Using People Detector

Create detectors using two different models. These will be used to generate multiclass detection results.

```
detectorInria = peopleDetectorACF('inria-100x41');
```

detectorCaltech = peopleDetectorACF('caltech-50x21');

Apply the detectors.

```
I = imread('visionteam1.jpg');
[bboxesInria,scoresInria] = detect(detectorInria,I,'SelectStrongest',false);
[bboxesCaltech,scoresCaltech] = detect(detectorCaltech,I,'SelectStrongest',false);
```

Create categorical labels for each the result of each detector.

```
labelsInria = repelem("inria",numel(scoresInria),1);
labelsInria = categorical(labelsInria,{'inria','caltech'});
labelsCaltech = repelem("caltech",numel(scoresCaltech),1);
labelsCaltech = categorical(labelsCaltech,{'inria','caltech'});
```

Combine results from all detectors to for multiclass detection results.

```
allBBoxes = [bboxesInria;bboxesCaltech];
allScores = [scoresInria;scoresCaltech];
allLabels = [labelsInria;labelsCaltech];
```

Run multiclass non-maximal suppression.
[bboxes,scores,labels] = selectStrongestBboxMulticlass(allBBoxes,allScores,allLabels,. 'RatioType','Min','OverlapThreshold',0.65);

Annotate detected people.

```
annotations = string(labels) + ": " + string(scores);
I = insertObjectAnnotation(I,'rectangle',bboxes,cellstr(annotations));
imshow(I)
title('Detected People, Scores, and Labels')
```

Detected People, Scores, and Labels


## Input Arguments

## bboxes - Bounding boxes

M-by-4 matrix
Bounding boxes, specified as an $M$-by- 4 matrix defining $M$ bounding boxes. Each row is specified in the format [ $x y$ width height], where $x$ and $y$ correspond to the upper left corner of the bounding box. The bboxes input must be real, finite, and nonsparse.
Data Types: single|double|int8|int16|int32|uint8|uint16|uint32

## scores - Confidence scores

M-by-1 vector
Confidence scores corresponding to the input bounding boxes, specified as an $M$-by- 1 vector. The selectStrongestBboxMulticlass function uses greedy NMS to eliminate overlapping bounding boxes and associate the confidence score with the boxes. A higher score represents a higher confidence in keeping the bounding box. The scores input must be real, finite, and nonsparse.

Data Types: single|double|int8|int16|int32|uint8|uint16|uint32

## labels - Labels

$M$-by-1 categorical vector | $M$-by-1 numeric vector
Labels corresponding to the input bounding boxes, specified as an M-by-1 categorical or numeric vector.

Data Types: single | double | int8| int16|int32|uint8|uint16|uint32| categorical

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'RatioType','Union' sets the 'RatioType' property to 'Union'.

## RatioType - Bounding box overlap ratio denominator

'Union' (default)|'Min'

Ratio type, specified as the character vector 'Union ' or 'Min'.

- Set the ratio type to 'Union ' to compute the ratio as the area of intersection between bboxA and bboxB, divided by the area of the union of the two.
- Set the ratio type to 'Min' to compute the ratio as the area of intersection between bboxA and bboxB, divided by the minimum area of the two bounding boxes.


Data Types: char

## OverlapThreshold - Overlap ratio threshold

## 0.5 (default) | scalar in the range [0 1]

Overlap ratio threshold, specified as the comma-separated pair consisting of 'OverlapThreshold' and a scalar in the range [0 1]. When the overlap ratio is above the threshold, the function removes bounding boxes around the reference box. Decrease the threshold to reduce the number of selected bounding boxes. However, if you decrease the threshold too much, you might eliminate boxes that represent objects close to each other in the image.

Data Types: single | double

## Output Arguments

## selectedBboxes - Selected bounding boxes

M-by-4 matrix
Selected bounding boxes, returned as an $M$-by- 4 matrix. The selectedBboxes output returns the selected bounding boxes from the bboxes input that have the highest confidence score. The function uses NMS to eliminate overlapping bounding boxes. The data type of selectedBboxes matches the data type of bboxes.

## selectedScores - Scores of selected bounding boxes

M-by-1 vector
Scores of selected bounding boxes, returned as an $M$-by- 1 vector. The $M$ th score in the selectedScores output corresponds to the Mth bounding box in the selectedBboxes output. The data type of selectedScores matches the data type of scores.

## selectedLabels - Labels of selected bounding boxes

M-by-1 categorical vector | $M$-by-1 numeric vector

Labels of selected bounding boxes, returned as an $M$-by-1 categorical or numeric vector. The Mth label in the selectedLabels output corresponds to the Mth bounding box in the selectedBboxes output. The data type of selectedLabels matches the data type of labels.

## index - Index of selected bounding boxes

$M$-by-1 vector
Index of selected bounding boxes, returned as an $M$-by- 1 vector. The index vector contains the indices to the selected boxes in the bboxes input.

Data Types: double

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Code generation is only supported for numeric labels.


## See Also

bbox0verlapRatio| selectStrongestBbox

Introduced in R2018a

## showExtrinsics

Visualize extrinsic camera parameters

## Syntax

```
showExtrinsics(cameraParams)
showExtrinsics(cameraParams,view)
showExtrinsics(
```

$\qquad$

``` ,Name, Value)
ax = showExtrinsics(___)
```


## Description

showExtrinsics(cameraParams) renders a 3-D visualization of extrinsic parameters of a single calibrated camera or a calibrated stereo pair. The function plots a 3-D view of the calibration patterns with respect to the camera. The cameraParams input contains either a cameraParameters, fisheyeParameters, or a stereoParameters object, which the estimateCameraParameters or estimateFisheyeParameters function returns.
showExtrinsics(cameraParams, view) displays visualization of the camera extrinsic parameters using the style specified by the view input.
showExtrinsics( $\qquad$ ,Name, Value) uses additional options specified by one or more Name, Value pair arguments, using any of the preceding syntaxes.
ax = showExtrinsics ( __ ) returns the plot axis, using any of the preceding syntaxes.

## Examples

## Visualize Single Camera Extrinsic Parameters

Create a set of calibration images.

```
images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','webcam'));
imageFileNames = images.Files(1:5);
```

Detect calibration pattern.
[imagePoints,boardSize] = detectCheckerboardPoints(imageFileNames);
Generate world coordinates of the corners of the squares. The square size is in millimeters.

```
squareSide = 25;
```

worldPoints = generateCheckerboardPoints(boardSize,squareSide);

Calibrate the camera.

```
I = readimage(images,1);
imageSize = [size(I, 1), size(I, 2)];
cameraParams = estimateCameraParameters(imagePoints,worldPoints, ...
 'ImageSize',imageSize);
```

Visualize pattern locations.
figure
showExtrinsics(cameraParams);


Visualize camera locations.
figure
showExtrinsics(cameraParams,'patternCentric');


## Visualize Stereo Pair of Camera Extrinsic Parameters

Specify calibration images.

```
imageDir = fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','stereo');
leftImages = imageDatastore(fullfile(imageDir,'left'));
rightImages = imageDatastore(fullfile(imageDir,'right'));
Detect the checkerboards.
```

```
[imagePoints,boardSize] = detectCheckerboardPoints(..
 leftImages.Files,rightImages.Files);
```

Specify world coordinates of checkerboard keypoints. Square size is in millimeters.

```
squareSize = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);
```

Calibrate the stereo camera system. Both cameras have the same resolution.
I = readimage(leftImages,1);
imageSize = [size(I, 1), size(I, 2)];
cameraParams = estimateCameraParameters(imagePoints,worldPoints, ...
'ImageSize',imageSize);
Visualize pattern locations.
figure;
showExtrinsics(cameraParams);


Visualize camera locations.
figure;
showExtrinsics(cameraParams,'patternCentric');


## Input Arguments

## cameraParams - Object containing parameters of single camera or stereo pair <br> cameraParameters object|fisheyeParameters object|stereoParameters object

Object containing parameters of single camera or stereo pair, specified as either a cameraParameters, fisheyeParameters, or stereoParameters object. You can create the single camera or stereo pair input object using the estimateCameraParameters function. The fisheye parameters input object is created using estimateFisheyeParameters.

You can also use the Camera Calibrator app to create the cameraParameters input object, or use Stereo Camera Calibrator app to create the stereoPa rameters input object. See "Single Camera Calibrator App" and "Stereo Camera Calibrator App".

## view - Camera- or pattern-centric view <br> 'CameraCentric'|'PatternCentric'

Camera or pattern-centric view, specified as 'CameraCentric' or 'PatternCentric'. The view input sets the visualization for the camera extrinsic parameters. If you keep your camera stationary while moving the calibration pattern, set view to
'CameraCentric'. If the pattern is stationary while you move your camera, set it to 'PatternCentric'.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'HighlightIndex', [1, 4] sets the 'HighlightIndex' to patterns 1 and 4.

## HighlightIndex - Highlight selection index

[] (default) | vector | scalar
Highlight selection index, specified as a scalar or a vector of integers. For example, if you want to highlight patterns 1 and 4, use [1, 4]. Doing so increases the opacity of patterns 1 and 4 in contrast to the rest of the patterns.

## Parent - Output axes

current axes (default)
Output axes, specified as the comma-separated pair consisting of 'Parent' and an axes. You can obtain the current axes handle by returning the function to an output variable: ax = showExtrinsics(cameraParams) You can also use the gca function to get the current axes handle.
Example: showExtrinsics(cameraParams,'Parent', ax)

## Output Arguments

## ax - Current axes handle

scalar value
Current axes handle, returned as a scalar value. The function returns the handle to the current axes for the current figure.

Example: ax = showExtrinsics(cameraParams)

## See Also <br> Camera Calibrator | Stereo Camera Calibrator | came raPa rameters | detectCheckerboardPoints|estimateCameraParameters|fisheyeParameters | generateCheckerboardPoints | plotCamera| showReprojectionErrors | stereoParameters|undistortImage

## Topics

"Single Camera Calibrator App"
Introduced in R2014a

## showMatchedFeatures

Display corresponding feature points

## Syntax

```
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2)
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2,method)
showMatchedFeatures(___,PlotOptions, {MarkerStyle1, MarkerStyle2,
LineStyle})
H = showMatchedFeatures(
```

$\qquad$

## Description

showMatchedFeatures(I1,I2, matchedPoints1, matchedPoints2) displays a falsecolor overlay of images I1 and I2 with a color-coded plot of corresponding points connected by a line. matchedPoints1 and matchedPoints 2 contain the coordinates of corresponding points in I1 and I2. The input points can be $M$-by- 2 matrices of $M$ number of [xy] coordinates, or SURFPoints, MSERRegions, ORBPoints, BRISKPoints, or cornerPoints object.
showMatchedFeatures(I1,I2, matchedPoints1,matchedPoints2,method) displays images I1 and I2 using the visualization style specified by the method parameter.
showMatchedFeatures( $\qquad$ ,PlotOptions, \{MarkerStyle1, MarkerStyle2, LineStyle\}) lets you specify custom plot options in a cell array containing three values. The MarkerStyle1, MarkerStyle2, and LineStyle values correspond to the marker specification in I1, marker specification in I2, and line style and color. The LineSpec syntax of the plot function defines each of the specifiers.

H = showMatchedFeatures ( ___ ) returns the handle to the image object returned by showMatchedFeatures.

## Examples

## Find Corresponding Points Between Two Images Using Harris Features

## Read Images.

```
I1 = rgb2gray(imread('parkinglot_left.png'));
I2 = rgb2gray(imread('parkinglot_right.png'));
```


## Detect SURF features

```
points1 = detectHarrisFeatures(I1);
points2 = detectHarrisFeatures(I2);
```


## Extract features

```
[f1, vpts1] = extractFeatures(I1, points1);
[f2, vpts2] = extractFeatures(I2, points2);
```


## Match features.

```
indexPairs = matchFeatures(f1, f2) ;
matchedPoints1 = vpts1(indexPairs(1:20, 1));
matchedPoints2 = vpts2(indexPairs(1:20, 2));
```


## Visualize candidate matches.

```
figure; ax = axes;
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2,'montage','Parent',ax);
title(ax, 'Candidate point matches');
legend(ax, 'Matched points 1','Matched points 2');
```



## Display Corresponding Points Between Two Rotated and Scaled Images

Use SURF features to find corresponding points between two images rotated and scaled with respect to each other.

## Read images.

```
I1 = imread('cameraman.tif');
I2 = imresize(imrotate(I1,-20), 1.2);
```


## Detect SURF features.

```
points1 = detectSURFFeatures(I1);
points2 = detectSURFFeatures(I2);
```


## Extract features.

[f1, vpts1] = extractFeatures(I1, points1);
[f2, vpts2] = extractFeatures(I2, points2);

## Match features.

indexPairs = matchFeatures(f1, f2) ;
matchedPoints1 = vpts1(indexPairs(:, 1));
matchedPoints2 $=$ vpts2(indexPairs(:, 2));

## Visualize candidate matches.

figure; ax = axes;
showMatchedFeatures(I1,I2,matchedPoints1,matchedPoints2,'Parent',ax);
title(ax, 'Putative point matches');
legend(ax,'Matched points 1','Matched points 2');

Putative point matches


## Input Arguments

## I1 - Input image

numeric array
Input image one, specified as a numeric array.

## I2 - Input image

numeric array
Input image two, specified as a numeric array.

## matchedPoints1 - Coordinates of points

M-by-2 matrix | SURFPoints object | MSERRegions object | ORBPoints object | BRISKPoints object|cornerPoints object

Coordinates of points in image one, specified as an $M$-by- 2 matrix of $M$ number of [x y] coordinates, or as a SURFPoints, MSERRegions, ORBPoints, BRISKPoints, or cornerPoints object.

## matchedPoints2 - Coordinates of points

M-by-2 matrix | SURFPoints object | MSERRegions object | ORBPoints object | BRISKPoints object|cornerPoints object

Coordinates of points in image two, specified as an $M$-by-2 matrix of $M$ number of [x y] coordinates, or as a SURFPoints, MSERRegions, ORBPoints, BRISKPoints, or cornerPoints object.

## method - Display method

falsecolor (default) | blend | montage
Display style method, specified as one of the following:
falsecolor: Overlay the images by creating a composite red-cyan image showing I1 as red and I2 as cyan.
blend: Overlay I1 and I2 using alpha blending.
montage: Place I1 and I2 next to each other in the same image.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, ..., NameN, ValueN.

Example:

## PlotOptions - Line style and color

\{'ro','g+', 'y-'\} (default)|cell array of character vectors \| string array
Line style and color options, specified as a cell array of character vectors or string array. the three values are \{MarkerStyle1, MarkerStyle2, LineStyle\}, corresponding to a marker specification in I1, marker specification in I2, and line style and color. The LineSpec syntax of the plot function defines each of the specifiers.

## Parent - Output axes

axes graphics object
Output axes for displaying visualization, specified as an axes graphics object.

## Output Arguments

## H - Handle to image object

handle
Handle to image object, returned as the handle to the image object returned by showMatchedFeatures.

## See Also

BRISKPoints | MSERRegions | ORBPoints | SURFPoints | cornerPoints | estimateGeometricTransform|imshowpair|legend|matchFeatures

## Introduced in R2012b

## showPointCloud

Plot 3-D point cloud

## Syntax

showPointCloud

## Description

showPointCloud was renamed to pcshow. Please use pcshow in place of showPointCloud.

## Introduced in R2014b

## pcshow

Plot 3-D point cloud

## Syntax

pcshow(ptCloud)
pcshow(xyzPoints)
pcshow(xyzPoints,color)
pcshow(xyzPoints,colorMap)
pcshow(filename)
pcshow( $\qquad$ , Name, Value)
ax = pcshow( $\qquad$ )

## Description

pcshow(ptCloud) displays points using the locations and colors stored in the point cloud object.
pcshow(xyzPoints) displays points specified by the xyzPoints matrix.
pcshow(xyzPoints, color) displays points contained in the xyzPoints matrix, with colors specified by color.
pcshow(xyzPoints, colorMap) displays points contained in the xyzPoints matrix, with colors specified by colorMap.
pcshow(filename) displays the point cloud stored in the file specified by filename.
pcshow( $\qquad$ ,Name, Value) uses additional options specified by one or more Name, Value pair arguments, using any of the preceding syntaxes.
ax = pcshow( $\qquad$ ) returns the plot axes.

## Examples

## Plot Spherical Point Cloud with Texture Mapping

Generate a sphere consisting of 600-by-600 faces.

```
numFaces = 600;
[x,y,z] = sphere(numFaces);
```

Plot the sphere using the default color map.

```
figure;
pcshow([x(:),y(:),z(:)]);
title('Sphere with Default Color Map');
xlabel('X');
ylabel('Y');
zlabel('Z');
```



Load and display an image for texture mapping.
I = im2double(imread('visionteam1.jpg')); imshow(I);


Resize and flip the image for mapping the coordinates.
J = flipud(imresize(I,size(x)));
Plot the sphere with the color texture.

```
pcshow([x(:),y(:),z(:)],reshape(J,[],3));
title('Sphere with Color Texture');
xlabel('X');
ylabel('Y');
zlabel('Z');
```



## Input Arguments

## ptCloud - Point cloud

pointCloud object
Point cloud, specified as a pointCloud object. The object contains the locations, intensities, and RGB colors to render the point cloud.

Point Cloud Property	Color Rendering Result
Location only	Maps the z-value to a color value in the   current color map.
Location and Intensity	Maps the intensity to a color value in the   current color map.
Location and Color	Use provided color.
Location, Intensity, and Color	Use provided color.

## filename - Point cloud filename

character vector | string scalar
Point cloud filename, specified as a character vector or a scalar string. The file must be supported by pcread. pcshow calls pcread to read the point cloud from the file, but does not store the data in the MATLAB workspace.

## xyzPoints - Point cloud $x, y$, and $z$ locations

M-by-3 matrix | $M$-by- $N$-by-3 matrix
Point cloud $x, y$, and $z$ locations, specified as either an $M$-by- 3 or an $M$-by- $N$-by- 3 numeric matrix. The xyzPoints numeric matrix contains $M$ or $M$-by- $N[x, y, z]$ points. The $z$ values in the matrix, which generally corresponds to depth or elevation, determine the color of each point. When you do not specify the C input color, the function maps the $z$ value to a color in the current colormap.

## color - Point cloud color

1-by-3 RGB Colorspec vector | $M$-by-3 matrix | $M$-by- $N$-by-3 matrix
Point cloud color of points, specified as one of:

- 1-by-3 RGB ColorSpec (Color Specification) vector,
- $M$-by- 3 matrix
- $M$-by- $N$-by- 3 matrix

You can specify the same color for all points or a different color for each point. When you set $C$ to single or double, the RGB values range between [ 0,1 ]. When you set $C$ to uint8, the values range between $[0,255]$.

Points Input	Color Selection	Valid Values of C	
xyzPoints	Same color for all points	ColorSpec (Color Specification) color character vector or a 1-by-3 RGB vector	
	Different color for each point	$M$-by-3 matrix or $M$-by- $N$-by-3 matrix containing RGB values for each point.	M-by-N-by-3

## colorMap - Point cloud color map

$M$-by-1 vector | $M$-by- $N$ matrix
Point cloud color of points, specified as one of:

- $M$-by- 1 vector
- $M$-by- $N$ matrix

Points Input	Color Selection	Valid Values of C	
xyzPoints	Different color for each point	Vector or $M$-by- $N$ matrix. The matrix must contain values that are linearly mapped to a color in the current colormap.	

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, . . . , NameN, ValueN.

Example: 'VerticalAxisDir','Up' sets the vertical axis direction to up.

## MarkerSize - Diameter of marker

6 (default) | positive scalar
Diameter of marker, specified as the comma-separated pair consisting of 'MarkerSize' and a positive scalar. The value specifies the approximate diameter of the point marker. MATLAB graphics define the unit as points. A marker size larger than six can reduce the rendering performance.

## VerticalAxis - Vertical axis

'Z' (default)|'X'|'Y'
Vertical axis, specified as the comma-separated pair consisting of 'VerticalAxis' and ' X ', ' $Y$ ' , or ' $Z$ '. When you reload a saved figure, any action on the figure resets the vertical axis to the $z$-axis.

## VerticalAxisDir - Vertical axis direction <br> 'Up' (default) | 'Down'

Vertical axis direction, specified as the comma-separated pair consisting of 'VerticalAxisDir' and 'Up' or 'Down'. When you reload a saved figure, any action on the figure resets the direction to the up direction.

## Parent - Output axes

axes graphics object
Output axes, specified as the comma-separated pair consisting of 'Parent' and an axes graphics object that displays the point cloud visualization.

Note You cannot set the value of 'Parent' to a UIAxes object (created using the uiaxes function).

## Output Arguments

## ax - Plot axes

axes graphics object
Plot axes, returned as an axes graphics object.
You can set the default center of rotation for the point cloud viewer to rotate around the axes center or around a point. Set the default behavior from the "Computer Vision Toolbox Preferences".

## Tips

- To improve performance, pcshow automatically downsamples the rendered point cloud during interaction with the figure. The downsampling occurs only for rendering the point cloud and does not affect the saved points.
- To view point data or modify color display values, hover over the axes toolbar and select one of the following options.


Feature	Description
Background color	Click Rotate and then right-click in the figure for background options.
	A Figure 2   File   File   View Insert Tools   Desktop   Window   Help $\square$ $\square$ $\square$ [


Feature	Description
Colormap value	Click Rotate and then right-click in the figure for colormap options. You can modify colornap values for the coordinate and range values available, depending on the type of point cloud displayed.
View	Click Rotate to change the viewing angle of the point cloud figure to the $X Z, Z X, Y Z, Z Y, X Y$, or the $Y X$ plane. Click Restore View to reset the viewing angle.

- pcplayer supports the 'opengl' option for the Renderer figure property only.

See Also<br>pcdenoise|pcdownsample|pcfitplane|pcmerge|pcplayer|pcread| pcregistericp|pcshowpair|pcwrite|planeModel|plot3|pointCloud| reconstructScene|scatter3|triangulate

## Topics

"Structure From Motion From Two Views"
"Depth Estimation From Stereo Video"
"Coordinate Systems"
Introduced in R2015b

## pcshowpair

Visualize difference between two point clouds

## Syntax

pcshowpair(ptCloudA, ptCloudB)
pcshowpair(ptCloudA, ptCloudB, Name, Value)
ax = pcshowpair( $\qquad$ )

## Description

pcshowpair(ptCloudA, ptCloudB) creates a visualization depicting the differences between the two input point clouds. The differences are displayed using a blending of magenta for point cloud A and green for point cloud B.
pcshowpair(ptCloudA, ptCloudB,Name, Value) visualizes the differences using additional options specified by one or more Name, Value pair arguments.
ax = pcshowpair (__ ) returns the plot axes to the visualization of the differences, using any of the preceding syntaxes.

## Examples

## Visualize the Difference Between Two Point Clouds

Load two point clouds that were captured using a Kinect device in a home setting.

```
load('livingRoom');
pc1 = livingRoomData{1};
pc2 = livingRoomData{2};
```

Plot and set the viewpoint of point clouds.
figure
pcshowpair(pc1,pc2,'VerticalAxis','Y','VerticalAxisDir','Down') title('Difference Between Two Point Clouds')
xlabel('X(m)')
ylabel('Y(m)')
zlabel('Z(m)')


## Input Arguments

## ptCloudA - Point cloud

pointCloud object

Point cloud A, specified as a pointCloud object. The function uses levels of magenta to represent ptCloudA and a pure magenta when the point cloud contains no color information.

## ptCloudB - Point cloud

pointCloud object
Point cloud B, specified as a pointCloud object. The function uses levels of green to represent ptCloudB and a pure green when the point cloud contains no color information.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.
Example: 'VerticalAxisDir','Up' sets the vertical axis direction to up.

## MarkerSize - Diameter of marker

6 (default) | positive scalar
Approximate diameter of the point marker, specified as the comma-separated pair consisting of 'MarkerSize' and a positive scalar. The units are in points. A marker size larger than six can reduce the rendering performance.

## VerticalAxis - Vertical axis

' Z' (default)| 'X'| 'Y'
Vertical axis, specified as the comma-separated pair consisting of 'VerticalAxis' and ' $X^{\prime}$, ' $Y$ ', or ' $Z$ '. When you reload a saved figure, any action on the figure resets the vertical axis to the $z$-axis.

## VerticalAxisDir - Vertical axis direction

'Up' (default)|'Down'
Vertical axis direction, specified as the comma-separated pair consisting of 'VerticalAxisDir' and 'Up' or 'Down'. When you reload a saved figure, any action on the figure resets the direction to the up direction.

## Parent - Output axes

axes graphics object
Output axes, specified as the comma-separated pair consisting of 'Parent' and an axes graphics object that displays the point cloud visualization.

Note You cannot set the value of 'Parent' to a UIAxes object (created using the uiaxes function).

## Output Arguments

## ax - Plot axes

axes graphics object
Plot axes, returned as an axes graphics object. Points with NaN or Inf coordinates are not displayed.

You can set the default center of rotation for the point cloud viewer to rotate around the axes center or around a point. Set the default behavior from the "Computer Vision Toolbox Preferences".

## Tips

- To improve performance, pcshowpair automatically downsamples the rendered point cloud during interaction with the figure. The downsampling occurs only for rendering the point cloud and does not affect the saved points.
- To view point data or modify color display values, hover over the axes toolbar and select one of the following options.


Feature	Description
Background color	Click Rotate and then right-click in the figure for background options.
	A Figure 2   File   File   View Insert Tools   Desktop   Window   Help $\square$ $\square$ $\square$ [


Feature	Description
Colormap value	Click Rotate and then right-click in the figure for colormap options. You can modify colornap values for the coordinate and range values available, depending on the type of point cloud displayed.
	Rotate 30 .
View	Click Rotate to change the viewing angle of the point cloud figure to the $X Z, Z X, Y Z, Z Y, X Y$, or the $Y X$ plane. Click Restore View to reset the viewing angle.

- pcshowpair supports the 'opengl' option for the Renderer figure property only.

See Also<br>pcdenoise|pcdownsample|pcfitplane|pcmerge|pcplayer|pcread| pcregistericp|pcshow|pcwrite|planeModel|plot3|pointCloud| reconstructScene|scatter3|triangulate

## Topics

"Structure From Motion From Two Views"
"Depth Estimation From Stereo Video"
"Coordinate Systems"
Introduced in R2015b

## showReprojectionErrors

Visualize calibration errors

## Syntax

```
showReprojectionErrors(cameraParams)
showReprojectionErrors(cameraParams,view)
showReprojectionErrors(
```

$\qquad$

``` ,Name,Value)
ax = showReprojectionErrors(___)
```


## Description

showReprojectionErrors(cameraParams) displays a bar graph that represents the calibration accuracy for a single camera or for a stereo pair. The bar graph displays the mean reprojection error per image. The cameraParams input contains either a cameraParameters, fisheyeParameters, or a stereoParameters object, which the estimateCameraParameters or estimateFisheyeParameters function returns.
showReprojectionErrors (cameraParams, view) displays the reprojection errors using the visualization style specified by the view input.
showReprojectionErrors( $\qquad$ ,Name, Value) uses additional options specified by one or more Name, Value pair arguments, using any of the preceding syntaxes.
ax = showReprojectionErrors (__ ) returns the plot axis, using any of the preceding syntaxes.

## Examples

## Visualize Reprojection Errors for a Single Camera

Create a set of calibration images.

```
images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
 'calibration','webcam'));
imageFileNames = images.Files(1:5);
Detect calibration pattern.
```

[imagePoints, boardSize] = detectCheckerboardPoints(imageFileNames);
Generate world coordinates of the corners of the squares. The square size is in millimeters.

```
squareSize = 25;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);
```

Calibrate the camera.

```
I = readimage(images,1);
imageSize = [size(I, 1), size(I, 2)];
params = estimateCameraParameters(imagePoints,worldPoints, ...
 'ImageSize',imageSize);
```

Visualize the errors as a bar graph.
subplot(1,2,1);
showReprojectionErrors(params);


Visualize the errors as a scatter plot.
subplot(1,2,2);
showReprojectionErrors(params,'ScatterPlot');


## Visualize Reprojection Errors for a Stereo Pair of Cameras

Specify calibration images

```
imageDir = fullfile(toolboxdir('vision'),'visiondata', ...
 calibration','stereo');
leftImages = imageDatastore(fullfile(imageDir,'left'));
rightImages = imageDatastore(fullfile(imageDir,'right'));
```

Detect the checkerboards.

```
[imagePoints, boardSize] = detectCheckerboardPoints(...
 leftImages.Files,rightImages.Files);
```

Specify world coordinates of checkerboard keypoints. The square size is in millimeters.

```
squareSize = 108;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);
```

Calibrate the stereo camera system. Here both cameras have the same resolution.

```
I = readimage(leftImages,1);
imageSize = [size(I, 1), size(I, 2)];
params = estimateCameraParameters(imagePoints,worldPoints, ...
 ImageSize',imageSize);
```

Visualize calibration accuracy.
showReprojectionErrors(params);


## Input Arguments

## cameraParams - Object containing parameters of single camera or stereo pair

cameraParameters object | fisheyeParameters object | stereoParameters object
Object containing parameters of single camera or stereo pair, specified as either a cameraParameters, fisheyeParameters, or stereoParameters object. You can create the single camera or stereo pair input object using the estimateCameraParameters function. The fisheye parameters input object is created using estimateFisheyeParameters.

You can also use the Camera Calibrator app to create the cameraParameters input object, or use Stereo Camera Calibrator app to create the stereoParameters input object. See "Single Camera Calibrator App" and "Stereo Camera Calibrator App".

## view - Bar graph or scatter plot view

'BarGraph'|'ScatterPlot'
Bar graph or scatter plot view, specified as either 'BarGraph' or 'ScatterPlot'. The view input sets the visualization for the camera extrinsic parameters. Set view to
'BarGraph' to display the mean error per image as a bar graph. Set view to
'ScatterPlot ' to display the error for each point as a scatter plot. The
'ScatterPlot ' option applies only to the single camera case.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'view','BarGraph ' displays the mean error per image as a bar graph.

## HighlightIndex - Highlight selection index

[] (default) | vector of integers | scalar
Highlight selection index, specified as a scalar or a vector of integers. When you set the view to 'BarGraph', the function highlights the bars corresponding to the selected images. When you set the view to 'ScatterPlot', the function highlights the points corresponding to the selected images with circle markers.

## Parent - Output axes

current axes (default) | scalar value
Output axes, specified as the comma-separated pair consisting of 'Parent' and a scalar value. Specify output axes to display the visualization. You can obtain the current axes handle by returning the function to an output variable: ax = showReprojectionErrors(cameraParams) You can also use the gca function to get the current axes handle.

[^0]
## Output Arguments

## ax - Current axes handle

scalar value
Current axes handle, returned as a scalar value. The function returns the handle to the current axes for the current figure.

Example: ax = showReprojectionErrors(cameraParams)

See Also<br>Camera Calibrator | Stereo Camera Calibrator | cameraParameters | detectCheckerboardPoints |estimateCameraParameters|fisheyeParameters | generateCheckerboardPoints|showExtrinsics|stereoParameters| undistortImage<br>\section*{Topics}<br>"Single Camera Calibrator App"<br>Introduced in R2014a

## stereoAnaglyph

Create red-cyan anaglyph from stereo pair of images

## Syntax

J = stereoAnaglyph(I1,I2)

## Description

$J=$ stereoAnaglyph(I1,I2) combines images I1 and I2 into a red-cyan anaglyph. When the inputs are rectified stereo images, you can view the output image with red-blue stereo glasses to see the stereo effect.

## Examples

## Create 3-D Stereo Display

Load parameters for a calibrated stereo pair of cameras.
load('webcamsSceneReconstruction.mat')
Load a stereo pair of images.
I1 = imread('sceneReconstructionLeft.jpg');
I2 = imread('sceneReconstructionRight.jpg');
Rectify the stereo images.
[J1, J2] = rectifyStereoImages(I1, I2, stereoParams);
Create the anaglyph.
A = stereoAnaglyph(J1, J2);
Display the anaglyph. Use red-blue stereo glasses to see the stereo effect.
figure; imshow(A);


## Input Arguments

## I1 - Input image

$M$-by- $N$-by-3 truecolor image | $M$-by- $N$ 2-D grayscale image
Input image I1, specified as an $M$-by- $N$-by-3 truecolor image or an $M$-by- $N$ 2-D grayscale image. I1 and I2 must be real, finite, and nonsparse, and the images must be the same size. If the images are not the same size, use imfuse to pad the smaller image dimension with zeros before creating the anaglyph.
Data Types: single | double | int16|uint8|uint16|logical

## I2 - Input image

$M$-by- $N$ 2-D grayscale image | $M$-by- $N$-by-3 truecolor image
Input image I2, specified as an $M$-by- $N$-by-3 truecolor image or an $M$-by- $N$ 2-D grayscale image. I1 and I2 must be real, finite, and nonsparse, and the images must be the same
size. If the images are not the same size, use imfuse to pad the smaller image dimension with zeros before creating the anaglyph.

```
Data Types: single|double | int16|uint8|uint16| logical
```


## Output Arguments

## J - Stereo anaglyph output image

$M$-by- $N$-by-3 truecolor image
Stereo anaglyph output image, returned as an $M$-by- $N$-by- 3 truecolor image. Output image J is the same size as input images I1 and I2.

Data Types: single | double | int16|uint8|uint16|logical

## Extended Capabilities

## C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

## See Also

estimateUncalibratedRectification |imfuse |imshowpair| reconstructScene|rectifyStereoImages

## Topics

"Structure From Motion From Two Views"
"Structure From Motion From Multiple Views"

## Introduced in R2014b

## trainCascadeObjectDetector

Train cascade object detector model

## Syntax

```
trainCascadeObjectDetector(outputXMLFilename,positiveInstances,
negativeImages)
trainCascadeObjectDetector(outputXMLFilename,'resume')
trainCascadeObjectDetector(__ ,Name,Value)
```


## Description

trainCascadeObjectDetector(outputXMLFilename, positiveInstances, negativeImages) writes a trained cascade detector XML file named, outputXMLFilename. The file name must include an XML extension. For a more detailed explanation on how this function works, refer to "Train a Cascade Object Detector".
trainCascadeObjectDetector(outputXMLFilename,'resume') resumes an interrupted training session. The outputXMLFilename input must match the output file name from the interrupted session. All arguments saved from the earlier session are reused automatically.
trainCascadeObjectDetector( $\qquad$ ,Name, Value) uses additional options specified by one or more Name, Value pair arguments.

## Examples

## Train Stop Sign Detector

Load the positive samples data from a MAT file. The file contains a table specifying bounding boxes for several object categories. The table was exported from the Training Image Labeler app.

Load positive samples.
load('stopSignsAndCars.mat');
Select the bounding boxes for stop signs from the table.

```
positiveInstances = stopSignsAndCars(:,1:2);
```

Add the image folder to the MATLAB path.

```
imDir = fullfile(matlabroot,'toolbox','vision','visiondata',...
 'stopSignImages');
addpath(imDir);
```

Specify the folder for negative images.

```
negativeFolder = fullfile(matlabroot,'toolbox','vision','visiondata',...
 'nonStopSigns');
```

Create an imageDatastore object containing negative images.
negativeImages = imageDatastore(negativeFolder);
Train a cascade object detector called 'stopSignDetector.xml' using HOG features. NOTE: The command can take several minutes to run.
trainCascade0bjectDetector('stopSignDetector.xml',positiveInstances, ... negativeFolder,'FalseAlarmRate',0.1,'NumCascadeStages',5);

Automatically setting ObjectTrainingSize to [35, 32]
Using at most 42 of 42 positive samples per stage
Using at most 84 negative samples per stage

-     - cascadeParams - -

Training stage 1 of 5

Used 42 positive and 84 negative samples
Time to train stage 1: 1 seconds

```
Training stage 2 of 5
```



```
Used 42 positive and 84 negative samples
Time to train stage 2: 0 seconds
```

Training stage 3 of 5

```
[...
Used 42 positive and 84 negative samples
Time to train stage 3: 3 seconds
Training stage 4 of 5
[..
Used 42 positive and 84 negative samples
Time to train stage 4: 10 seconds
Training stage 5 of 5
[...
Used 42 positive and 17 negative samples
Time to train stage 5: 16 seconds
Training complete
Use the newly trained classifier to detect a stop sign in an image.
detector = vision.CascadeObjectDetector('stopSignDetector.xml');
Read the test image.
```

```
img = imread('stopSignTest.jpg');
```

img = imread('stopSignTest.jpg');
Detect a stop sign.

```
```

bbox = step(detector,img);

```
bbox = step(detector,img);
Insert bounding box rectangles and return the marked image.
```

```
detectedImg = insertObjectAnnotation(img,'rectangle',bbox,'stop sign');
```

detectedImg = insertObjectAnnotation(img,'rectangle',bbox,'stop sign');
Display the detected stop sign.

```
```

figure; imshow(detectedImg);

```
```

figure; imshow(detectedImg);

```


Remove the image directory from the path.
rmpath(imDir);

\section*{Input Arguments}

\section*{positiveInstances - Positive samples}
table | struct
Positive samples, specified as a two-column table or two-field structure.
The first table column or structure field contains image file names, specified as character vectors or string scalars. Each image can be true color, grayscale, or indexed, in any of the formats supported by imread.

The second table column or structure field contains an \(M\)-by- 4 matrix of \(M\) bounding boxes. Each bounding box is in the format [\(x\) y width height] and specifies an object location in the corresponding image.

You can use the Image Labeler or Video Labeler app to label objects of interest with bounding boxes. The app returns a groundTruth object. Use the objectDetectorTrainingData function to obtain a table from the object to use for positiveInstances. The function automatically determines the number of positive samples to use at each of the cascade stages. This value is based on the number of stages and the true positive rate. The true positive rate specifies how many positive samples can be misclassified.

\section*{Data Types: table | struct}

\section*{negativeImages - Negative images}

ImageDatastore object | cell array | character vector | string scalar
Negative images, specified as an ImageDatastore object, a path to a folder containing images, or as a cell array of image file names. Because the images are used to generate negative samples, they must not contain any objects of interest. Instead, they should contain backgrounds associated with the object.

\section*{outputXMLFilename - Trained cascade detector file name \\ character vector | string scalar}

Trained cascade detector file name, specified as a character vector or a string scalar with an XML extension. For example, 'stopSignDetector.xml'.
Data Types: char

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: 'FeatureType', 'Haar' specifies Haar for the type of features to use.

\section*{ObjectTrainingSize - Object size for training}
'Auto' (default)| two-element vector

Training object size, specified as the comma-separated pair. This pair contains 'ObjectTrainingSize' and either a two-element [height, width] vector, or as 'Auto '. Before training, the function resizes the positive and negative samples to ObjectTrainingSize in pixels. If you select 'Auto', the function determines the size automatically based on the median width-to-height ratio of the positive instances. For optimal detection accuracy, specify an object training size close to the expected size of the object in the image. However, for faster training and detection, set the object training size to be smaller than the expected size of the object in the image.
Data Types: char|single|double |int8|int16|int32|int64|uint8|uint16| uint32|uint64

\section*{NegativeSamplesFactor - Negative sample factor}

2 (default) | real-valued scalar
Negative sample factor, specified as the comma-separated pair consisting of 'NegativeSamplesFactor' and a real-valued scalar. The number of negative samples to use at each stage is equal to

NegativeSamplesFactor \(\times\) [the number of positive samples used at each stage].

Data Types: single|double |int8|int16|int32|int64|uint8|uint16| uint32|uint64

\section*{NumCascadeStages - Number of cascade stages}

20 (default) | positive integer
Number of cascade stages to train, specified as the comma-separated pair consisting of 'NumCascadeStages' and a positive integer. Increasing the number of stages may result in a more accurate detector but also increases training time. More stages can require more training images, because at each stage, some number of positive and negative samples are eliminated. This value depends on the values of FalseAlarmRate and TruePositiveRate. More stages can also enable you to increase the FalseAlarmRate. See the "Train a Cascade Object Detector" tutorial for more details.
Data Types: single|double|int8|int16|int32|int64|uint8|uint16| uint32 | uint64

\section*{FalseAlarmRate - Acceptable false alarm rate}
0.5 (default) | value in the range (0 1]

Acceptable false alarm rate at each stage, specified as the comma-separated pair consisting of 'FalseAlarmRate' and a value in the range (01 1]. The false alarm rate is the fraction of negative training samples incorrectly classified as positive samples.

The overall false alarm rate is calculated using the FalseAlarmRate per stage and the number of cascade stages, NumCascadeStages:

\section*{FalseAlarmRate \({ }^{\text {NumCascadeStages }}\)}

Lower values for FalseAlarmRate increase complexity of each stage. Increased complexity can achieve fewer false detections but can result in longer training and detection times. Higher values for FalseAlarmRate can require a greater number of cascade stages to achieve reasonable detection accuracy.

\section*{Data Types: single | double}

\section*{TruePositiveRate - Minimum true positive rate 0.995 (default) | value in the range (0,1]}

Minimum true positive rate required at each stage, specified as the comma-separated pair consisting of 'TruePositiveRate' and a value in the range (0 1]. The true positive rate is the fraction of correctly classified positive training samples.

The overall resulting target positive rate is calculated using the TruePositiveRate per stage and the number of cascade stages, NumCascadeStages:

TruePositiveRate \({ }^{\text {NumCascadeStages }}\)
Higher values for TruePositiveRate increase complexity of each stage. Increased complexity can achieve a greater number of correct detections but can result in longer training and detection times.
Data Types: single | double
FeatureType - Feature type
'HOG' (default) | 'LBP' | 'Haar'
Feature type, specified as the comma-separated pair consisting of 'FeatureType' and one of the following:
'Haar '[1] - Haar-like features
'LBP'[2] — Local binary patterns
'HOG ' [3] - Histogram of oriented gradients

The function allocates a large amount of memory, especially the Haar features. To avoid running out of memory, use this function on a 64 -bit operating system with a sufficient amount of RAM.

Data Types: char

\section*{Tips}
- Training a good detector requires thousands of training samples. Processing time for a large amount of data varies, but it is likely to take hours or even days. During training, the function displays the time it took to train each stage in the MATLAB command window.
- The OpenCV HOG parameters used in this function are:
- Numbins: 9
- CellSize = \(\left[\begin{array}{ll}8 & 8\end{array}\right]\)
- BlockSize = [4 4]
- BlockOverlap = [2 2]
- UseSignedOrientation = false

\section*{References}
[1] Viola, P., and M. J. Jones. "Rapid Object Detection using a Boosted Cascade of Simple Features." Proceedings of the 2001 IEEE Computer Society Conference. Volume 1, 15 April 2001, pp. I-511-I-518.
[2] Ojala, T., M. Pietikainen, and T. Maenpaa. "Multiresolution Gray-scale and Rotation Invariant Texture Classification With Local Binary Patterns." IEEE Transactions on Pattern Analysis and Machine Intelligence. Volume 24, No. 7 July 2002, pp. 971-987.
[3] Dalal, N., and B. Triggs. "Histograms of Oriented Gradients for Human Detection." IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Volume 1, 2005, pp. 886-893.

\section*{See Also}

\author{
Apps \\ Image Labeler | Video Labeler
}

\section*{Functions}
imrect|insert0bjectAnnotation|vision.CascadeObjectDetector

\section*{Topics}
"Image Category Classification Using Bag of Features"
"Get Started with the Image Labeler"
"Train a Cascade Object Detector"
"Multiple Object Tracking"

\section*{External Websites}

Cascade Training GUI

Introduced in R2013a

\section*{trainImageCategoryClassifier}

Train an image category classifier

\section*{Syntax}
```

classifier = trainImageCategoryClassifier(imds,bag)
classifier = trainImageCategoryClassifier(imds,bag,Name,Value)

```

\section*{Description}
classifier = trainImageCategoryClassifier(imds,bag) returns an image category classifier. The classifier contains the number of categories and the category labels for the input imds images. The function trains a support vector machine (SVM) multiclass classifier using the input bag, a bagOfFeatures object.

You must have a Statistics and Machine Learning Toolbox license to use this function.
This function supports parallel computing using multiple MATLAB workers. Enable parallel computing using the "Computer Vision Toolbox Preferences" dialog. To open Computer Vision Toolbox preferences, on the Home tab, in the Environment section, click Preferences. Select Computer Vision Toolbox.
classifier = trainImageCategoryClassifier(imds,bag,Name, Value) returns a classifier object with optional input properties specified by one or more Name, Value pair arguments.

\section*{Examples}

Train, Evaluate, and Apply Image Category Classifier
Load two image categories.
```

setDir = fullfile(toolboxdir('vision'),'visiondata','imageSets');
imds = imageDatastore(setDir,'IncludeSubfolders',true,'LabelSource',...
'foldernames');

```

Split the data set into a training and test data. Pick 30\% of images from each set for the training data and the remainder \(70 \%\) for the test data.
```

[trainingSet,testSet] = splitEachLabel(imds,0.3,'randomize');

```

Create bag of visual words.
```

bag = bagOfFeatures(trainingSet);

```
Creating Bag-Of-Features.
* Image category 1: books
* Image category 2: cups
* Selecting feature point locations using the Grid method.
* Extracting SURF features from the selected feature point locations.
** The GridStep is [8 8] and the BlockWidth is [32 6496 128].
* Extracting features from 4 images...done. Extracted 76800 features.
* Keeping 80 percent of the strongest features from each category.
* Using K-Means clustering to create a 500 word visual vocabulary.
* Number of features : 61440
* Number of clusters (K) : 500
* Initializing cluster centers...100.00\%.
* Clustering...completed 20/100 iterations (~0.27 seconds/iteration)...converged in 20
* Finished creating Bag-Of-Features

Train a classifier with the training sets.
```

categoryClassifier = trainImageCategoryClassifier(trainingSet,bag);

```
Training an image category classifier for 2 categories.
```

* Category 1: books

```
* Category 2: cups
* Encoding features for 4 images...done.
* Finished training the category classifier. Use evaluate to test the classifier on a
```

Evaluate the classifier using test images. Display the confusion matrix.
confMatrix = evaluate(categoryClassifier,testSet)
Evaluating image category classifier for 2 categories.

* Category 1: books
* Category 2: cups
* Evaluating 8 images...done.
* Finished evaluating all the test sets.
* The confusion matrix for this test set is:
PREDICTED
KNOWN | books cups
books | 0.75 0.25
cups | 0.25 0.75
* Average Accuracy is 0.75.
confMatrix = 2x2
0.7500 0.2500
0.2500 0.7500

```

Find the average accuracy of the classification.
```

mean(diag(confMatrix))
ans = 0.7500

```

Apply the newly trained classifier to categorize new images.
```

img = imread(fullfile(setDir,'cups','bigMug.jpg'));
[labelIdx, score] = predict(categoryClassifier,img);

```

Display the classification label.
categoryClassifier.Labels(labelIdx)
```

ans = 1x1 cell array
{'cups'}

```

\section*{Input Arguments}

\section*{imds - Images}
imageDatastore object
Images specified as an imageDatastore object.

\section*{bag - Bag of features}
bagOfFeatures object
Bag of features, specified as a bag0fFeatures object. The object contains a visual vocabulary of extracted feature descriptors from representative images of each image category.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'Verbose', true sets 'Verbose' to the logical true.

\section*{Verbose - Enable progress display to screen}
true (default) | false
Enable progress display to screen, specified as the comma-separated pair consisting of 'Verbose' and the logical true or false.

\section*{LearnerOptions - Classifier options}
default values of templateSVM function
Classifier options, specified as the comma-separated pair consisting of 'LearnerOptions' and the learner options output returned by the templateSVM function.

\section*{Example 3.2. Example}

To adjust the regularization parameter of templateSVM and to set a custom kernel function, use the following syntax:
```

opts = templateSVM('BoxConstraint',1.1,'KernelFunction','gaussian');
classifier = trainImageCategoryClassifier(imds,bag,'LearnerOptions',opts);

```

\section*{Output Arguments}
classifier - Image category classifier
imageCategoryClassifier object
Image category classifier, returned as an imageCategoryClassifier object. The function trains a support vector machine (SVM) multiclass classifier using the error correcting output codes (ECOC) framework.

\section*{References}
[1] Csurka, G., C. R. Dance, L. Fan, J. Willamowski, and C. Bray Visual Categorization with Bag of Keypoints, Workshop on Statistical Learning in Computer Vision, ECCV 1 (1-22), 1-2.

\section*{Extended Capabilities}

\section*{Automatic Parallel Support}

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox \({ }^{\mathrm{TM}}\).

To run in parallel, set 'UseParallel' to true or enable this by default using the Computer Vision Toolbox preferences.

For more information, see "Parallel Computing Toolbox Support".

\section*{See Also}
bag0fFeatures | fitcecoc | imageCategoryClassifier|imageSet| templateSVM

\section*{Topics}
"Image Category Classification Using Bag of Features"
"Image Classification with Bag of Visual Words"
Introduced in R2014b

\section*{Image Labeler}

Label images for computer vision applications

\section*{Description}

The Image Labeler app enables you to label ground truth data in a collection of images. Using the app, you can:
- Define rectangular regions of interest (ROI) labels, polyline ROI labels, pixel ROI labels, and scene labels. Use these labels to interactively label your ground truth data.
- Use built-in detection or tracking algorithms to label your ground truth data.
- Write, import, and use your own custom automation algorithm to automatically label ground truth. See "Create Automation Algorithm for Labeling".
- Evaluate the performance of your label automation algorithms using a visual summary. See "View Summary of Ground Truth Labels".
- Export the labeled ground truth as a groundTruth object. You can use this object for system verification or for training an object detector or semantic segmentation network. See "Training Data for Object Detection and Semantic Segmentation".

The Image Labeler app supports all image file formats supported by imread. To add additional file formats to imread, use imformats.

To learn more about this app, see "Get Started with the Image Labeler".

\section*{Open the Image Labeler App}
- MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the app icon.
- MATLAB command prompt: Enter imageLabeler.

\section*{Programmatic Use}
imageLabeler opens a new session of the app, enabling you to label ground truth data in images.
imageLabeler(imageFolder) opens the app and loads all the images from the folder named imageFolder.

The images in the folder can be unordered and can vary in size. To label a video, or a set of ordered images that resemble a video, use the Video Labeler app instead.
imageLabeler(imageDatastore) opens the app and reads all of the images from an imageDatastore object. The imageDatastore files are read using imread. For example, to open the app with a collection of stop sign images:
```

stopSignsFolder = fullfile(toolboxdir('vision'),'visiondata','stopSignImages');
imds = imageDatastore(stopSignsFolder)
imageLabeler(imds)

```
imageLabeler(sessionFile) opens the app and loads a saved Image Labeler session, sessionFile. The sessionFile input contains the path and file name. The MAT-file that sessionFile points to contains the saved session.

\section*{Algorithms}

You can use label automation algorithms to speed up labeling within the app. To create your own label automation algorithm to use within the app, see "Create Automation Algorithm for Labeling". You can also use one of the provided built-in algorithms. Follow these steps:

1 Load the data you want to label, and create at least one label definition.
2 On the app toolstrip, click Select Algorithm, and select one of the built-in automation algorithms.
3 Click Automate, and then follow the automation instructions in the right pane of the automation window.

\section*{ACF People Detector}

Detect and label people using aggregate channel features (ACF). This algorithm is based on the peopleDetectorACF function. To use this algorithm, you must define at least one rectangle ROI label. You do not need to draw any ROI labels.

To help improve the algorithm results, first click Settings. You can change any of these settings.
- The pretrained people detector model that the algorithm uses - The
'inria-100×41' model was trained using the INRIA person data set. The
' caltech \(-50 \times 21\) ' model was trained using the Caltech Pedestrian data set.
- The overlap ratio threshold, from 0 to 1 , for detecting people - When rectangle ROIs overlap by more than this threshold, the algorithm discards one of the ROIs.
- The classification score threshold for detecting people - Increase the score to increase the prediction confidence of the algorithm. Rectangles with scores below this threshold are discarded.

\section*{ACF Vehicle Detector (requires Automated Driving Toolbox)}

Detect and label vehicles using aggregate channel features (ACF). This algorithm is based on the vehicleDetectorACF function. To use this algorithm, you must define at least one rectangle ROI label. You do not need to draw any ROI labels.

To help improve the algorithm results, first click Settings. You can change any of these settings.
- The pretrained vehicle detector model that the algorithm uses - The 'full-view' model was trained using unoccluded images of the front, rear, left, and right sides of vehicles. The 'front-rear-view' model was trained using images of only the front and rear sides of the vehicle.
- The overlap ratio threshold, from 0 to 1 , for detecting vehicles - When rectangle ROIs overlap by more than this threshold, the algorithm discards one of the ROIs.
- The classification score threshold for detecting vehicles - Increase the score to increase the prediction confidence of the algorithm. Rectangles with scores below this threshold are discarded.

You can also configure the detector with a calibrated monocular camera by importing a monoCamera object into the MATLAB workspace. Specify the length and width ranges of the vehicle in world units, such as meters.

\section*{See Also}

\section*{Apps}

Ground Truth Labeler | Video Labeler

\section*{Functions}
objectDetectorTrainingData|pixelLabelTrainingData

\author{
Objects \\ groundTruth | groundTruthDataSource | labelDefinitionCreator
}

\section*{Topics}
"Choose an App to Label Ground Truth Data"
"Get Started with the Image Labeler"
"Keyboard Shortcuts and Mouse Actions for Image Labeler"
"Label Pixels for Semantic Segmentation"
"Create Automation Algorithm for Labeling"
"Share and Store Labeled Ground Truth Data"
"Training Data for Object Detection and Semantic Segmentation"

\section*{Introduced in R2018a}

\section*{Video Labeler}

Label video for computer vision applications

\section*{Description}

The Video Labeler app enables you to label ground truth data in a video, in an image sequence, or from a custom data source reader. Using the app, you can:
- Define rectangular regions of interest (ROI) labels, polyline ROI labels, pixel ROI labels, and scene labels. Use these labels to interactively label your ground truth data.
- Use built-in detection or tracking algorithms to label your ground truth data.
- Write, import, and use your own custom automation algorithm to automatically label ground truth. See "Create Automation Algorithm for Labeling".
- Evaluate the performance of your label automation algorithms using a visual summary. See "View Summary of Ground Truth Labels".
- Export the labeled ground truth as a groundTruth object. You can use this object for system verification or for training an object detector or semantic segmentation network. See "Training Data for Object Detection and Semantic Segmentation".

To learn more about this app, see "Get Started with the Video Labeler".

\section*{Open the Video Labeler App}
- MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the app icon.
- MATLAB command prompt: Enter videoLabeler.

\section*{Examples}
- "Get Started with the Video Labeler"

\section*{Programmatic Use}
videoLabeler opens a new session of the app, enabling you to label ground truth data in a video or image sequence.
videoLabeler(videoFileName) opens the app and loads the input video. The video file must have an extension supported by VideoReader.

Example: videoLabeler('vipmen.avi')
videoLabeler(imageSeqFolder) opens the app and loads the image sequence from the input folder. An image sequence is an ordered set of images that resemble a video. The images must be the same size. imageSeqFolder must be a string scalar or character vector that specifies the folder containing the image files. The image files must have extensions supported by imformats and are loaded in the order returned by the dir function.

To label a collection of unordered images that can vary in size, use the Image Labeler app instead.
videoLabeler(imageSeqFolder, timestamps) opens the app and loads a sequence of images with their corresponding timestamps. timestamps must be a duration vector of the same length as the number of images in the sequence.

For example, load a sequence of images and their corresponding timestamps into the app.
```

imageDir = fullfile(toolboxdir('vision'),'visiondata','NewTsukuba');
timeStamps = seconds(1:150);
videoLabeler(imageDir,timeStamps)

```
videoLabeler(gtSource) opens the app and loads the data source and corresponding timestamps from a groundTruthDataSource object, gtSource. To generate this object for a custom data source, you can specify a custom reader function. For details, see "Use Custom Data Source Reader for Ground Truth Labeling".
videoLabeler(sessionFile) opens the app and loads a saved app session, sessionFile. The sessionFile input contains the path and file name. The MAT-file that sessionFile points to contains the saved session.

\section*{Limitations}
- The built-in automation algorithms support the automation of rectangular ROI labels only. When you select a built-in algorithm and click Automate, scene labels, pixel ROI labels, polyline ROI labels, sublabels, and attributes are not imported into the automation session. To automate the labeling of these features, create a custom automation algorithm. See "Create Automation Algorithm for Labeling".
- Pixel ROI labels do not support sublabels or attributes.
- The Label Summary window does not support sublabels or attributes

\section*{Tips}
- To avoid having to relabel ground truth with new labels, organize the labeling scheme you want to use before marking your ground truth.

\section*{Algorithms}

You can use label automation algorithms to speed up labeling within the app. To create your own label automation algorithm to use within the app, see "Create Automation Algorithm for Labeling". You can also use one of the provided built-in algorithms. Follow these steps:

1 Load the data you want to label, and create at least one label definition.
2 On the app toolstrip, click Select Algorithm, and select one of the built-in automation algorithms.
3 Click Automate, and then follow the automation instructions in the right pane of the automation window.

\section*{ACF People Detector}

Detect and label people using aggregate channel features (ACF). This algorithm is based on the peopleDetectorACF function. To use this algorithm, you must define at least one rectangle ROI label. You do not need to draw any ROI labels.

To help improve the algorithm results, first click Settings. You can change any of these settings.
- The pretrained people detector model that the algorithm uses - The 'inria-100×41' model was trained using the INRIA person data set. The ' caltech \(-50 \times 21\) ' model was trained using the Caltech Pedestrian data set.
- The overlap ratio threshold, from 0 to 1 , for detecting people - When rectangle ROIs overlap by more than this threshold, the algorithm discards one of the ROIs.
- The classification score threshold for detecting people - Increase the score to increase the prediction confidence of the algorithm. Rectangles with scores below this threshold are discarded.

\section*{Point Tracker}

Track and label one or more rectangle ROI labels over short intervals by using the Kanade-Lucas-Tomasi (KLT) algorithm. This algorithm is based on the vision. PointTracker System object. To use this algorithm, you must define at least one rectangle ROI label, but you do not need to draw any ROI labels.

To change the feature detector used to obtain the initial points for tracking, click Settings. This table shows the feature detector options.
\begin{tabular}{|l|l|l|}
\hline Feature Detector & Description & Equivalent Function \\
\hline Minimum Eigen Value & \begin{tabular}{l}
Detect corners by using the \\
minimum eigenvalue \\
algorithm.
\end{tabular} & \begin{tabular}{l}
detectMinEigenFeature \\
s
\end{tabular} \\
\hline Harris & \begin{tabular}{l}
Detect corners by using the \\
Harris-Stephens algorithm.
\end{tabular} & detectHarrisFeatures \\
\hline FAST & \begin{tabular}{l}
Detect corners by using the \\
features from accelerated \\
segment test (FAST) \\
algorithm.
\end{tabular} & detectFASTFeatures \\
\hline BRISK & \begin{tabular}{l}
Detect features by using the \\
binary robust invariant \\
scalable keypoints (BRISK) \\
algorithm.
\end{tabular} & detectBRISKFeatures \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Feature Detector & Description & Equivalent Function \\
\hline KAZE & \begin{tabular}{l}
Detect features by using \\
nonlinear diffusion to \\
construct a scale space of an \\
image, and then detecting \\
multiscale corner features \\
(KAZE features) from that \\
scale space.
\end{tabular} & detectKAZEFeatures \\
\hline SURF & \begin{tabular}{l}
Detect blob features by \\
using the speeded-up robust \\
features (SURF) algorithm.
\end{tabular} & detectSURFFeatures \\
\hline MSER & \begin{tabular}{l}
Detect regions by using the \\
maximally stable extremal \\
regions (MSER) algorithm.
\end{tabular} & detectMSERFeatures \\
\hline
\end{tabular}

\section*{Temporal Interpolator}

Estimate rectangle ROIs between frames by interpolating the ROI locations across the time interval. To use this algorithm, you must draw a rectangle ROI on a minimum of two frames: one at the beginning of the interval and one at the end of the interval. The interpolation algorithm estimates and draws ROIs in the intermediate frames.

Consider a video with 10 frames. The first frame has a rectangle ROI centered at [5, 5]. The 10th frame has a rectangle ROI centered at [25, 25]. At each frame, the algorithm moves the ROI 2 pixels in the \(x\)-direction and 2 pixels in the \(y\)-direction. Therefore, the algorithm centers the ROI at [7, 7] in the second frame, [9, 9] in the third frame, and so on, up to \([23,23]\) in the second-to-last frame.

\section*{ACF Vehicle Detector (requires Automated Driving Toolbox)}

Detect and label vehicles using aggregate channel features (ACF). This algorithm is based on the vehicleDetectorACF function. To use this algorithm, you must define at least one rectangle ROI label. You do not need to draw any ROI labels.

To help improve the algorithm results, first click Settings. You can change any of these settings.
- The pretrained vehicle detector model that the algorithm uses - The 'full-view' model was trained using unoccluded images of the front, rear, left, and right sides of
vehicles. The 'front-rear-view' model was trained using images of only the front and rear sides of the vehicle.
- The overlap ratio threshold, from 0 to 1 , for detecting vehicles - When rectangle ROIs overlap by more than this threshold, the algorithm discards one of the ROIs.
- The classification score threshold for detecting vehicles - Increase the score to increase the prediction confidence of the algorithm. Rectangles with scores below this threshold are discarded.

You can also configure the detector with a calibrated monocular camera by importing a monoCamera object into the MATLAB workspace. Specify the length and width ranges of the vehicle in world units, such as meters.

\section*{Lane Boundary Detector (requires Automated Driving Toolbox)}

Detect and label lane boundaries using an estimated bird's-eye-view projected image. To use this algorithm, you must define at least one line ROI label. You do not need to draw any ROI labels. To detect lane boundaries, the algorithm follows these steps:

1 It makes an initial guess at the placement of the lane boundaries in the image.
2 It transforms the ROI around the lanes into a bird's-eye view image to make the lanes parallel and remove distortion.
3 It uses this image to segment the lane boundaries.
To help improve the algorithm results, first click Settings. You can change any of these settings.
- The placement of the lane lines for generating the bird's-eye view image
- The ROI around the lanes, which you can expand to include more than just the ego lane boundaries in the image
- The pixel width of detected lane boundaries in the image

You can also change the number of lane boundaries that you want to detect. The default number of lane boundaries is 2 .

\section*{See Also}

Apps
Ground Truth Labeler | Image Labeler

\author{
Functions \\ objectDetectorTrainingData|pixelLabelTrainingData
}

\author{
Objects \\ groundTruth | groundTruthDataSource| labelDefinitionCreator
}

\section*{Topics}
"Get Started with the Video Labeler"
"Choose an App to Label Ground Truth Data"
"Use Custom Data Source Reader for Ground Truth Labeling"
"Keyboard Shortcuts and Mouse Actions for Video Labeler"
"Use Sublabels and Attributes to Label Ground Truth Data"
"Label Pixels for Semantic Segmentation"
"Create Automation Algorithm for Labeling"
"Share and Store Labeled Ground Truth Data"
"Training Data for Object Detection and Semantic Segmentation"

Introduced in R2018b

\section*{Training Image Labeler}

Label images for training a classifier

\section*{Description}

The Image Labeler app replaces the Training Image Labeler app. Use the Image Labeler instead.

\section*{Open the Training Image Labeler App}
- MATLAB command prompt: Enter trainingImageLabeler.

Note The trainingImageLabeler function opens the Image Labeler app.

\section*{Examples}

Open Training Image Labeler App
Type trainingImageLabeler on the MATLAB command line or select it from the MATLAB desktop Apps tab.

Note The trainingImageLabeler function opens the Image Labeler app.

\section*{Programmatic Use}
trainingImageLabeler invokes an app for labeling ground truth data in images. This app allows you to interactively specify rectangular Regions of Interest (ROIs). The ROIs define locations of objects, which are used to train a classifier. It outputs training data in a format supported by the trainCascadeObjectDetector function. The function trains a model to use with the vision. CascadeObjectDetector detector.

Note The trainingImageLabeler function opens the Image Labeler app.

\author{
See Also \\ Image Labeler | imageDatastore |imrect|insert0bjectAnnotation| trainCascadeObjectDetector|vision. CascadeObjectDetector \\ \section*{Topics} \\ "Get Started with the Image Labeler" \\ "Train a Cascade Object Detector" \\ Introduced in R2014a
}

\section*{triangulate}

3-D locations of undistorted matching points in stereo images

\section*{Syntax}
```

worldPoints = triangulate(matchedPoints1,matchedPoints2,
stereoParams)
worldPoints = triangulate(matchedPoints1,matchedPoints2,
cameraMatrix1,cameraMatrix2)
[worldPoints,reprojectionErrors] = triangulate(

```
\(\qquad\)
``` )
```


Description

worldPoints = triangulate(matchedPoints1, matchedPoints2, stereoParams) returns 3-D locations of matching pairs of undistorted image points from two stereo images.
worldPoints = triangulate(matchedPoints1, matchedPoints2, cameraMatrix1, cameraMatrix2) returns the 3-D locations of the matching pairs in a world coordinate system. These locations are defined by camera projection matrices.
[worldPoints, reprojectionErrors] = triangulate (__) additionally returns reprojection errors for the world points using any of the input arguments from previous syntaxes.

Examples

Measure Distance from Stereo Camera to a Face

Load stereo parameters.
load('webcamsSceneReconstruction.mat');
Read in the stereo pair of images.

```
I1 = imread('sceneReconstructionLeft.jpg');
I2 = imread('sceneReconstructionRight.jpg');
```

Undistort the images.

```
I1 = undistortImage(I1,stereoParams.CameraParameters1);
```

I2 = undistortImage(I2,stereoParams.CameraParameters2);

Detect a face in both images.

```
faceDetector = vision.CascadeObjectDetector;
facel = faceDetector(I1);
face2 = faceDetector(I2);
```

Find the center of the face.

```
center1 = facel(1:2) + facel(3:4)/2;
center2 = face2(1:2) + face2(3:4)/2;
```

Compute the distance from camera 1 to the face.

```
point3d = triangulate(center1, center2, stereoParams);
distanceInMeters = norm(point3d)/1000;
```

Display the detected face and distance.

```
distanceAsString = sprintf('%0.2f meters', distanceInMeters);
I1 = insert0bjectAnnotation(I1,'rectangle',face1,distanceAsString,'FontSize',18);
I2 = insert0bjectAnnotation(I2,'rectangle',face2, distanceAsString,'FontSize',18);
I1 = insertShape(I1,'FilledRectangle',facel);
I2 = insertShape(I2,'FilledRectangle',face2);
imshowpair(I1, I2, 'montage');
```


Input Arguments

matchedPoints1 - Coordinates of points in image 1
 M-by-2 matrix | SURFPoints object | MSERRegions object | cornerPoints object | BRISKPoints object

Coordinates of points in image 1, specified as an M-by-2 matrix of M number of [x y] coordinates, or as a KAZEPoints, SURFPoints, MSERRegions, cornerPoints, or BRISKPoints object. The matchedPoints1 and matchedPoints2 inputs must contain points that are matched using a function such as matchFeatures.

matchedPoints2 - Coordinates of points

M-by-2 matrix | SURFPoints object | MSERRegions object | cornerPoints object | BRISKPoints object

Coordinates of points in image 2, specified as an M-by-2 matrix of M number of [x y] coordinates, or as a KAZEPoints, SURFPoints, MSERRegions, cornerPoints, or BRISKPoints object. The matchedPoints1 and matchedPoints2 inputs must contain points that are matched using a function such as matchFeatures.

stereoParams - Camera parameters for stereo system
 stereoParameters object

Camera parameters for stereo system, specified as a stereoParameters object. The object contains the intrinsic, extrinsic, and lens distortion parameters of the stereo
camera system. You can use the estimateCameraParameters function to estimate camera parameters and return a stereoParameters object.

When you pass a stereoParameters object to the function, the origin of the world coordinate system is located at the optical center of camera 1. The x-axis points to the right, the y-axis points down, and the z-axis points away from the camera.

cameraMatrix1 - Projection matrix

4-by-3 matrix
Projection matrix for camera 1, specified as a 4-by-3 matrix. The matrix maps a 3-D point in homogeneous coordinates onto the corresponding point in the camera's image. This input describes the location and orientation of camera 1 in the world coordinate system. cameraMatrix1 must be a real and nonsparse numeric matrix. You can obtain the camera matrix using the cameraMatrix function.

Camera matrices passed to the function, define the world coordinate system.

cameraMatrix2 - Projection matrix

4-by-3 projection matrix

Projection matrix for camera 1, specified as a 4-by-3 matrix. The matrix maps a 3-D point in homogeneous coordinates onto the corresponding point in the camera's image. This input describes the location and orientation of camera 1 in the world coordinate system. cameraMatrixl must be a real and nonsparse numeric matrix. You can obtain the camera matrix using the cameraMatrix function.

Camera matrices passed to the function, define the world coordinate system.

Output Arguments

worldPoints - 3-D locations of matching pairs of undistorted image points M-by-3 matrix

3-D locations of matching pairs of undistorted image points, specified as an M-by-3 matrix. The matrix contains M number of $[x, y, z]$ locations of matching pairs of undistorted image points from two stereo images.
When you specify the camera geometry using stereoParams, the world point coordinates are relative to the optical center of camera 1.

When you specify the camera geometry using cameraMatrix1 and cameraMatrix2, the world point coordinates are defined by the camera matrices.

The function returns worldPoints as double, if matchedPoints1 and matchedPoints2 are double. Otherwise the function returns worldPoints as single.

Data Types: single | double

reprojectionErrors - Reprojection errors

M-by-1 vector
Reprojection errors, returned as an M-by-1 vector. The function projects each world point back into both images. Then in each image, the function calculates the reprojection error
as the distance between the detected and the reprojected point. The reprojectionErrors vector contains the average reprojection error for each world point.

Tips

The triangulate function does not account for lens distortion. You can undistort the images using the undistortImage function before detecting the points. Alternatively, you can undistort the points themselves using the undistortPoints function.

References

[1] Hartley, R. and A. Zisserman. "Multiple View Geometry in Computer Vision." Cambridge University Press, p. 312, 2003.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Use in a MATLAB Function block is not supported.

See Also
Camera Calibrator | Stereo Camera Calibrator | cameraMatrix | cameraParameters|estimateCameraParameters|reconstructScene| relativeCameraPose|stereoParameters |undistortImage | undistortPoints
\section*{Topics}
"Structure From Motion From Two Views"
"Code Generation for Depth Estimation From Stereo Video"
"Coordinate Systems"
Introduced in R2014b

triangulateMultiview

3-D locations of undistorted points matched across multiple images

Syntax
 xyzPoints = triangulateMultiview(pointTracks,cameraPoses,intrinsics) [xyzPoints,reprojectionErrors] = triangulateMultiview(
 \qquad)

Description

xyzPoints = triangulateMultiview(pointTracks,cameraPoses,intrinsics) returns locations of 3-D world points that correspond to points matched across multiple images taken with a calibrated camera.
[xyzPoints,reprojectionErrors] = triangulateMultiview(___) additionally returns an N-element vector, reprojectionErrors, that contains the mean reprojection error fo each 3-D world point.

Examples

Scene Reconstruction From Multiple Views

Load images.

```
imageDir = fullfile(toolboxdir('vision'),'visiondata',...
    'structureFromMotion');
images = imageSet(imageDir);
```

Load precomputed camera parameters.
data = load(fullfile(imageDir,'cameraParams.mat'));
Get camera intrinsic parameters.
intrinsics = data.cameraParams.Intrinsics;

Compute features for the first image.

```
I = rgb2gray(read(images,1));
I = undistortImage(I,intrinsics);
pointsPrev = detectSURFFeatures(I);
[featuresPrev,pointsPrev] = extractFeatures(I,pointsPrev);
```

Load camera locations and orientations.
load(fullfile(imageDir,'cameraPoses.mat'));
Create a viewSet object.

```
vSet = viewSet;
vSet = addView(vSet, 1,'Points',pointsPrev,'Orientation',...
    orientations(:,:,1),'Location',locations(1,:));
```

Compute features and matches for the rest of the images.

```
for i = 2:images.Count
    I = rgb2gray(read(images, i));
    I = undistortImage(I,intrinsics);
    points = detectSURFFeatures(I);
    [features,points] = extractFeatures(I,points);
    vSet = addView(vSet,i,'Points',points,'Orientation',...
            orientations(:,:,i),'Location',locations(i,:));
    pairsIdx = matchFeatures(featuresPrev, features,'MatchThreshold',5);
    vSet = addConnection(vSet,i-1,i,'Matches',pairsIdx);
    featuresPrev = features;
end
```

Find point tracks.

```
tracks = findTracks(vSet);
```

Get camera poses.

```
cameraPoses = poses(vSet);
```

Find 3-D world points.

```
[xyzPoints,errors] = triangulateMultiview(tracks,cameraPoses,intrinsics);
```

z = xyzPoints(:,3);
idx $=$ errors $<5 \& z>0 \& z<20$;
pcshow(xyzPoints(idx, :),'VerticalAxis','y','VerticalAxisDir','down','MarkerSize',30);
hold on

```
plotCamera(cameraPoses, 'Size', 0.2);
hold off
```


Input Arguments

pointTracks - Matching points across multiple images
N-element array of pointTrack objects
Matching points across multiple images, specified as an N-element array of pointTrack objects. Each element contains two or more points that match across multiple images.

cameraPoses - Camera pose information

three-column table
Camera pose information, specified as a three-column table. The table contains columns for ViewId, Orientation, and Location. The view IDs correspond to the IDs in the pointTracks object. Specify the orientations as 3-by-3 rotation matrices and the locations as three-element vectors. You can obtain cameraPoses from a viewSet object by using its poses method.

intrinsics - Camera intrinsics
 scalar | M-element array of cameraIntrinsics objects

Camera intrinsics, specified as a scalar or an M-element array of cameraIntrinsics objects. M is the number of camera poses. Use a scalar value when images are captured using the same camera. Use a vector when images are captured by different cameras.

Output Arguments

xyzPoints - 3-D world points
N-by-3 array
3-D world points, specified as an N-by-3 array of $[x, y, z]$ coordinates.
Data Types: single | double

reprojectionErrors - Reprojection errors

N-by-1 vector
Reprojection errors, returned as an N-by-1 vector. The function projects each world point back into both images. Then in each image, the function calculates the reprojection error as the distance between the detected and the reprojected point. The reprojectionErrors vector contains the average reprojection error for each world point.

Tips

Because triangulateMultiview does not account for lens distortion, you can undistort the images before detecting the points by using undistortImage. Alternatively, you can undistort the points directly using undistortPoints.

References

[1] Hartley, R. and A. Zisserman. "Multiple View Geometry in Computer Vision." Cambridge University Press, p. 312, 2003.

See Also

Camera Calibrator | bundleAdjustment | cameraParameters | estimateCameraParameters|pointTrack|relativeCameraPose| undistortImage|undistortPoints |viewSet

Topics

"Structure From Motion From Two Views"
"Code Generation for Depth Estimation From Stereo Video"
"Structure from Motion"
"Coordinate Systems"

Introduced in R2016a

undistortlmage

Correct image for lens distortion

Syntax

```
[J,newOrigin] = undistortImage(I,cameraParams)
[J,newOrigin] = undistortImage(I,cameraParams,interp)
[J,newOrigin] = undistortImage(
```

\qquad

``` ,Name, Value)
```


Description

[J, newOrigin] = undistortImage(I, cameraParams) returns an image, J, containing the input image, I, with lens distortion removed. The function also returns the $[x, y]$ location of the output image origin. The location is set in terms of the input intrinsic coordinates specified in cameraParams.
[J, newOrigin] = undistortImage(I, cameraParams,interp) specifies the interpolation method for the function to use on the input image.
[J,newOrigin] = undistortImage(\qquad , Name, Value) specifies one or more Name, Value pair arguments, using any of the preceding syntaxes. Unspecified properties have their default values.

Examples

Correct Image for Lens Distortion

Create a set of calibration images.

```
images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
    'calibration','mono'));
```

Detect calibration pattern.

```
[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);
```

Generate world coordinates of the corners of the squares. The square size is in millimeters.

```
squareSize = 29;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);
Calibrate the camera.
```

```
I = readimage(images,1);
imageSize = [size(I,1),size(I,2)];
cameraParams = estimateCameraParameters(imagePoints,worldPoints, ...
                                    'ImageSize',imageSize);
```

Remove lens distortion and display results.
I = images.readimage(1);
J1 = undistortImage(I,cameraParams);
figure; imshowpair(I,J1,'montage');
title('Original Image (left) vs. Corrected Image (right)');

J2 = undistortImage(I, cameraParams,'OutputView','full');
figure;
imshow(J2);
title('Full Output View');

Full Output View

Input Arguments

I - Input image
 M-by- N-by-3 truecolor image | M-by- N 2-D grayscale image

Input image, specified in either M-by- N-by-3 truecolor or M-by- N 2-D grayscale. The input image must be real and nonsparse.
Data Types: single | double | int16|uint8|uint16|logical

cameraParams - Object for storing camera parameters

cameraParameters object|cameraIntrinsics object

Camera parameters, specified as a cameraParameters or cameraIntrinsics object. You can return the cameraParameters object using the estimateCameraParameters function. The cameraParameters object contains the intrinsic, extrinsic, and lens distortion parameters of a camera.

interp - Interpolation method

'linear' (default)|'nearest'|'cubic'
Interpolation method to use on the input image, specified as 'linear', 'nearest' , or 'cubic'.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'FillValues', 0 sets the sets the output pixel fill values to 0.

FillValues - Output pixel fill values

0 (default) | scalar | 3-element vector
Output pixel fill values, specified as the comma-separated pair consisting of 'FillValues' and an array containing one or more fill values. When the corresponding inverse transformed location in the input image lies completely outside the input image boundaries, you use the fill values for output pixels. When you use a 2-D grayscale input image, you must set the FillValues to scalar. When you use a truecolor, FillValues can be a scalar or a 3-element vector of RGB values.

OutputView - Size of output image

'same' (default)|'full'|'valid'
Size of output image, specified as the comma-separated pair consisting of 'OutputView' and 'same', 'full', or 'valid'. When you set the property to 'same', the function sets the output image to match the size of the input image. When you set the property to ' full', the output includes all pixels from the input image. When you set the property to 'valid', the function crops the output image to contain only valid pixels.

For the input image:

OutputView	Output Image
'full'	All pixels from the input image.
'valid'	Only valid pixels from the input image.

Output Arguments

J - Undistorted image

M-by- N-by-3 truecolor image | M-by- N 2-D grayscale image
Undistorted image, returned in either M-by- N-by-3 truecolor or M-by- N 2-D grayscale.
Data Types: single | double | int16|uint8|uint16|logical

newOrigin - Output image origin

2-element vector
Output image origin, returned as a 2 -element $[x, y]$ vector. The function sets the output origin location in terms of the input intrinsic coordinates. When you set OutputView to ' same', which means the output image is the same size as the input image, the function sets the newOrigin to [0,0].

The newOrigin output represents the translation from the intrinsic coordinates of the output image J into the intrinsic coordinates of the input image I.
Let P_{I} represent a point in the intrinsic coordinates of input image I.
Let P_{J} represent the same point in the intrinsic coordinates of the output image J .
$\mathrm{P}_{\mathrm{I}} \quad=\quad \mathrm{P}_{\mathrm{J}} \quad+\quad$ new0rigin

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.
Usage notes and limitations:

- Use in a MATLAB Function block is not supported.
- 'interp' and 'OutputView' must be compile-time constants.

See Also
 Camera Calibrator | Stereo Camera Calibrator | cameraIntrinsics | cameraParameters|estimateCameraParameters|extrinsics|
 stereoParameters|triangulate|undistortPoints

Topics

"Code Generation for Depth Estimation From Stereo Video"

Introduced in R2014a

undistortPoints

Correct point coordinates for lens distortion

Syntax

undistortedPoints = undistortPoints(points,cameraParams) [undistortedPoints,reprojectionErrors] = undistortPoints(points, cameraParams)

Description

undistortedPoints $=$ undistortPoints(points, cameraParams) returns point coordinates corrected for lens distortion. This function uses numeric nonlinear leastsquares optimization.
[undistortedPoints,reprojectionErrors] = undistortPoints(points, cameraParams) additionally returns the errors used to evaluate the accuracy of undistorted points.

Examples

Undistort Checkerboard Points

Create an imageDatastore object containing calibration images.

```
images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
    'calibration','mono'));
imageFileNames = images.Files;
```

Detect the calibration pattern.
[imagePoints,boardSize] = detectCheckerboardPoints(imageFileNames);
Generate world coordinates of the corners of the squares. The square size is in millimeters.

```
squareSize = 29;
worldPoints = generateCheckerboardPoints(boardSize,squareSize);
```

Calibrate the camera.

```
I = readimage(images,10);
imageSize = [size(I, 1), size(I, 2)];
params = estimateCameraParameters(imagePoints,worldPoints, ...
    ImageSize',imageSize);
```

Load an image and detect the checkerboard points.
points $=$ detectCheckerboardPoints(I);
Undistort the points

```
undistortedPoints = undistortPoints(points,params);
```

Undistort the image.

```
[J, newOrigin] = undistortImage(I,params,'OutputView','full');
```

Translate undistorted points

```
undistortedPoints = [undistortedPoints(:,1) - newOrigin(1), ...
    undistortedPoints(:,2) - newOrigin(2)];
```

Display the results

```
figure;
imshow(I);
hold on;
plot(points(:,1),points(:,2),'r*-');
title('Detected Points');
hold off;
```


figure;
imshow(J);
hold on;
plot(undistortedPoints(:,1),undistortedPoints(:,2),'g*-'); title('Undistorted Points'); hold off;

Undistorted Points

Input Arguments

points - Input points

M-by-2 matrix
Input points, specified an M-by-2 matrix of M number of [xy] coordinates.
cameraParams - Object for storing camera parameters
cameraParameters object| cameraIntrinsics object
Camera parameters, specified as a cameraParameters or cameraIntrinsics object.
You can return the cameraParameters object using the estimateCameraParameters
function. The cameraParameters object contains the intrinsic, extrinsic, and lens distortion parameters of a camera.

Output Arguments

undistortedPoints - Undistorted points
M-by-2 matrix
Undistorted points, returned as an M-by-2 matrix. The undistortedPoints output contains $M[x, y]$ point coordinates corrected for lens distortion. When you input points as double, the function outputs undistortedPoints as double. Otherwise, it outputs undistortedPoints as single.

Data Types: single | double

reprojectionErrors - Reprojection errors

M-by-1 vector
Reprojection errors, returned as an M-by-1 vector. You can use the errors to evaluate the accuracy of undistorted points. The function computes the errors by applying distortion to the undistorted points, and then taking the distances between the result and the corresponding input points. The reprojectionErrors output is in pixels.

See Also

Camera Calibrator | Stereo Camera Calibrator | cameraIntrinsics |
cameraParameters|estimateCameraParameters|extrinsics|
stereoParameters|triangulate

Introduced in R2014b

visionlib

Open top-level Computer Vision Toolbox Simulink library

Syntax

visionlib

Description

visionlib opens the top-level Computer Vision Toolbox block library model.

Examples

View and gain access to the Computer Vision Toolbox blocks:

```
visionlib
```


Alternatives

To view and gain access to the Computer Vision Toolbox blocks using the Simulink library browser:

- Type simulink at the MATLAB command line, and then expand the Computer Vision Toolbox node in the library browser.

Click the Simulink icon
from the MATLAB desktop or from a model.

Introduced in R2011a

visionSupportPackages

Start installer to download, install, or uninstall Computer Vision Toolbox data

Syntax

visionSupportPackages

Description

visionSupportPackages launches the Support Package Installer, which you can use to download, install, or uninstall support packages for Computer Vision Toolbox.

Computer Vision Toolbox Support Packages
"Install OCR Language Data Files"
"Install and Use Computer Vision Toolbox OpenCV Interface"

Examples

Start Computer Vision Toolbox installer

visionSupportPackages

See Also

Topics
"Install Computer Vision Toolbox Add-on Support Files"
Introduced in R2014b

ocvStructToKeyPoints

Convert MATLAB feature points struct to OpenCV KeyPoint vector

C++ Syntax

```
#include "opencvmex.hpp"
void ocvStructToKeyPoints(const mxArray *
in,cv::vector<cv::KeyPoint> &keypoints);
```


Arguments

in
Pointer to a MATLAB structure, mxArray, that represents a point feature. Format:

Field Name	Field Requirement	Field Data Type
Location	Required	Single
Scale	Required	Single
Metric	Required	Single
Orientation	Optional	Single
Octave	Optional	int32
Misc	Optional	int32

Description

The ocvStructToKeyPoints function converts a point feature data structure from a MATLAB struct to an OpenCV's KeyPoint vector.

See Also

mxArray, ocvKeyPointsToStruct, "C Matrix API" (MATLAB), "C MEX File Applications" (MATLAB)

Introduced in R2015a

ocvMxGpuArrayToGpuMat_\{DataType\}

Create cv::gpu::GpuMat from mxArray containing GPU data

C++ Syntax

\#include "opencvgpumex.hpp"
cv::Ptrcv::gpu::GpuMat ocvMxGpuArrayToGpuMat_double(const mxArray * in);
cv::Ptrcv::gpu::GpuMat ocvMxGpuArrayToGpuMat_single(const mxArray * in);
cv::Ptrcv::gpu::GpuMat ocvMxGpuArrayToGpuMat_uint8(const mxArray * in);
cv::Ptrcv::gpu::GpuMat ocvMxGpuArrayToGpuMat_uint16(const mxArray * in);
cv::Ptrcv::gpu::GpuMat ocvMxGpuArrayToGpuMat_uint32(const mxArray * in);
cv::Ptrcv::gpu::GpuMat ocvMxGpuArrayToGpuMat_int8(const mxArray * in);
cv::Ptrcv::gpu::GpuMat ocvMxGpuArrayToGpuMat_int16(const mxArray * in);
cv::Ptrcv::gpu::GpuMat ocvMxGpuArrayToGpuMat_int32(const mxArray * in);
cv::Ptrcv::gpu::GpuMat ocvMxGpuArrayToGpuMat_bool(const mxArray * in);

Arguments

in
Pointer to a MATLAB struct, mxArray, containing GPU data. Supported data types:

real_T (double)	real32_T (single)	uint8_T (uint8)
uint16_T (uint16)	uint32_T (uint32)	int8_T (int8)
int16_T (int16)	int32_T (int32)	boolean_T (bool)

Returns

OpenCV smart pointer (cv: :Ptr) to a cv::gpu: :GpuMat object.

Description

The ocvMxGpuArrayToGpuMat_\{DataType\} function creates a cv: :gpu::GpuMat object from an mxArray containing GPU data. This function requires the Parallel Computing Toolbox software.

See Also

mxArray, ocvMxGpuArrayFromGpuMat_\{DataType\}, "C Matrix API" (MATLAB), "C MEX File Applications" (MATLAB)

Introduced in R2015a

ocvMxGpuArrayFromGpuMat_\{DataType\}

Create an mxArray from cv: :gpu: :GpuMat object

C++ Syntax

```
#include "opencvgpumex.hpp"
```

mxArray * ocvMxGpuArrayFromGpuMat_double(const cv::gpu::GpuMat \& in);
mxArray * ocvMxGpuArrayFromGpuMat_single(const cv::gpu::GpuMat \& in);
mxArray * ocvMxGpuArrayFromGpuMat uint8(const cv::gpu::GpuMat \& in);
mxArray * ocvMxGpuArrayFromGpuMat_uint16(const cv::gpu::GpuMat \& in);
mxArray * ocvMxGpuArrayFromGpuMat_uint32(const cv::gpu::GpuMat \& in);
mxArray * ocvMxGpuArrayFromGpuMat_int8(const cv::gpu::GpuMat \& in);
mxArray * ocvMxGpuArrayFromGpuMat_int16(const cv::gpu::GpuMat \& in);
mxArray * ocvMxGpuArrayFromGpuMat_int32(const cv::gpu::GpuMat \& in);
mxArray * ocvMxGpuArrayFromGpuMat_bool(const cv::gpu::GpuMat \& in)

Arguments

in
Reference to OpenCV cv: :gpu::GpuMat object.

Returns

Pointer to a MATLAB struct, mxArray, containing GPU data. Supported data types:

real_T (double)	real32_T (single)	uint8_T (uint8)
uint16_T (uint16)	uint32_T (uint32)	int8_T (int8)
int16_T (int16)	int32_T (int32)	boolean_T (bool)

Description

The ocvMxGpuArrayFromGpuMat function creates an mxArray from a cv: :gpu::GpuMat object. GpuMat supports 2-D arrays only. This function requires the Parallel Computing Toolbox software.

See Also

mxArray, ocvMxGpuArrayToGpuMat_\{DataType\}, "C Matrix API" (MATLAB), "C MEX File Applications" (MATLAB)

Introduced in R2015a

ocvMxArrayToSize_\{DataType\}

Convert 2-element mxArray to cv: :Size.

C++ Syntax

```
#include "opencvmex.hpp"
cv::Size ocvMxArrayToSize_single(const mxArray * in, bool rcInput =
true);
cv::Size ocvMxArrayToSize_int32(const mxArray * in, bool rcInput =
true);
```


Arguments

in
Pointer to a MATLAB mxArray having 2 elements. Supported data types:

```
single
```

int32
rcInput
Boolean flag that indicates if input mxArray is of the format $[r c]$ or $[x y]$.

rcInput	in
true (default)	$[r c]$ (height, width)
false	$[x y]$ (width, height)

Returns

OpenCV cv::Size

Description

The ocvMxArrayToSize_\{DataType\} function converts a 2-element mxArray to cv: :Size. Empty input ([]) returns Cv: : Size (0,0);

See Also

mxArray, "C Matrix API" (MATLAB), "C MEX File Applications" (MATLAB)
Introduced in R2015a

ocvMxArrayToMat_\{DataType\}

Convert column major mxArray to row major cv: :Mat for generic matrix

C++ Syntax

```
#include "opencvmex.hpp"
void ocvMxArrayToMat_double(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_single(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_uint8(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_uint16(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_uint32(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_int8(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_int16(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat_int32(const mxArray *in, cv::Mat &out);
void ocvMxArrayToMat bool(const mxArray *in, cv::Mat &out);
cv::Ptr<cv::Mat> ocv\overline{M}XArrayToMat double(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_single(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_uint8(const mxArray *in, const bool
copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_uint16(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToMat uint32(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_int8(const mxArray *in, const bool
copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_int16(const mxArray *in, const bool
copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_int32(const mxArray *in, const bool
copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToMat_uint8(const mxArray *in, const bool
copyData = true);
```


Arguments

in
Pointer to a MATLAB struct, mxArray, having column major data. The data can be n channel matrices. Supported data types:

real_T (double)	uint8_T (uint8)	uint32_T (uint32)	int16_T (int16)
real32_T (single)	uint16_T (uint16)	int8_T (int8)	int32_T (int32)

copyData

Boolean flag to copy data from mxArray to the Mat object.

- true (default) - The function transposes and interleaves (for RGB images) column major mxArray data into a row major cv: :Mat object.
- false - No data copies from the mxArray to the Mat object. The function creates a new Mat wrapper and uses it to point to the mxArray data. Because OpenCV is row-based and MATLAB is column-based, the columns of the mxArray become the rows of the Mat object. If the image is 2-D, then copyData is false.
out
Reference to OpenCV cv: :Mat with row major data.

Returns

The functions that set copyData return an OpenCV smart pointer (cv: :Ptr) to a cv: :Mat object.

Description

The ocvMxArrayToMat_\{DataType\} function applies to two C++ implementations. One set returns void and the other set returns an OpenCV smart pointer. The functions that return void reallocate memory for the cv: : Mat if needed.

The ocvMxArrayToMat_\{DataType\} transposes and interleaves column major mxArray data into row major cv: :Mat. This matrix conversion is a generic routine for any number of channels.

See Also

mxArray, ocvMxArrayToImage_\{DataType\}, ocvMxArrayFromMat_\{DataType\}, "C Matrix API" (MATLAB), "C MEX File Applications" (MATLAB)

Introduced in R2015a

ocvMxArrayTolmage_\{DataType\}

Convert column major mxArray to row major cv: :Mat for image

C++ Syntax

```
#include "opencvmex.hpp"
void ocvMxArrayToImage_double(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_single(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_uint8(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_uint16(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_uint32(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_int8(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_int16(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_int32(const mxArray *in, cv::Mat &out);
void ocvMxArrayToImage_bool(const mxArray *in, cv::Mat &out);
cv::Ptr<cv::Mat> ocvMxĀrrayToImage_double(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_single(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_uint8(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_uint16(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_uint32(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_int8(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_int16(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_int32(const mxArray *in, const
bool copyData = true);
cv::Ptr<cv::Mat> ocvMxArrayToImage_bool(const mxArray *in, const
bool copyData = true);
```


Arguments

in
Pointer to a MATLAB struct, mxArray, having column major data that represents a 2D or 3-D image. Supported data types:

real_T (double)	uint8_T (uint8)	uint32_T (uint32)	int16_T (int16)
real32_T (single)	uint16_T (uint16)	int8_T (int8)	int32_T (int32)

copyData

Boolean flag to copy data from mxArray to the Mat object.

- true (default) - The function transposes and interleaves (for RGB images) column major mxArray data into a row major cv: : Mat object.
- false - No data copies from the mxArray to the Mat object. The function creates a new Mat wrapper and uses it to point to the mxArray data. Because OpenCV is row-based and MATLAB is column-based, the columns of the mxArray become the rows of the Mat object. If the image is 2-D, then copyData is false.
out
Reference to OpenCV cv: :Mat with row major data.

Returns

The functions that set copyData return an OpenCV smart pointer (cv: :Ptr) to a cv: :Mat object.

Description

The ocvMxArrayToImage_\{DataType\} function applies to two C++ implementations. One set returns void and the other set returns an OpenCV smart pointer. The functions that return void reallocate memory for the cv: : Mat if needed.

The ocvMxArrayToImage_\{DataType\} transposes and interleaves column major mxArray data into row major cv: :Mat. The ocvMxArrayToImage_\{DataType\} function supports 2-D and 3-D images.

These functions are not a generic matrix conversion routine. For 3-D images, they take into account that the OpenCV format uses BGR ordering and manipulate the data to comply with that formatting.

See Also

mxArray, ocvMxArrayToMat_\{DataType\}, ocvMxArrayFromImage_\{DataType\}, "C Matrix API" (MATLAB), "C MEX File Applications" (MATLAB)

Introduced in R2015a

ocvMxArrayToCvRect

Convert a MATLAB struct representing a rectangle to an OpenCV CvRect

C++ Syntax

```
#include "opencvmex.hpp"
CvRect ocvMxArrayToCvRect(const mxArray *in);
```


Arguments

in
Pointer to a MATLAB structure, mxArray, that represents a rectangle. The structure must have four scalar-valued fields: x, y, width, and height. The (x, y) fields represent the upper-left corner of the rectangle.

Returns

OpenCV CvRect.

Description

The ocvMxArrayToCvRect function converts a rectangle data structure from a MATLAB struct to an OpenCV KeyPoint vector.

See Also

mxArray, ocvCvRectToMxArray, "C Matrix API" (MATLAB), "C MEX File Applications" (MATLAB)

Introduced in R2015a

ocvMxArrayFromVector_\{DataType\}

Convert numeric vectorT to mxArray

C++ Syntax

```
#include "opencvmex.hpp"
mxArray *ocvMxArrayFromVector_double(const std::vector<real_T> &v);
mxArray *ocvMxArrayFromVector_single(const std::vector<real32_T>
&v);
mxArray *ocvMxArrayFromVector_uint8(const std::vector<uint8_T> &v);
mxArray *ocvMxArrayFromVector_uint16(const std::vector<uint16_T>
&v);
mxArray *ocvMxArrayFromVector_uint32(const std::vector<uint32_T>
&v);
mxArray *ocvMxArrayFromVector_int8(const std::vector<int8_T> &v);
mxArray *ocvMxArrayFromVector_int16(const std::vector<int16_T> &v);
mxArray *ocvMxArrayFromVector_int32(const std::vector<int32_T> &v);
mxArray *ocvMxArrayFromVector_bool(const std::vector<boolean_T> &v);
```


Arguments

v
Reference to vector<DataType>. Supported data types:

real_T	real32_T	uint8_T
uint16_T	uint32_T	int8_T
int16_T	int32_T	boolean_T

Returns

Pointer to a MATLAB struct mxArray.

Description

The ocvMxArrayFromVector_\{DataType\} function converts numeric std: :vector<DataType> to an mxArray.

See Also

mxArray, "C Matrix API" (MATLAB), "C MEX File Applications" (MATLAB)

Introduced in R2015a

ocvMxArrayFromPoints2f

Converts vector<cv: : Point2f> to mxArray

C++ Syntax

```
#include "opencvmex.hpp"
mxArray *ocvMxArrayFromPoints2f(const std::vector<cv::Point2f>
&points);
```


Arguments

points
Reference to OpenCV vector<cv: : Point2f>.

Returns

Pointer to a MATLAB mxArray.

Description

The ocvMxArrayFromPoints2f function converts std::vector<cv: :Point2f> to an mxArray.

See Also

"C Matrix API" (MATLAB), "C MEX File Applications" (MATLAB)

Introduced in R2015a

ocvMxArrayFromMat_\{DataType\}

Convert row major cv: : Mat to column major mxArray for generic matrix

C++ Syntax

```
#include "opencvmex.hpp"
mxArray *ocvMxArrayFromMat_double(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_single(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_uint8(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_uint16(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_uint32(const cv::Mat &in);
mxArray *ocvMxArrayFromMat int8(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_int16(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_int32(const cv::Mat &in);
mxArray *ocvMxArrayFromMat_bool(const cv::Mat &in);
```


Arguments

in
Reference to OpenCV cv: :Mat with row major data.

Returns

Pointer to a MATLAB struct, mxArray, having column major data. Supported data types:

real_T (double)	uint8_T (uint8)	uint32_T (uint32)	int16_T (int16)
real32_T (single)	uint16_T (uint16)	int8_T (int8)	int32_T (int32)

Description

The ocvMxArrayFromMat_\{DataType\} function creates an mxArray from a cv: :Mat object. The mxArray contains column major data and cv: : Mat contains row major data. This matrix conversion is a generic routine for any number of channels.

See Also

mxArray, ocvMxArrayToImage_\{DataType\}, ocvMxArrayFromImage_\{DataType\}, ocvMxArrayToMat_\{DataType\}, "C Matrix API" (MATLAB), "C MEX File Applications" (MATLAB)

Introduced in R2015a

ocvMxArrayFromImage_\{DataType\}

Convert row major cv: : Mat to column major mxArray for image

C++ Syntax

```
#include "opencvmex.hpp"
mxArray *ocvMxArrayFromImage_double(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_single(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_uint8(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_uint16(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_uint32(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_int8(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_int16(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_int32(const cv::Mat &in);
mxArray *ocvMxArrayFromImage_bool(const cv::Mat &in);
```


Arguments

in
Reference to OpenCV cv: :Mat with row major data.

Returns

Pointer to a MATLAB struct, mxArray, with column major data. Supported data types:

real_T (double)	uint8_T (uint8)	uint32_T (uint32)	int16_T (int16)
real32_T (single)	uint16_T (uint16)	int8_T (int8)	int32_T (int32)

Description

The ocvMxArrayFromImage_\{DataType\} function creates an mxArray from a cv: : Mat object. The mxArray contains column major data and the cv: : Mat contains row major data.

This function is not a generic matrix conversion routine. For 3-D images, it takes into account that the OpenCV format uses BGR ordering and manipulates the data to comply with that formatting.

See Also

mxArray, ocvMxArrayToImage_\{DataType\}, ocvMxArrayFromMat_\{DataType\}, "C Matrix API" (MATLAB), "C MEX File Applications" (MATLAB)

Introduced in R2015a

ocvKeyPointsToStruct

Convert OpenCV KeyPoint vector to MATLAB struct

C++ Syntax

```
#include "opencvmex.hpp"
mxArray *ocvKeyPointsToStruct(cv::vector<cv::KeyPoint> &in);
```


Arguments

in
Reference to an OpenCV's KeyPoint vector.

Returns

Pointer to a MATLAB structure mxArray that represents a point feature.
Format:

Field Name	Field Requirement	Field Data Type
Location	Required	Single
Scale	Required	Single
Metric	Required	Single
Orientation	Optional	Single
Octave	Optional	int32
Misc	Optional	int32

Description

The ocvKeyPointsToStruct function converts a point feature data structure from an OpenCV KeyPoint vector to a MATLAB struct.

See Also

mxArray, ocvStructToKeyPoints, "C Matrix API" (MATLAB), "C MEX File Applications" (MATLAB)

Introduced in R2015a

ocvCvRectToMxArray

Convert OpenCV CvRect to a MATLAB struct

C++ Syntax

```
#include "opencvmex.hpp"
mxArray *ocvCvRectToMxArray(const CvRect *in);
```


Arguments

in

Pointer to OpenCV CvRect.

Returns

Pointer to a MATLAB structure, mxArray, that represents a rectangle. The structure must have four scalar-valued fields, x, y, width, and height. The (x, y) fields represent the upper-left corner of the rectangle.

Description

The ocvCvRectToMxArray function converts a rectangle data structure from an OpenCV KeyPoint vector to a MATLAB struct.

See Also

mxArray, ocvMxArrayToCvRect, "C Matrix API" (MATLAB), "C MEX File Applications" (MATLAB)

Introduced in R2015a

ocvCvRectToBoundingBox_\{DataType\}

Convert vector<cv: :Rect> to M-by-4 mxArray of bounding boxes

C++ Syntax

```
#include "opencvmex.hpp"
mxArray * ocvCvRectToBoundingBox_double(const std::vector<cv::Rect>
& rects);
mxArray * ocvCvRectToBoundingBox_single(const std::vector<cv::Rect>
& rects);
mxArray * ocvCvRectToBoundingBox_uint8(const std::vector<cv::Rect> &
rects);
mxArray * ocvCvRectToBoundingBox_uint16(const std::vector<cv::Rect>
& rects);
mxArray * ocvCvRectToBoundingBox_uint32(const std::vector<cv::Rect>
& rects);
mxArray * ocvCvRectToBoundingBox_int8(const std::vector<cv::Rect> &
rects);
mxArray * ocvCvRectToBoundingBox_int16(const std::vector<cv::Rect> &
rects);
mxArray * ocvCvRectToBoundingBox_int32(const std::vector<cv::Rect> &
rects);
```


Arguments

rects

Reference to OpenCV vector<cv: :Rect>.

Returns

Pointer to a MATLAB mxArray having M-by-4 elements. Supported data types:

real_T (double)	uint8_T (uint8)	uint32_T (uint32)	int16_T (int16)

real32_T (single)	uint16_T (uint16)	int8_T (int8)	int32_T (int32)

Description

The ocvCvRectToBoundingBox_\{DataType\} function converts vector<cv: :Rect> to an M-by-4 mxArray of bounding boxes.

See Also

mxArray, ocvCvBox2DToMxArray, "C Matrix API" (MATLAB), "C MEX File Applications" (MATLAB)

Introduced in R2015a

ocvCvBox2DToMxArray

Convert OpenCV CvBox2D to a MATLAB struct

C++ Syntax

```
#include "opencvmex.hpp"
mxArray *ocvCvBox2DToMxArray(const CvBox2D *in);
```


Arguments

in
Pointer to OpenCV CvBox2D.

Returns

Pointer to a MATLAB structure, mxArray, that represents a rectangle. The structure must have five scalar-valued fields: x_center, y_center, width, height, and angle. The (x _center, y _center) fields represent the center of the rectangle.

Description

The ocvCvBox2DToMxArray function converts a rectangle data structure from an OpenCV CvBox2D to a MATLAB struct.

See Also

mxArray, ocvCvRectToBoundingBox_\{DataType\}, "C Matrix API" (MATLAB), "C MEX File Applications" (MATLAB)

Introduced in R2015a

ocvCheckFeaturePointsStruct

Check that MATLAB struct represents feature points

C++ Syntax

```
#include "opencvmex.hpp"
void ocvCheckFeaturePointsStruct(const mxArray *in);
```


Arguments

in
Pointer to a MATLAB structure, mxArray, that represents point feature. Format:

Field Name	Field Requirement	Field Data Type
Location	Required	Single
Scale	Required	Single
Metric	Required	Single
Orientation	Optional	Single
Octave	Optional	int32
Misc	Optional	int32

Description

The ocvCheckFeaturePointsStruct function performs the key point struct checker.

See Also

mxArrayocvStructToKeyPoints, ocvKeyPointsToStruct, "C Matrix API" (MATLAB), "C MEX File Applications" (MATLAB)

Introduced in R2015a

trainFasterRCNNObjectDetector

Train a Faster R-CNN deep learning object detector

Syntax

```
trainedDetector = trainFasterRCNNObjectDetector(trainingData,
network,options)
trainedDetector = trainFasterRCNNObjectDetector(trainingData,
checkpoint,options)
trainedDetector = trainFasterRCNNObjectDetector(trainingData,
detector,options)
trainedDetector = trainFasterRCNNObjectDetector(
```

\qquad

``` , Name, Value) [trainedDetector,info] = trainFasterRCNNObjectDetector(
``` \(\qquad\)
``` )
```


Description

trainedDetector = trainFasterRCNNObjectDetector(trainingData, network, options) trains a Faster R-CNN (regions with convolution neural networks) object detector using deep learning. You can train a Faster R-CNN detector to detect multiple object classes.

This function requires that you have Deep Learning Toolbox. It is recommended that you also have Parallel Computing Toolbox to use with a CUDA-enabled NVIDIA GPU with compute capability 3.0 or higher.
trainedDetector = trainFasterRCNNObjectDetector(trainingData, checkpoint, options) resumes training from a detector checkpoint.
trainedDetector = trainFasterRCNNObjectDetector(trainingData, detector, options) continues training a Faster R-CNN object detector. Use this syntax for fine-tuning a detector.
trainedDetector = trainFasterRCNNObjectDetector(\qquad ,Name,Value) uses additional options specified by one or more Name, Value pair arguments and any of the previous inputs.
[trainedDetector,info] = trainFasterRCNNObjectDetector(\qquad) also returns information on the training progress, such as training loss and accuracy, for each iteration.

Examples

Train Faster R-CNN Vehicle Detector

Load training data.

```
data = load('fasterRCNNVehicleTrainingData.mat');
```

trainingData = data.vehicleTrainingData;
trainingData.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
trainingData.imageFilename);

Randomly shuffle data for training.

```
rng(0);
```

shuffledIdx = randperm(height(trainingData));
trainingData $=$ trainingData(shuffledIdx,:);

Create an image datastore using the files from the table.
imds = imageDatastore(trainingData.imageFilename);
Create a box label datastore using the label columns from the table.
blds = boxLabelDatastore(trainingData(:,2:end));
Combine the datastores.
ds = combine(imds, blds);
Set up the network layers.
lgraph = layerGraph(data.detector.Network)
lgraph =
LayerGraph with properties:

```
    Layers: [21\times1 nnet.cnn.layer.Layer]
Connections: [22\times2 table]
```

Configure training options.

```
options = training0ptions('sgdm', ...
    'MiniBatchSize', 1, ...
    'InitialLearnRate', 1e-3, ...
    'MaxEpochs', 7, ...
    'VerboseFrequency', 200, ...
    'CheckpointPath', tempdir);
```

Train detector. Training will take a few minutes. Adjust the NegativeOverlapRange and PositiveOverlapRange to ensure training samples tightly overlap with ground truth.
detector = trainFasterRCNNObjectDetector(trainingData, lgraph, options, ... 'NegativeOverlapRange',[0 0.3], ... 'PositiveOverlapRange',[0.6 1]);

Training a Faster R-CNN Object Detector for the following object classes:

```
* vehicle
```

Training on single GPU.

Epoch	Iteration	Time Elapsed (hh:mm:ss)	$\begin{gathered} \text { Mini-batch } \\ \text { Loss } \end{gathered}$	Mini-batch Accuracy	Mini-batch RMSE
1	1	00:00:00	1.3189	100.00\%	0.61
1	200	00:00:57	0.5058	97.50\%	0.21
2	400	00:02:01	1.0283	94.03\%	0.12
3	600	00:03:03	0.9443	100.00\%	
3	800	00:04:01	1.3437	100.00\%	
4	1000	00:05:03	1.4966	100.00\%	
5	1200	00:06:06	0.4891	100.00\%	0.15
5	1400	00:07:04	0.8458	100.00\%	
6	1600	00:08:06	1.0399	100.00\%	
7	1800	00:09:09	0.5232	95.24\%	0.22
7	2000	00:10:07	0.6197	100.00\%	0.20
7	2065	00: 10:25	0.4209	100.00\%	0.24

Detector training complete.

Test the Faster R-CNN detector on a test image.

```
img = imread('highway.png');
```

Run the detector.
[bbox, score, label] = detect(detector,img);
Display detection results.
detectedImg = insertShape(img,'Rectangle',bbox); figure imshow(detectedImg)

Input Arguments

trainingData - Labeled ground truth

datastore | table

Labeled ground truth, specified as a datastore or a table.
Each bounding box must be in the format [x y width height].

- If you use a datastore, calling the datastore with the read and readall functions must return a cell array or table with three columns, \{images,boxes,labels\}.
- images - The first column must be a cell vector of images that can be grayscale, RGB, or a M-by- N-by- P multichannel image.).
- boxes - The second column must be a cell vector that contains M-by-4 matrices of bounding boxes in the format [x, y,width,height]. The vectors represent the location and size of bounding boxes for the objects in each image.
- labels - The third column must be a cell vector that contains M-by-1 categorical vectors containing object class names. All categorical data returned by the datastore must contain the same categories.

You can use the combine function to create the datastore to use for training.

- imageDatastore - Create a datastore containing images.
- boxLabelDatastore - Create a datastore containing bounding boxes and labels.
- combine(imds,blds) - Combine images, bounding boxes, and labels into one datastore.

For more information, see "Datastores for Deep Learning" (Deep Learning Toolbox).

- If you use a table, the table must have two or more columns. The first column of the table must contain image file names with paths. The images must be grayscale or truecolor (RGB) and they can be in any format supported by imread. Each of the remaining columns must be a cell vector that contains M-by- 4 matrices that represent a single object class, such as vehicle, flower, or stop sign. The columns contain 4element double arrays of M bounding boxes in the format [x, y, width,height]. The format specifies the upper-left corner location and size of the bounding box in the corresponding image. To create a ground truth table, you can use the Image Labeler app or Video Labeler app. To create a table of training data from the generated ground truth, use the objectDetectorTrainingData function.

network - Network

SeriesNetwork object | array of Layer objects | LayerGraph object | network name
Network, specified as a SeriesNetwork, an array of Layer objects, a layerGraph object, or by the network name. The network is trained to classify the object classes defined in the trainingData table. To use SeriesNetwork, Layer, and layerGraph objects, you must have Deep Learning Toolbox.

- When you specify the network as a SeriesNetwork, an array of Layer objects, or by the network name, the function transforms the network into a Faster R-CNN network by adding a region proposal network (RPN), an ROI max pooling layer, and new classification and regression layers to support object detection. Additionally, the GridSize property of the ROI max pooling layer is set to the output size of the last max pooling layer in the network.
- The array of Layer objects must contain a classification layer that supports the number of object classes, plus a background class. Use this input type to customize the learning rates of each layer. An example of an array of Layer objects follows:

```
layers = [imageInputLayer([28 28 3])
    convolution2dLayer([5 5],10)
    reluLayer()
    fullyConnectedLayer(10)
```

```
softmaxLayer()
classificationLayer()];
```

- When you specify the network as SeriesNetwork object, Layer array, or by the network name, the weights for additional convolution and fully connected layers are initialized to 'narrow-normal'. The function adds these weights to create the network.
- The network name must be one of the following valid network names. You must also install the corresponding add-on.

Network Name	Feature Extraction Layer Name	ROI Pooling Layer OutputSi ze	Description
alexnet	'relu5'	[6 6]	Last max pooling layer is replaced by ROI max pooling layer
vgg16	'relu5_3'	[7 7]	
vgg19	'relu5_4'		
squeezenet	'fire5-concat'	[14 14]	
resnet18	'res4b_relu'		ROI pooling layer is inserted after the feature extraction layer.
resnet50	```'activation_40_re```		
resnet101	'res4b22_relu'		
googlenet	'inception_4doutput'		
$\begin{aligned} & \text { mobilenetv } \\ & 2 \end{aligned}$	'block 13 expand relu'		
$\begin{aligned} & \text { inceptionv } \\ & 3 \end{aligned}$	'mixed7'	[17 17]	
inceptionr esnetv2	'block17_20_ac'		

- The LayerGraph object must be a valid Faster R-CNN object detection network. You can use the fasterRCNNLayers function to create a LayerGraph object to train a custom Faster R-CNN network.

Tip If your network is a DAGNetwork, use the layerGraph function to convert the network to a LayerGraph object. Then, create a custom Faster R-CNN network as described by the "Create Faster R-CNN Object Detection Network" example.

For more information on creating a Faster R-CNN network, see "Getting Started with RCNN, Fast R-CNN, and Faster R-CNN".

options - Training options

trainingOptions output
Training options, returned by the training0ptions function (requires Deep Learning Toolbox). To specify solver and other options for network training, use training0ptions.

Note trainFasterRCNNObjectDetector does not support these training options:

- 'training-progress' value for 'Plots' argument
- 'ValidationData', 'ValidationFrequency', and 'ValidationPatience' argument
- 'OutputFcn' argument.

Additionally, the function does not support the following training options if you use a combined datastore input:

- 'once' and 'every-epoch' values for 'Shuffle' argument
- 'parallel' and 'multi-gpu' values for 'ExecutionEnvironment' argument

checkpoint - Saved detector checkpoint

fasterRCNNObjectDetector object
Saved detector checkpoint, specified as a fasterRCNNObjectDetector object. To save the detector after every epoch, set the 'CheckpointPath' property when using the training0ptions function. Saving a checkpoint after every epoch is recommended because network training can take a few hours.

To load a checkpoint for a previously trained detector, load the MAT-file from the checkpoint path. For example, if the 'CheckpointPath' property of options is '/ tmp ' , load a checkpoint MAT-file using:

```
data = load('/tmp/faster_rcnn_checkpoint__105__2016_11_18__14_25_08.mat');
```

The name of the MAT-file includes the iteration number and a timestamp indicating when the detector checkpoint was saved. The detector is saved in the detector variable of the file. Pass this file back into the trainFasterRCNNObjectDetector function:

```
frcnn = trainFasterRCNNObjectDetector(stopSigns,...
    data.detector,options);
```


detector - Previously trained Faster R-CNN object detector
 fasterRCNNObjectDetector object

Previously trained Faster R-CNN object detector, specified as a fasterRCNNObjectDetector object. Use this syntax to continue training a detector with additional training data or to perform more training iterations to improve detector accuracy.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, ... , NameN, ValueN.

Example: 'PositiveOverlapRange',[0.75 1]

TrainingMethod - Training method

'end-to-end' (default)|'four-step'
Training method, specified as the comma-separated pair consisting of 'TrainingMethod' and either 'end-to-end' or 'four-step'.

- 'end-to-end ' - Simultaneously train the region proposal and region classification subnetworks.
- 'four-step ' - Separately train the region proposal and region classification subnetworks in four steps.

PositiveOverlapRange - Bounding box overlap ratios for positive training samples

[0.5 1] (default) | 2-by-2 matrix | 4-by-2 matrix

Bounding box overlap ratios for positive training samples, specified as the commaseparated pair consisting of 'PositiveOverlapRange' and one of the following:

- A 2-element vector that specifies an identical overlap ratio for all four training stages.
- A 2-by-2 matrix, used only for the end-to-end training method. The first row of the matrix defines the overlap ratios for the region proposal subnetwork. The second row defines the overlap ratios for the region classification subnetwork.
- A 4-by-2 matrix, used only for the four-step training method. Each row of the matrix specifies the overlap ratio for each of the four training stages.

Values are in the range [0,1]. Region proposals that overlap with ground truth bounding boxes within the specified range are used as positive training samples.

The overlap ratio used for both the PositiveOverlapRange and NegativeOverlapRange is defined as:

$$
\frac{\operatorname{area}(A \cap B)}{\operatorname{area}(A \cup B)}
$$

A and B are bounding boxes.

Negative0verlapRange - Bounding box overlap ratios for negative training samples

[0.1 0.5] (default) | 2 -element vector | 4-by-2 matrix

Bounding box overlap ratios for negative training samples, specified as the commaseparated pair consisting of 'Negative0verlapRange' and one of the following.

- A 2-element vector that specifies the overlap ratio.
- A 2-by-2 matrix, used only for the end-to-end training method. The first row of the matrix defines the overlap ratios for the region proposal subnetwork. The second row defines the overlap ratios for the region classification subnetwork.
- A 4-by-2 matrix, used only for the four-step training method. Each row of the matrix specifies the overlap ratio for each of the four training stages.

Values are in the range [0,1]. Region proposals that overlap with the ground truth bounding boxes within the specified range are used as negative training samples.

The overlap ratio used for both the PositiveOverlapRange and NegativeOverlapRange is defined as:

$$
\frac{\operatorname{area}(A \cap B)}{\operatorname{area}(A \cup B)}
$$

A and B are bounding boxes.

NumStrongestRegions - Maximum number of strongest region proposals 2000 (default) | positive integer | two-element vector

Maximum number of strongest region proposals to use for generating training samples, specified as the comma-separated pair consisting of 'NumStrongestRegions' and a positive integer. Reduce this value to speed up processing time at the cost of training accuracy. To use all region proposals, set this value to Inf.

NumRegionsToSample - Number of region proposals 128 (default) | integer | 1-by-2 vector | 1-by-4 vector

Number of region proposals to randomly sample from each training image, specified as an integer, 1-by-2 vector, or a 1-by-4 vector. Use the 1-by-2 vector for end-to-end training. Use the 1-by- 4 vector for the four-step training. Reduce the number of regions to sample to reduce memory usage and speed up training. Reducing the value can also decrease training accuracy.

When you set 'TrainingMethod' to 'end-to-end ', the number of region proposals can be set to a 1 -by- 2 vector. The first element of the vector must be the number of regions sampled for the region proposal subnetwork. The second element must be the number of regions sampled for the region classfication subnetwork.

When you set 'TrainingMethod' to 'four-step', the number of region proposals can be set to a 1-by-4 vector. The $i^{\text {th }}$ element specifies the number of regions to sample for the $i^{\text {th }}$ training step.

SmallestImageDimension - Length of smallest image dimension [] (default) | positive integer

Length of the smallest image dimension, either width or height, specified as the commaseparated pair consisting of 'SmallestImageDimension' and a positive integer. Training images are resized such that the length of the shortest dimension is equal to the specified integer. By default, training images are not resized. Resizing training images helps reduce computational costs and memory used when training images are large. Typical values range from 400-600 pixels.

Dependencies

- The SmallestImageDimension property supports only table input training data. To resize the input data of a datastore input, use the transform function.

MinBoxSizes - Minimum anchor box sizes

'auto' (default) | m-by-2 matrix
Minimum anchor box sizes for building the anchor box pyramid of the region proposal network (RPN), specified as the comma-separated pair consisting of 'MinBoxSizes ' and an m-by- 2 matrix. Each row defines the [height width] of an anchor box.

The default 'auto' setting uses the minimum size and the median aspect ratio from the bounding boxes for each class in the ground truth data. To remove redundant box sizes, the function keeps boxes that have an intersection-over-union value that is less than or equal to 0.5 . This behavior ensures that the minimum number of anchor boxes is used to cover all the object sizes and aspect ratios.

When anchor boxes are computed based on MinBoxSizes, the $i^{\text {th }}$ anchor box size is:

```
round(MinBoxSizes(i,:) .* BoxPyramidScale ,^ (0:NumBoxPyramidLevels-1)')
```


Dependencies

- You cannot use this property if you specify the network as a LayerGraph object or if you resume training from a detector checkpoint.
- The MinBoxSizes property supports only input training in table format. To estimate anchor boxes for a datastore input, use the estimateAnchorBoxes function.

BoxPyramidScale - Anchor box pyramid scale
 2 (default) | scalar

Anchor box pyramid scale factor used to successively upscale anchor box sizes, specified as the comma-separated pair consisting of 'BoxPyramidScale' and a scalar. Recommended values are from 1 through 2. Increase this value for faster results. Decrease the number for greater accuracy.

Dependencies

- The BoxPyramidScale property supports only input training data in table format. To estimate anchor boxes for a datastore input, use the estimateAnchorBoxes function.

NumBoxPyramidLevels - Number of anchor box pyramid levels 'auto' (default)| scalar

Number of levels in an anchor box pyramid, specified as the comma-separated pair consisting of 'NumBoxPyramidLevels' and a scalar. Select a value that ensures that the multiscale anchor boxes are comparable in size to the size of objects in the ground truth data.

The default setting 'auto' selects the number of levels based on the size of objects within the ground truth data. The number of levels is selected such that it covers the range of object sizes.

Dependencies

- The NumBoxPyramidLevels property supports only input training data in table format. To estimate anchor boxes for a datastore input, use the estimateAnchorBoxes function.

FreezeBatchNormalization - Frozen batch normalization

true (default) | false

Frozen batch normalization during training, specified as the comma-separated pair consisting of 'FreezeBatchNormalization' and true or false. The value indicates whether to freeze the input layers to the network during training. Set this value to true if you are training with a small mini-batch size. Small batch sizes result in poor estimates of the batch mean and variance, which are required for effective batch normalization.

If you do not specify a value for 'FreezeBatchNormalization', the function sets the property to:

- true if the 'MiniBatchSize' name-value argument for the training0ptions function is less than 8.
- false if the 'MiniBatchSize' name-value argument for the training0ptions function is greater than or equal to 8.

You must specify a value for 'FreezeBatchNormalization' to overide this default behavior.

Output Arguments

trainedDetector - Trained Faster R-CNN object detector fasterRCNNObjectDetector object

Trained Faster R-CNN object detector, returned as a fasterRCNNObjectDetector object.

info - Training information

structure array
Training information, returned as a structure array with four elements. Each element corresponds to stage in the training of the Faster R-CNN network, and has the following fields. Each field is a numeric vector with one element per training iteration. Values that have not been calculated at a specific iteration are represented by NaN .

- TrainingLoss - Training loss at each iteration. This is the combination of the classification and regression loss used to train the Faster R-CNN network.
- TrainingAccuracy - Training set accuracy at each iteration
- TrainingRMSE - Training root mean square error (RMSE) for the box regression layer
- BaseLearnRate - Learning rate at each iteration

Tips

- To accelerate data preprocessing for training, trainFastRCNNObjectDetector automatically creates and uses a parallel pool based on your parallel preference settings. For more details about setting these preferences, see parallel preference settings. Using parallel computing preferences requires Parallel Computing Toolbox.
- VGG-16, VGG-19, ResNet-101, and Inception-ResNet-v2 are large models. Training with large images can produce "out-of-memory" errors. To mitigate these errors, try one or more of these options:
- Reduce the size of your images by using the 'SmallestImageDimension' argument.
- Decrease the value of the 'NumRegionsToSample' name-value argument.
- This function supports transfer learning. When you input a network by name, such as ' resnet50' , then the function automatically transforms the network into a valid

Faster R-CNN network model based on the pretrained resnet50 model. Alternatively, manually specify a custom Faster R-CNN network by using the LayerGraph extracted from a pretrained DAG network. For more details, see "Create Faster R-CNN Object Detection Network".

- This table describes how to transform each named network into a Faster R-CNN network. The feature extraction layer name specifies the layer for processing by the ROI pooling layer. The ROI output size specifies the size of the feature maps output by the ROI pooling layer.

Network Name	Feature Extraction Layer Name	ROI Pooling Layer OutputSi ze	Description					
alexnet	'relu5'	[6 6]	Last max pooling layer is					
replaced by ROI max pooling								
layer				$	$	vgg16	'relu5_3'	[7]
:---	:---	:---						

For information on modifying how a network is transformed into a Faster R-CNN network, see "Design an R-CNN, Fast R-CNN, and a Faster R-CNN Model".

- During training, multiple image regions are processed from the training images The number of image regions per image is controlled by the NumRegionsToSample
property. The Positive0verlapRange and NegativeOverlapRange properties control which image regions are used for training. Positive training samples are those that overlap with the ground truth boxes by 0.6 to 1.0, as measured by the bounding box intersection-over-union metric (IoU). Negative training samples are those that overlap by 0 to 0.3 . Choose values for these properties by testing the trained detector on a validation set.

Overlap Values	Description
Positive0verlapRange set to [0.6 $1]$	Positive training samples are set equal to the samples that overlap with the ground truth boxes by 0.6 to 1.0, measured by the bounding box IoU metric.
Negative0verlapRange set to [0 $0.3]$	Negative training samples are set equal to the samples that overlap with the ground truth boxes by 0 to 0.3.

If you set PositiveOverlapRange to [0.6 1], then the function sets the positive training samples equal to the samples that overlap with the ground truth boxes by 0.6 to 1.0 , measured by the bounding box IoU metric. If you set NegativeOverlapRange to [0 0.3], then the function sets the negative training samples equal to the samples that overlap with the ground truth boxes by 0 to 0.3 .

- Use the trainingOptions function to enable or disable verbose printing.

Compatibility Considerations

Default Training Method

Behavior changed in R2019b
Starting in R2019b, by default, the trainFasterRCNNObjectDetector function uses the end-to-end method for training a detector.

In previous releases, the default training method used the "four-step" method. To preserve compatibility, set the TrainingMethod property to 'four-step'.

References

[1] Ren, S., K. He, R. Girschick, and J. Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks." Advances in Neural Information Processing Systems. Vol. 28, 2015.
[2] Girshick, R. "Fast R-CNN." Proceedings of the IEEE International Conference on Computer Vision, 1440-1448. Santiago, Chile: IEEE, 2015.
[3] Girshick, R., J. Donahue, T. Darrell, and J. Malik. "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation." Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 580-587. Columbus, OH: IEEE, 2014.
[4] Zitnick, C. L., and P. Dollar. "Edge Boxes: Locating Object Proposals from Edges." Computer Vision-ECCV 2014, 391-405. Zurich, Switzerland: ECCV, 2014.

Extended Capabilities

Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox ${ }^{\mathrm{TM}}$.

To run in parallel, set 'UseParallel' to true or enable this by default using the Computer Vision Toolbox preferences.

For more information, see "Parallel Computing Toolbox Support".

See Also

Apps
 Image Labeler | Video Labeler
 Functions
 estimateAnchorBoxes | fasterRCNNLayers |objectDetectorTrainingData| trainFastRCNNObjectDetector|trainRCNNObjectDetector|trainingOptions

Objects
 Layer|SeriesNetwork | averagePooling2dLayer | boxLabelDatastore | fasterRCNNObjectDetector|layerGraph|maxPooling2dLayer

Topics

"Object Detection Using Faster R-CNN Deep Learning"
"Anchor Boxes for Object Detection"
"Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN"
"Datastores for Deep Learning" (Deep Learning Toolbox)

Introduced in R2017a

trainYOLOv20bjectDetector

Train YOLO v2 object detector

Syntax

```
detector = trainYOLOv20bjectDetector(trainingData,lgraph,options)
detector = trainYOLOv20bjectDetector(trainingData,checkpoint,
options)
detector = trainYOLOv20bjectDetector(trainingData,detector,options)
detector = trainYOLOv20bjectDetector(
```

\qquad

``` ,'TrainingImageSize', trainingSizes)
[detector,info] = trainYOLOv20bjectDetector(
```

\qquad

``` )
```


Description

detector = trainY0LOv20bjectDetector(trainingData,lgraph,options) returns an object detector trained using you only look once version 2 (YOLO v2) network architecture specified by the input lgraph. The options input specifies training parameters for the detection network.
detector $=$ trainYOLOv20bjectDetector(trainingData, checkpoint, options) resumes training from the saved detector checkpoint.

You can use this syntax to:

- Add more training data and continue the training.
- Improve training accuracy by increasing the maximum number of iterations.
detector = trainYOLOv20bjectDetector(trainingData, detector,options) continues training a YOLO v2 object detector. Use this syntax for fine-tuning a detector.
detector = trainYOLOv20bjectDetector(__ ,'TrainingImageSize', trainingSizes) specifies the image sizes for multiscale training by using a name-value pair in addition to the input arguments in any of the preceding syntaxes.
[detector,info] = trainYOLOv20bjectDetector(\qquad) also returns information on the training progress, such as the training accuracy and learning rate for each iteration.

Examples

Train YOLO v2 Network for Vehicle Detection

Load the training data for vehicle detection into the workspace.

```
data = load('vehicleTrainingData.mat');
trainingData = data.vehicleTrainingData;
```

Specify the directory in which training samples are stored. Add full path to the file names in training data.

```
dataDir = fullfile(toolboxdir('vision'),'visiondata');
trainingData.imageFilename = fullfile(dataDir,trainingData.imageFilename);
```

Randomly shuffle data for training.

```
rng(0);
shuffledIdx = randperm(height(trainingData));
trainingData = trainingData(shuffledIdx,:);
```

Create an imageDatastore using the files from the table.

```
imds = imageDatastore(trainingData.imageFilename);
```

Create a boxLabelDatastore using the label columns from the table.
blds = boxLabelDatastore(trainingData(:,2:end));
Combine the datastores.

```
ds = combine(imds, blds);
```

Load a preinitialized YOLO v2 object detection network.

```
net = load('yolov2VehicleDetector.mat');
lgraph = net.lgraph
```

lgraph =
LayerGraph with properties:

```
            Layers: [25×1 nnet.cnn.layer.Layer]
Connections: [24\times2 table]
```

Inspect the layers in the YOLO v2 network and their properties. You can also create the YOLO v2 network by following the steps given in "Create YOLO v2 Object Detection Network".

lgraph.Layers

```
ans =
    25x1 Layer array with layers:
```

```
'input'
'conv 1'
'BN1'
'relu 1'
'maxpool1'
'conv_2'
'BN2'
'relu_2'
'maxpool2'
'conv 3'
'BN3'
'relu 3'
'maxpool3'
'conv 4'
'BN4'
'relu_4'
'yolov2Conv1'
'yolov2Batch1'
'yolov2Relu1'
'yolov2Conv2'
'yolov2Batch2'
'yolov2Relu2'
'yolov2ClassConv'
'yolov2Transform' YOLO v2 Transform Layer
'yolov20utputLayer'
```

Image Input
Convolution
Batch Normalization
ReLU
Max Pooling
Convolution
Batch Normalization
ReLU
Max Pooling
Convolution
Batch Normalization
ReLU
Max Pooling
Convolution
Batch Normalization
ReLU
Convolution
Batch Normalization
ReLU
Convolution
Batch Normalization
ReLU
Convolution
YOLO v2 Transform Layer
YOLO v2 Output
$128 \times 128 \times 3$ images
163×3 convolutions with stri Batch normalization
ReLU
2×2 max pooling with stride [323×3 convolutions with stri Batch normalization ReLU
2×2 max pooling with stride $643 x 3$ convolutions with stric Batch normalization ReLU
2×2 max pooling with stride 1283×3 convolutions with str Batch normalization ReLU
1283×3 convolutions with str Batch normalization
ReLU
1283×3 convolutions with str Batch normalization
ReLU
24 1x1 convolutions with stri YOLO v2 Transform Layer with YOLO v2 Output with 4 anchors

Configure the network training options.

```
options = training0ptions('sgdm',...
    'InitialLearnRate',0.001,...
    'Verbose',true,...
    'MiniBatchSize',16,...
    'MaxEpochs',30,...
    'Shuffle','never',...
    'VerboseFrequency',30,...
    'CheckpointPath',tempdir);
```

Train the YOLO v2 network.
[detector,info] = trainYOLOv20bjectDetector(ds,lgraph,options);

Training a YOLO v2 Object Detector for the following object classes:

* vehicle

Checking training data...done.
Initializing input data normalization.
Training on single GPU.

Epoch	Iteration	Time Elapsed (hh:mm:ss)	Mini-batch RMSE	Mini-batch Loss	Base Learnin Rate
1	1	00:00:00	7.14	50.9	0.00
2	30	00:00:15	1.41	2.0	0.00
4	60	00:00:29	1.33	1.8	0.00
5	90	00:00:43	0.85	0.7	0.00
7	120	00:00:58	0.92	0.8	0.00
9	150	00:01:12	1.05	1.1	0.00
10	180	00:01:26	0.65	0.4	0.00
12	210	00:01:40	0.74	0.5	0.00
14	240	00:01:55	0.72	0.5	0.00
15	270	00:02:08	0.60	0.4	0.00
17	300	00:02:23	0.55	0.3	0.00
19	330	00:02:37	0.53	0.3	0.00
20	360	00:02:50	0.52	0.3	0.00
22	390	00:03:04	0.54	0.3	0.00
24	420	00:03:18	0.50	0.3	0.00
25	450	00:03:32	0.48	0.2	0.00
27	480	00: 03:46	0.64	0.4	0.00
29	510	00:04:00	0.44	0.2	0.00
30	540	00:04:13	0.43	0.2	0.00

```
Detector training complete.
```

Inspect the properties of the detector.

detector

```
detector =
    yolov20bjectDetector with properties:
                            ModelName: 'vehicle'
                                    Network: [1×1 DAGNetwork]
                    ClassNames: {'vehicle'}
            AnchorBoxes: [4\times2 double]
        TrainingImageSize: [128 128]
```

You can verify the training accuracy by inspecting the training loss for each iteration.
figure
plot(info.TrainingLoss)
grid on
xlabel('Number of Iterations')
ylabel('Training Loss for Each Iteration')

Read a test image into the workspace.

```
img = imread('detectcars.png');
```

Run the trained YOLO v2 object detector on the test image for vehicle detection.
[bboxes,scores] = detect(detector,img);
Display the detection results.

```
if(~isempty(bboxes))
    img = insertObjectAnnotation(img,'rectangle',bboxes,scores);
end
figure
imshow(img)
```


Input Arguments

trainingData - Labeled ground truth images

datastore | table
Labeled ground truth images, specified as a datastore or a table.

- If you use a datastore, calling the datastore with the read and readall functions must return a cell array or table with three columns, \{images,boxes,labels\}.
- images - The first column must be a cell vector of images that can be grayscale, RGB, or a M-by- N-by- P multichannel image.).
- boxes - The second column must be a cell vector that contains M-by-4 matrices of bounding boxes in the format [x, y,width,height]. The vectors represent the location and size of bounding boxes for the objects in each image.
- labels - The third column must be a cell vector that contains M-by-1 categorical vectors containing object class names. All categorical data returned by the datastore must contain the same categories.

You can use the combine function to create the datastore to use for training.

- imageDatastore - Create a datastore containing images.
- boxLabelDatastore - Create a datastore containing bounding boxes and labels.
- combine(imds,blds) - Combine images, bounding boxes, and labels into one datastore.

For more information, see "Datastores for Deep Learning" (Deep Learning Toolbox).

- If you use a table, the table must have two or more columns. The first column of the table must contain image file names with paths. The images must be grayscale or truecolor (RGB) and they can be in any format supported by imread. Each of the remaining columns must be a cell vector that contains M-by- 4 matrices that represent a single object class, such as vehicle, flower, or stop sign. The columns contain 4element double arrays of M bounding boxes in the format [x, y, width,height]. The format specifies the upper-left corner location and size of the bounding box in the corresponding image. To create a ground truth table, you can use the Image Labeler app or Video Labeler app. To create a table of training data from the generated ground truth, use the objectDetectorTrainingData function.

Note When the training data is specified using a table, the
trainYOLOv20bjectDetector function checks these conditions

- The bounding box values must be integers. Otherwise, the function automatically rounds each noninteger values to its nearest integer.
- The bounding box must not be empty and must be within the image region. While training the network, the function ignores empty bounding boxes and bounding boxes that lie partially or fully outside the image region.

lgraph - Layer graph

LayerGraph object
Layer graph, specified as a LayerGraph object. The layer graph contains the architecture of the YOLO v2 network. You can create this network by using the yolov2Layers function. Alternatively, you can create the network layers by using yolov2TransformLayer, yolov2ReorgLayer, and yolov20utputLayer functions. For more details on creating a custom YOLO v2 network, see "Design a YOLO v2 Detection Network".

options - Training options

TrainingOptionsSGDM object | Training0ptionsRMSProp object |

 TrainingOptionsADAM objectTraining options, specified as a Training0ptionsSGDM, Training0ptionsRMSProp, or TrainingOptionsADAM object returned by the trainingOptions function. To specify the solver name and other options for network training, use the trainingOptions function.

Note The trainYOLOv20bjectDetector function does not support these training options

- The 'training-progress' value of the Plots training option
- The ValidationData, ValidationFrequency, or ValidationPatience training options
- The OutputFcn option.
- The training0ptions Shuffle values, 'once' and 'every-epoch' are not supported when you use a datastore input.

checkpoint - Saved detector checkpoint
 yolov20bjectDetector object

Saved detector checkpoint, specified as a yolov20bjectDetector object. To save the detector after every epoch, set the 'CheckpointPath' name-value argument when using the training0ptions function. Saving a checkpoint after every epoch is recommended because network training can take a few hours.

To load a checkpoint for a previously trained detector, load the MAT-file from the checkpoint path. For example, if the CheckpointPath property of the object specified by options is '/checkpath', you can load a checkpoint MAT-file by using this code.

```
data = load('/checkpath/yolov2_checkpoint__216__2018_11_16__13_34_30.mat');
checkpoint = data.detector;
```

The name of the MAT-file includes the iteration number and timestamp of when the detector checkpoint was saved. The detector is saved in the detector variable of the file. Pass this file back into the trainYOLOv20bjectDetector function:

```
yoloDetector = trainYOLOv20bjectDetector(trainingData,checkpoint,options);
```

detector - Previously trained YOLO v2 object detector yolov20bjectDetector object

Previously trained YOLO v2 object detector, specified as a yolov20bjectDetector object. Use this syntax to continue training a detector with additional training data or to perform more training iterations to improve detector accuracy.

trainingSizes - Set of image sizes for multiscale training

[] (default) | M-by-2 matrix

Set of image sizes for multiscale training, specified as an M-by-2 matrix, where each row is of the form [height width]. For each training epoch, the input training images are randomly resized to one of the M image sizes specified in this set.

If you do not specify the trainingSizes, the function sets this value to the size in the image input layer of the YOLO v2 network. The network resizes all training images to this value.

Note The input trainingSizes values specified for multiscale training must be greater than or equal to the input size in the image input layer of the lgraph input argument.

Output Arguments

detector - Trained YOLO v2 object detector

yolov20bjectDetector object

Trained YOLO v2 object detector, returned as yolov20bjectDetector object. You can train a YOLO v2 object detector to detect multiple object classes.

info - Training information

structure array
Training information, returned as a structure array with four elements. Each element corresponds to a stage of training and contains these fields:

- TrainingLoss - Training loss at each iteration is the mean squared error (MSE) calculated as the sum of localization error, confidence loss, and classification loss. For more information about the training loss function, see "Training Loss" on page 3-1028.
- TrainingRMSE - Training root mean squared error (RMSE) is the RMSE calculated from the training loss at each iteration.
- BaseLearnRate - Learning rate at each iteration.

Each field is a numeric vector with one element per training iteration. Values that have not been calculated at a specific iteration are assigned as NaN .

More About

Data Preprocessing

By default, the trainY0LOv20bjectDetector function preprocesses the training images by:

- Resizing the input images to match the input size of the network.
- Normalizing the pixel values of the input images to lie in the range [0, 1].

When you specify the training data by using a table, the trainY0LOv20bjectDetector function performs data augmentation for preprocessing. The function augments the input dataset by:

- Reflecting the training data horizontally. The probability for horizontally flipping each image in the training data is 0.5 .
- Uniformly scaling (zooming) the training data by a scale factor that is randomly picked from a continuous uniform distribution in the range [1, 1.1].
- Random color jittering for brightness, hue, saturation, and contrast.

When you specify the training data by using a datastore, the trainYOLOv20bjectDetector function does not perform data augmentation. Instead you can augment the training data in datastore by using the transform function and then, train the network with the augmented training data. For more information on how to apply augmentation while using datastores, see Apply Augmentation to Training Data in Datastores (Deep Learning Toolbox).

Training Loss

During training, the YOLO v2 object detection network optimizes the MSE loss between the predicted bounding boxes and the ground truth. The loss function is defined as

$$
\begin{aligned}
& K_{1} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} 1_{i j}^{o b j}\left[\left(x_{i}-\hat{x}_{i}\right)^{2}+\left(y_{i}-\hat{y}_{i}\right)^{2}\right] \\
& +K_{1} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} 1_{i j}^{o b j}\left[\left(\sqrt{w_{i}}-\sqrt{\hat{w}_{i}}\right)^{2}+\left(\sqrt{h_{i}}-\sqrt{\hat{h}_{i}}\right)^{2}\right] \\
& +K_{2} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} 1_{i j}^{o b j}\left(C_{i}-\hat{C}_{i}\right)^{2} \\
& \quad+K_{3} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} 1_{i j}^{\text {noobj }}\left(C_{i}-\hat{C}_{i}\right)^{2} \\
& \quad+K_{4} \sum_{i=0}^{S^{2}} 1_{i}^{\text {obj }} \sum_{\propto \in \text { classes }}\left(p_{i}(c)-\hat{p}_{i}(c)\right)^{2}
\end{aligned}
$$

where:

- S is the number of grid cells.
- B is the number of bounding boxes in each grid cell.
- $1_{i j}^{\text {obj }}$
is 1 if the j th bounding box in grid cell i is responsible for detecting the object. Otherwise it is set to 0 . A grid cell i is responsible for detecting the object, if the overlap between the ground truth and a bounding box in that grid cell is greater than or equal to 0.6.
- $1_{i j}^{\text {noobj }}$
is 1 if the j th bounding box in grid cell i does not contain any object. Otherwise it is set to 0 .
- $1_{i}^{\text {obj }}$ is
is 1 if an object is detected in grid cell i. Otherwise it is set to 0 .
- K_{1}, K_{2}, K_{3}, and K_{4} are the weights. To adjust the weights, modify the LossFactors property of the output layer by using the yolov20utputLayer function.

The loss function can be split into three parts:

- Localization loss

The first and second terms in the loss function comprise the localization loss. It measures error between the predicted bounding box and the ground truth. The parameters for computing the localization loss include the position, size of the predicted bounding box, and the ground truth. The parameters are defined as follows.

- $\left(x_{i}, y_{i}\right)$, is the center of the j th bounding box relative to grid cell i.
- $\left(\hat{x}_{i}, \hat{y}_{i}\right)$, is the center of the ground truth relative to grid cell i.
- w_{i} and h_{i} is the width and the height of the $j t h$ bounding box in grid cell i, respectively. The size of the predicted bounding box is specified relative to the input image size.
- \hat{w}_{i} and \hat{h}_{i} is the width and the height of the ground truth in grid cell i, respectively.
- K_{1} is the weight for localization loss. Increase this value to increase the weightage for bounding box prediction errors.
- Confidence loss

The third and fourth terms in the loss function comprise the confidence loss. The third term measures the objectness (confidence score) error when an object is detected in the j th bounding box of grid cell i. The fourth term measures the objectness error
when no object is detected in the j th bounding box of grid cell i. The parameters for computing the confidence loss are defined as follows.

- C_{i} is the confidence score of the j th bounding box in grid cell i.
- \hat{C}_{i} is the confidence score of the ground truth in grid cell i.
- K_{2} is the weight for objectness error, when an object is detected in the predicted bounding box. You can adjust the value of K_{2} to weigh confidence scores from grid cells that contain objects.
- K_{3} is the weight for objectness error, when an object is not detected in the predicted bounding box. You can adjust the value of K_{3} to weigh confidence scores from grid cells that do not contain objects.

The confidence loss can cause the training to diverge when the number of grid cells that do not contain objects is more than the number of grid cells that contain objects. To remedy this, increase the value for K_{2} and decrease the value for K_{3}.

- Classification loss

The fifth term in the loss function comprises the classification loss. For example, suppose that an object is detected in the predicted bounding box contained in grid cell i. Then, the classification loss measures the squared error between the class conditional probabilities for each class in grid cell i. The parameters for computing the classification loss are defined as follows.

- $\quad p_{i}(c)$ is the estimated conditional class probability for object class c in grid cell i.
- $\hat{p}_{i}(c)$ is the actual conditional class probability for object class c in grid cell i.
- K_{4} is the weight for classification error when an object is detected in the grid cell. Increase this value to increase the weightage for classification loss.

Tips

- To generate the ground truth, use the Image Labeler or Video Labeler app. To create a table of training data from the generated ground truth, use the objectDetectorTrainingData function.
- To improve prediction accuracy,
- Increase the number of images you can use to train the network. You can expand the training dataset through data augmentation. For information on how to apply
data augmentation for preprocessing, see "Preprocess Images for Deep Learning" (Deep Learning Toolbox).
- Perform multiscale training by using the trainYOLOv20bjectDetector function. To do so, specify the 'TrainingImageSize' argument of trainYOLOv20bjectDetector function for training the network.
- Choose anchor boxes appropriate to the dataset for training the network. You can use the estimateAnchorBoxes function to compute anchor boxes directly from the training data.

References

[1] Joseph. R, S. K. Divvala, R. B. Girshick, and F. Ali. "You Only Look Once: Unified, RealTime Object Detection." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779-788. Las Vegas, NV: CVPR, 2016.
[2] Joseph. R and F. Ali. "YOLO 9000: Better, Faster, Stronger." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517-6525. Honolulu, HI: CVPR, 2017.

See Also

Apps

Image Labeler | Video Labeler

Functions

objectDetectorTrainingData|trainFastRCNNObjectDetector| trainFasterRCNNObjectDetector|trainRCNNObjectDetector| training0ptions| yolov2Layers

Objects

boxLabelDatastore|yolov20bjectDetector

Topics

"Create YOLO v2 Object Detection Network"
"Object Detection Using YOLO v2 Deep Learning"
"Estimate Anchor Boxes From Training Data"
"Code Generation for Object Detection by Using YOLO v2"
"Getting Started with YOLO v2"

"Anchor Boxes for Object Detection"
"Datastores for Deep Learning" (Deep Learning Toolbox)
Introduced in R2019a

detect

Detect objects using ACF object detector

Syntax

```
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[___]= detect(detector,I,roi)
[___] = detect(__ ,Name,Value)
```


Description

bboxes = detect (detector,I) detects objects within image I using the input aggregate channel features (ACF) object detector. The locations of objects detected are returned as a set of bounding boxes.
[bboxes,scores] = detect(detector,I) also returns the detection scores for each bounding box.
[\qquad]= detect(detector, I, roi) detects objects within the rectangular search region specified by roi, using either of the preceding syntaxes.
[__] = detect (__ ,Name,Value) specifies options using one or more Name, Value pair arguments. For example, detect (detector, I, 'WindowStride' , 2) sets the stride of the sliding window used to detects objects to 2 .

Examples

Train a Stop Sign Detector Using an ACF Object Detector

Use the trainACFObjectDetector with training images to create an ACF object detector that can detect stop signs. Test the detector with a separate image.

Load the training data.

```
load('stopSignsAndCars.mat')
```

Select the ground truth for stop signs. These ground truth is the set of known locations of stop signs in the images.

```
stopSigns = stopSignsAndCars(:,1:2);
```

Add the full path to the image files.

```
stopSigns.imageFilename = fullfile(toolboxdir('vision'),...
    'visiondata',stopSigns.imageFilename);
```

Train the ACF detector. You can turn off the training progress output by specifying 'Verbose', false as a Name, Value pair.
acfDetector = trainACFObjectDetector(stopSigns,'NegativeSamplesFactor',2);
ACF Object Detector Training
The training will take 4 stages. The model size is 34×31.
Sample positive examples(~100\% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.

Stage 1:

Sample negative examples($\sim 100 \%$ Completed)
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 19 weak learners.
Stage 2:
Sample negative examples($\sim 100 \%$ Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 20 weak learners.
Stage 3:
Sample negative examples($\sim 100 \%$ Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed. The trained classifier has 54 weak learners.

Stage 4:
Sample negative examples($\sim 100 \%$ Completed)

```
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and }84\mathrm{ negative examples...Completed.
The trained classifier has 61 weak learners.
ACF object detector training is completed. Elapsed time is 85.1445 seconds.
```

Test the ACF detector on a test image.
img = imread('stopSignTest.jpg');
[bboxes,scores] = detect(acfDetector,img);

Display the detection results and insert the bounding boxes for objects into the image.

```
for i = 1:length(scores)
    annotation = sprintf('Confidence = %.1f',scores(i));
    img = insertObjectAnnotation(img,'rectangle',bboxes(i,:),annotation);
end
```

figure
imshow(img)

Input Arguments

detector - ACF object detector

acf0bjectDetector object
ACF object detector, specified as an acf0bjectDetector object. To create this object, call the trainACFObjectDetector function with training data as input.

I - Input image

grayscale image | RGB image
Input image, specified as a real, nonsparse, grayscale or RGB image.
Data Types: uint8|uint16|int16|double | single|logical

roi - Search region of interest

[x y width height] vector

Search region of interest, specified as an [x y width height] vector. The vector specifies the upper left corner and size of a region in pixels.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, ... , NameN, ValueN.

Example: 'NumScaleLevels',4

NumScaleLevels - Number of scale levels per octave
 8 (default) | positive integer

Number of scale levels per octave, specified as the comma-separated pair consisting of ' NumScaleLevels' and a positive integer. Each octave is a power-of-two downscaling of the image. To detect people at finer scale increments, increase this number.
Recommended values are in the range [4, 8].

WindowStride - Stride for sliding window
 4 (default) | positive integer

Stride for the sliding window, specified as the comma-separated pair consisting of 'WindowStride' and a positive integer. This value indicates the distance for the function to move the window in both the x and y directions. The sliding window scans the images for object detection.

SelectStrongest - Select strongest bounding box for each object

 true (default) | falseSelect the strongest bounding box for each detected object, specified as the commaseparated pair consisting of 'SelectStrongest' and either true or false.

- true - Return the strongest bounding box per object. To select these boxes, detect calls the selectStrongestBbox function, which uses nonmaximal suppression to eliminate overlapping bounding boxes based on their confidence scores.
- false - Return all detected bounding boxes. You can then create your own custom operation to eliminate overlapping bounding boxes.

MinSize - Minimum region size

[height width] vector

Minimum region size that contains a detected object, specified as the comma-separated pair consisting of 'MinSize' and a [height width] vector. Units are in pixels.

By default, MinSize is the smallest object that the trained detector can detect.

MaxSize - Maximum region size

```
size(I) (default)| [height width] vector
```

Maximum region size that contains a detected object, specified as the comma-separated pair consisting of 'MaxSize' and a [height width] vector. Units are in pixels.

To reduce computation time, set this value to the known maximum region size for the objects being detected in the image. By default, 'MaxSize' is set to the height and width of the input image, I.

Threshold - Classification accuracy threshold

-1 (default) | numeric scalar
Classification accuracy threshold, specified as the comma-separated pair consisting of 'Threshold ' and a numeric scalar. Recommended values are in the range [-1, 1]. During multiscale object detection, the threshold value controls the accuracy and speed for classifying image subregions as either objects or nonobjects. To speed up the performance at the risk of missing true detections, increase this threshold.

Output Arguments

bboxes - Location of objects detected within image
 M-by-4 matrix

Location of objects detected within the input image, returned as an M-by- 4 matrix, where M is the number of bounding boxes. Each row of bboxes contains a four-element vector of the form [$x y$ width height]. This vector specifies the upper left corner and size of that corresponding bounding box in pixels.

scores - Detection confidence scores

M-by-1 vector
Detection confidence scores, returned as an M-by-1 vector, where M is the number of bounding boxes. A higher score indicates higher confidence in the detection.

Extended Capabilities

C/C++ Code Generation

Generate C and $C++$ code using MATLAB® $\operatorname{Coder}^{\text {™ }}$.
This function supports $\mathrm{C} / \mathrm{C}++$ code generation with the limitations:

- Supports code generation (requires MATLAB Coder) only in generic MATLAB Host Computer target platform.

See Also

Apps
Image Labeler | Video Labeler

Functions

detectPeopleACF | selectStrongestBbox|trainACFObjectDetector| trainCascade0bjectDetector

Objects

acfObjectDetector

Introduced in R2017a

detect

Detect objects using R-CNN deep learning detector

Syntax

```
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[___,labels] = detect(detector,I)
[__] = detect(
```

\qquad

```
[__] = detect(
```

\qquad

``` , Name, Value)
```


Description

bboxes $=$ detect (detector, I) detects objects within image I using an R-CNN (regions with convolutional neural networks) object detector. The locations of objects detected are returned as a set of bounding boxes.

When using this function, use of a CUDA enabled NVIDIA GPU with a compute capability of 3.0 or higher is highly recommended. The GPU reduces computation time significantly. Usage of the GPU requires Parallel Computing Toolbox.
[bboxes,scores] = detect(detector,I) also returns the detection scores for each bounding box.
\qquad , labels] $=$ detect(detector, I) also returns a categorical array of labels assigned to the bounding boxes, using either of the preceding syntaxes. The labels used for object classes are defined during training using the trainRCNNObjectDetector function.
[___] = detect (__ , roi) detects objects within the rectangular search region specified by roi.
[___] = detect (__ , Name, Value) specifies options using one or more
Name, Value pair arguments. For example, detect(detector, I, 'NumStongestRegions', 1000) limits the number of strongest region proposals to 1000.

Examples

Train R-CNN Stop Sign Detector

Load training data and network layers.
load('rcnnStopSigns.mat', 'stopSigns', 'layers')
Add the image directory to the MATLAB path.

```
imDir = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata',...
    'stopSignImages');
addpath(imDir);
```

Set network training options to use mini-batch size of 32 to reduce GPU memory usage. Lower the InitialLearningRate to reduce the rate at which network parameters are changed. This is beneficial when fine-tuning a pre-trained network and prevents the network from changing too rapidly.

```
options = trainingOptions('sgdm', ...
    'MiniBatchSize', 32, ...
    'InitialLearnRate', 1e-6, ...
    'MaxEpochs', 10);
```

Train the R-CNN detector. Training can take a few minutes to complete.

```
rcnn = trainRCNNObjectDetector(stopSigns, layers, options, 'NegativeOverlapRange', [0
```

Training an R-CNN Object Detector for the following object classes:

* stopSign

Step 1 of 3: Extracting region proposals from 27 training images...done.
Step 2 of 3: Training a neural network to classify objects in training data...

Epoch	Iteration	Time Elapsed (seconds)	$\begin{aligned} & \text { Mini-batch } \\ & \text { Loss } \end{aligned}$	Mini-batch Accuracy	Base Lear Rate
	50	9.27	0.2895	96.88\%	0.000
	100	14.77	0.2443	93.75\%	0.000

8	150	20.29	0.0013	100.00\%	0.000
10	200	25.94	0.1524	96.88\%	0.000

Network training complete.
Step 3 of 3: Training bounding box regression models for each object class... 100.00\%.
R-CNN training complete.

Test the R-CNN detector on a test image.
img = imread('stopSignTest.jpg');
[bbox, score, label] = detect(rcnn, img, 'MiniBatchSize', 32);
Display strongest detection result.
[score, idx] = max(score);
bbox = bbox(idx, :);
annotation $=$ sprintf('\%s: (Confidence $=\% f)$ ', label(idx), score);
detectedImg = insertObjectAnnotation(img, 'rectangle', bbox, annotation);
figure
imshow(detectedImg)

Remove the image directory from the path.
rmpath(imDir);

Input Arguments

detector - R-CNN object detector

rcnnObjectDetector object
R-CNN object detector, specified as an rcnnObjectDetector object. To create this object, call the trainRCNNObjectDetector function with training data as input.

I - Input image

grayscale image | truecolor image
Input image, specified as a real, nonsparse, grayscale or truecolor image.
The detector is sensitive to the range of the input image. Therefore, ensure that the input image range is similar to the range of the images used to train the detector. For example,
if the detector was trained on uint8 images, rescale the input image to the range [0, 255] by using im2uint8 or rescale.

```
Data Types: uint8|uint16 | int16| double | single| logical
```


roi - Search region of interest

four-element vector of form [x y width height]
Search region of interest, specified as an [x y width height] vector. The vector specifies the upper left corner and size of a region in pixels.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

```
Example: 'NumStongestRegions',1000
```


NumStrongestRegions - Maximum number of strongest region proposals 2000 (default) | integer

Maximum number of strongest region proposals, specified as the comma-separated pair consisting of 'NumStrongestRegions' and an integer. Reduce this value to speed up processing time at the cost of detection accuracy. To use all region proposals, specify this value as Inf.

SelectStrongest - Select strongest bounding box

 true (default) | falseSelect strongest bounding box for each detected object, specified as the comma-separated pair consisting of 'SelectStrongest' and either true or false.

- true - Return the strongest bounding box per object. To select these boxes, detect calls the selectStrongestBboxMulticlass function, which uses nonmaximal suppression to eliminate overlapping bounding boxes based on their scores.

For example:

```
selectStrongestBboxMulticlass(bbox,scores, ...
    'RatioType','Min', ...
    'OverlapThreshold',0.5);
```

- false - Return all detected bounding boxes. You can then use a custom operation to eliminate overlapping bounding boxes.

MiniBatchSize - Size of smaller batches for R-CNN data processing

128 (default) | integer
Size of smaller batches for R-CNN data processing, specified as the comma-separated pair consisting of 'MiniBatchSize' and an integer. Larger batch sizes lead to faster processing but take up more memory.

ExecutionEnvironment - Hardware resource

```
'auto'(default)|'gpu'|'cpu'
```

Hardware resource on which to run the detector, specified as the comma-separated pair consisting of 'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'. The table shows the valid hardware resource values.

Resour ce	Action
' auto '	Use a GPU if it is available. Otherwise, use the CPU.
' gpu'	Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with a compute capability of 3.0 or higher. If a suitable GPU is not available, the function returns an error.
' cpu '	Use the CPU.

Output Arguments

bboxes - Location of objects detected within image

M-by-4 matrix
Location of objects detected within the image, returned as an M-by- 4 matrix defining M bounding boxes. Each row of bboxes contains a four-element vector of the form [xy width height]. This vector specifies the upper left corner and size of a bounding box in pixels.

scores - Detection scores

M-by-1 vector

Detection scores, returned as an M-by-1 vector. A higher score indicates higher confidence in the detection.

labels - Labels for bounding boxes

M-by-1 categorical array
Labels for bounding boxes, returned as an M-by-1 categorical array of M labels. You define the class names used to label the objects when you train the input detector.

See Also

Apps
Image Labeler | Video Labeler
\section*{Functions}
selectStrongestBboxMulticlass|trainRCNNObjectDetector

Objects

rcnnObjectDetector

Introduced in R2016b

detect

Detect objects using Fast R-CNN object detector

Syntax

```
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[bboxes,labels] = detect(detector,I)
[___] = detect(___,roi)
detectionResults = detect(detector,ds)
[___] = detect(___,Name,Value)
```


Description

bboxes = detect(detector,I) detects objects within image I using a Fast R-CNN (regions with convolutional neural networks) object detector. The locations of objects detected are returned as a set of bounding boxes.

When using this function, use of a CUDA enabled NVIDIA GPU with a compute capability of 3.0 or higher is highly recommended. The GPU reduces computation time significantly. Usage of the GPU requires Parallel Computing Toolbox.
[bboxes,scores] = detect(detector,I) also returns the detection scores for each bounding box.
[bboxes,labels] = detect(detector,I) also returns a categorical array of labels assigned to the bounding boxes, using either of the preceding syntaxes. The labels used for object classes are defined during training using the trainFastRCNNObjectDetector function.
[___] = detect (__ , roi) detects objects within the rectangular search region specified by roi.
detectionResults = detect(detector,ds) detects objects within the series of images returned by the read function of the input datastore.

```
[___ ] = detect(
```

\qquad

``` , Name, Value) specifies options using one or more Name, Value pair arguments. For example, detect(detector, I, 'NumStongestRegions', 1000) limits the number of strongest region proposals to 1000 .
```


Examples

Detect Vehicles Using Faster R-CNN

Detect vehicles within an image by using a Faster R-CNN object detector.
Load a Faster R-CNN object detector pretrained to detect vehicles.

```
data = load('fasterRCNNVehicleTrainingData.mat', 'detector');
```

detector = data.detector;

Read in a test image.

```
I = imread('highway.png');
```

imshow(I)

Run the detector on the image and inspect the results. The labels come from the ClassNames property of the detector.

```
[bboxes,scores,labels] = detect(detector,I)
```

```
bboxes = 2×4
```

 \(\begin{array}{llll}150 & 86 & 80 & 72\end{array}\)
 \(\begin{array}{llll}91 & 89 & 67 & 48\end{array}\)
 scores $=2 \times 1$ single column vector
1.0000
0.9001

```
labels = 2x1 categorical array
```

 vehicle
 vehicle
 The detector has high confidence in the detections. Annotate the image with the bounding boxes for the detections and the corresponding detection scores.

```
detectedI = insertObjectAnnotation(I,'Rectangle',bboxes,cellstr(labels));
figure
imshow(detectedI)
```


Input Arguments

detector - Fast R-CNN object detector
 fastRCNNObjectDetector object

Fast R-CNN object detector, specified as a fastRCNNObjectDetector object. To create this object, call the trainFastRCNNObjectDetector function with training data as input.

ds - Datastore

datastore object

Datastore, specified as a datastore object containing a collection of images. Each image must be a grayscale, RGB, or multichannel image. The function processes only the first column of the datastore, which must contain images and must be cell arrays or tables with multiple columns.

I - Input image

grayscale image | RGB image
Input image, specified as a real, nonsparse, grayscale or RGB image.
The detector is sensitive to the range of the input image. Therefore, ensure that the input image range is similar to the range of the images used to train the detector. For example, if the detector was trained on uint8 images, rescale this input image to the range [0, 255] by using the im2uint 8 or rescale function. The size of this input image should be comparable to the sizes of the images used in training. If these sizes are very different, the detector has difficulty detecting objects because the scale of the objects in the input image differs from the scale of the objects the detector was trained to identify. Consider whether you used the SmallestImageDimension property during training to modify the size of training images.
Data Types: uint8|uint16|int16|double| single|logical

roi - Search region of interest

[x y width height] vector
Search region of interest, specified as an [x y width height] vector. The vector specifies the upper left corner and size of a region in pixels.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, . . . , NameN, ValueN.

Example: 'NumStongestRegions',1000

Threshold - Detection threshold

0.5 (default) | scalar in the range [0, 1]

Detection threshold, specified as a scalar in the range [0, 1]. Detections that have scores less than this threshold value are removed. To reduce false positives, increase this value.

NumStrongestRegions - Maximum number of strongest region proposals 2000 (default) | positive integer | Inf

Maximum number of strongest region proposals, specified as the comma-separated pair consisting of 'NumStrongestRegions' and a positive integer. Reduce this value to speed up processing time at the cost of detection accuracy. To use all region proposals, specify this value as Inf.

SelectStrongest - Select strongest bounding box true (default) | false

Select the strongest bounding box for each detected object, specified as the commaseparated pair consisting of 'SelectStrongest' and either true or false.

- true - Return the strongest bounding box per object. To select these boxes, detect calls the selectStrongestBboxMulticlass function, which uses nonmaximal suppression to eliminate overlapping bounding boxes based on their confidence scores.

For example:

```
selectStrongestBboxMulticlass(bbox,scores, ...
    'RatioType','Min', ...
    'OverlapThreshold',0.5);
```

- false - Return all detected bounding boxes. You can then create your own custom operation to eliminate overlapping bounding boxes.

MinSize - Minimum region size

[height width] vector
Minimum region size that contains a detected object, specified as the comma-separated pair consisting of 'MinSize' and a [height width] vector. Units are in pixels.

By default, MinSize is the smallest object that the trained detector can detect.

MaxSize - Maximum region size

size(I) (default) | [height width] vector
Maximum region size that contains a detected object, specified as the comma-separated pair consisting of 'MaxSize' and a [height width] vector. Units are in pixels.

To reduce computation time, set this value to the known maximum region size for the objects being detected in the image. By default, 'MaxSize' is set to the height and width of the input image, I.

MiniBatchSize - Minimum batch size

128 (default) | scalar

Minimum batch size, specified as the comma-separated pair consisting of 'MiniBatchSize' and a scalar value. Use the MiniBatchSize to process a large collection of images. Images are grouped into minibatches and processed as a batch to improve computation efficiency. Increase the minibatch size to decrease processing time. Decrease the size to use less memory.

ExecutionEnvironment - Hardware resource

'auto' (default)|'gpu'|'cpu'
Hardware resource on which to run the detector, specified as the comma-separated pair consisting of 'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'.

- 'auto' - Use a GPU if it is available. Otherwise, use the CPU.
- 'gpu ' - Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with a compute capability of 3.0 or higher. If a suitable GPU is not available, the function returns an error.
- ' cpu' - Use the CPU.

Output Arguments

bboxes - Location of objects detected within image

M-by-4 matrix
Location of objects detected within the input image, returned as an M-by-4 matrix, where M is the number of bounding boxes. Each row of bboxes contains a four-element vector of the form [$x y$ width height]. This vector specifies the upper left corner and size of that corresponding bounding box in pixels.

scores - Detection scores

M-by-1 vector
Detection confidence scores, returned as an M-by-1 vector, where M is the number of bounding boxes. A higher score indicates higher confidence in the detection.

labels - Labels for bounding boxes
 M-by-1 categorical array

Labels for bounding boxes, returned as an M-by- 1 categorical array of M labels. You define the class names used to label the objects when you train the input detector.

detectionResults - Detection results

3-column table
Detection results, returned as a 3-column table with variable names, Boxes, Scores, and Labels. The Boxes column contains M-by- 4 matrices, of M bounding boxes for the objects found in the image. Each row contains a bounding box as a 4 -element vector in the format [x, y, width,height]. The format specifies the upper-left corner location and size in pixels of the bounding box in the corresponding image.

See Also

Apps
Image Labeler | Video Labeler

Functions

selectStrongestBboxMulticlass|trainFastRCNNObjectDetector

Objects

fastRCNNObjectDetector

Topics

"Datastores for Deep Learning" (Deep Learning Toolbox)

Introduced in R2017a

detect

Detect objects using Faster R-CNN object detector

Syntax

```
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[___,labels] = detect(detector,I)
[___] = detect( __, ,roi)
detectionResults = detect(detector,ds)
[___] = detect(___,Name,Value)
```


Description

bboxes $=$ detect(detector,I) detects objects within image I using a Faster R-CNN (regions with convolutional neural networks) object detector. The locations of objects detected are returned as a set of bounding boxes.

When using this function, use of a CUDA enabled NVIDIA GPU with a compute capability of 3.0 or higher is highly recommended. The GPU reduces computation time significantly. Usage of the GPU requires Parallel Computing Toolbox.
[bboxes,scores] = detect(detector,I) also returns the detection scores for each bounding box.
[\qquad ,labels] = detect(detector,I) also returns a categorical array of labels assigned to the bounding boxes, using either of the preceding syntaxes. The labels used for object classes are defined during training using the trainFasterRCNNObjectDetector function.
[___] = detect \qquad , roi) detects objects within the rectangular search region specified by roi.
detectionResults = detect(detector,ds) detects objects within the series of images returned by the read function of the input datastore.

```
[___ ] = detect(
```

\qquad

``` , Name, Value) specifies options using one or more Name, Value pair arguments. For example, detect(detector, I, 'NumStongestRegions', 1000) limits the number of strongest region proposals to 1000 .
```


Examples

Detect Vehicles Using Faster R-CNN

Detect vehicles within an image by using a Faster R-CNN object detector.
Load a Faster R-CNN object detector pretrained to detect vehicles.

```
data = load('fasterRCNNVehicleTrainingData.mat', 'detector');
```

detector = data.detector;

Read in a test image.

```
I = imread('highway.png');
```

imshow(I)

Run the detector on the image and inspect the results. The labels come from the ClassNames property of the detector.

```
[bboxes,scores,labels] = detect(detector,I)
```

```
bboxes = 2×4
```

 \(\begin{array}{llll}150 & 86 & 80 & 72\end{array}\)
 \(\begin{array}{llll}91 & 89 & 67 & 48\end{array}\)
 scores $=2 \times 1$ single column vector
1.0000
0.9001

```
labels = 2x1 categorical array
```

 vehicle
 vehicle
 The detector has high confidence in the detections. Annotate the image with the bounding boxes for the detections and the corresponding detection scores.

```
detectedI = insertObjectAnnotation(I,'Rectangle',bboxes,cellstr(labels));
figure
imshow(detectedI)
```


Input Arguments

detector - Faster R-CNN object detector

fasterRCNNObjectDetector object
Faster R-CNN object detector, specified as a fasterRCNNObjectDetector object. To create this object, call the trainFasterRCNNObjectDetector function with training data as input.

ds - Datastore

datastore object

Datastore, specified as a datastore object containing a collection of images. Each image must be a grayscale, RGB, or multichannel image. The function processes only the first column of the datastore, which must contain images and must be cell arrays or tables with multiple columns.

I - Input image

grayscale image | RGB image
Input image, specified as a real, nonsparse, grayscale or RGB image.
The detector is sensitive to the range of the input image. Therefore, ensure that the input image range is similar to the range of the images used to train the detector. For example, if the detector was trained on uint8 images, rescale this input image to the range [0, 255] by using the im2uint8 or rescale function. The size of this input image should be comparable to the sizes of the images used in training. If these sizes are very different, the detector has difficulty detecting objects because the scale of the objects in the input image differs from the scale of the objects the detector was trained to identify. Consider whether you used the SmallestImageDimension property during training to modify the size of training images.

Data Types: uint8|uint16|int16| double| single|logical

roi - Search region of interest

[x y width height] vector
Search region of interest, specified as an [x y width height] vector. The vector specifies the upper left corner and size of a region in pixels.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, . . . , NameN, ValueN.

Example: 'NumStongestRegions',1000

Threshold - Detection threshold

0.5 (default) | scalar in the range [0,1]

Detection threshold, specified as a scalar in the range [0,1]. Detections that have scores less than this threshold value are removed. To reduce false positives, increase this value.

NumStrongestRegions - Maximum number of strongest region proposals 2000 (default) | positive integer | Inf

Maximum number of strongest region proposals, specified as the comma-separated pair consisting of 'NumStrongestRegions' and a positive integer. Reduce this value to speed up processing time at the cost of detection accuracy. To use all region proposals, specify this value as Inf.

SelectStrongest - Select strongest bounding box true (default) | false

Select the strongest bounding box for each detected object, specified as the commaseparated pair consisting of 'SelectStrongest' and either true or false.

- true - Return the strongest bounding box per object. To select these boxes, detect calls the selectStrongestBboxMulticlass function, which uses nonmaximal suppression to eliminate overlapping bounding boxes based on their confidence scores.

For example:

```
selectStrongestBboxMulticlass(bbox,scores, ...
    'RatioType','Min', ...
    'OverlapThreshold',0.5);
```

- false - Return all detected bounding boxes. You can then create your own custom operation to eliminate overlapping bounding boxes.

MinSize - Minimum region size

[height width] vector
Minimum region size that contains a detected object, specified as the comma-separated pair consisting of 'MinSize' and a [height width] vector. Units are in pixels.

By default, MinSize is the smallest object that the trained detector can detect.

MaxSize - Maximum region size

size(I) (default) | [height width] vector
Maximum region size that contains a detected object, specified as the comma-separated pair consisting of 'MaxSize' and a [height width] vector. Units are in pixels.

To reduce computation time, set this value to the known maximum region size for the objects being detected in the image. By default, 'MaxSize' is set to the height and width of the input image, I.

MiniBatchSize - Minimum batch size

128 (default) | scalar

Minimum batch size, specified as the comma-separated pair consisting of 'MiniBatchSize' and a scalar value. Use the MiniBatchSize to process a large collection of images. Images are grouped into minibatches and processed as a batch to improve computation efficiency. Increase the minibatch size to decrease processing time. Decrease the size to use less memory.

ExecutionEnvironment - Hardware resource

'auto' (default)|'gpu'|'cpu'
Hardware resource on which to run the detector, specified as the comma-separated pair consisting of 'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'.

- 'auto' - Use a GPU if it is available. Otherwise, use the CPU.
- 'gpu ' - Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with a compute capability of 3.0 or higher. If a suitable GPU is not available, the function returns an error.
- ' cpu' - Use the CPU.

Output Arguments

bboxes - Location of objects detected within image

M-by-4 matrix
Location of objects detected within the input image, returned as an M-by-4 matrix, where M is the number of bounding boxes. Each row of bboxes contains a four-element vector of the form [$x y$ width height]. This vector specifies the upper left corner and size of that corresponding bounding box in pixels.

scores - Detection scores

M-by-1 vector
Detection confidence scores, returned as an M-by-1 vector, where M is the number of bounding boxes. A higher score indicates higher confidence in the detection.

labels - Labels for bounding boxes
 M-by-1 categorical array

Labels for bounding boxes, returned as an M-by- 1 categorical array of M labels. You define the class names used to label the objects when you train the input detector.

detectionResults - Detection results

3-column table
Detection results, returned as a 3-column table with variable names, Boxes, Scores, and Labels. The Boxes column contains M-by- 4 matrices, of M bounding boxes for the objects found in the image. Each row contains a bounding box as a 4 -element vector in the format [x, y, width,height]. The format specifies the upper-left corner location and size in pixels of the bounding box in the corresponding image.

See Also

Apps
 Image Labeler | Video Labeler

Functions

evaluateDetectionMissRate |evaluateDetectionPrecision|
selectStrongestBboxMulticlass|trainFasterRCNNObjectDetector
Objects
boxLabelDatastore|fasterRCNNObjectDetector

Topics

"Datastores for Deep Learning" (Deep Learning Toolbox)

Introduced in R2017a

detect

Detect objects using YOLO v2 object detector

Syntax

```
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[ ,labels] = detect(detector,I)
detectionResults = detect(detector,ds)
[___] = detect(
```

\qquad

``` , roi)
[____] = detect(___,Name,Value)
```


Description

bboxes $=$ detect(detector,I) detects objects within image I using you look only once version 2 (YOLO v2) object detector. The locations of objects detected are returned as a set of bounding boxes.

When using this function, use of a CUDA-enabled NVIDIA GPU with a compute capability of 3.0 or higher is highly recommended. The GPU reduces computation time significantly. Usage of the GPU requires Parallel Computing Toolbox.
[bboxes,scores] = detect(detector,I) also returns the class-specific confidence scores for each bounding box.
\qquad ,labels] = detect(detector,I) returns a categorical array of labels assigned to the bounding boxes in addition to the output arguments from the previous syntax. The labels used for object classes are defined during training using the trainYOLOv20bjectDetector function.
detectionResults = detect(detector,ds) detects objects within the series of images returned by the read function of the input datastore.
[___] = detect (__ , roi) detects objects within the rectangular search region specified by roi. Use output arguments from any of the previous syntaxes. Specify input arguments from any of the previous syntaxes.
[__] = detect (__ , Name, Value) specifies options using one or more
Name, Value pair arguments in addition to the input arguments in any of the preceding syntaxes.

Examples

Detect Vehicles Using YOLO v2 Object Detection Network

Load a YOLO v2 object detector pretrained to detect vehicles.

```
vehicleDetector = load('yolov2VehicleDetector.mat','detector');
detector = vehicleDetector.detector;
```

Read a test image into the workspace.
I = imread('highway.png');
Display the input test image.
imshow(I);

Run the pretrained YOLO v2 object detector on the test image. Inspect the results for vehicle detection. The labels are derived from the ClassNames property of the detector.

```
[bboxes,scores,labels] = detect(detector,I)
```

```
bboxes = 1×4
```

 \(\begin{array}{llll}78 & 81 & 64 & 63\end{array}\)
    ```
scores = single
    0.6224
labels = categorical
    vehicle
```

Annotate the image with the bounding boxes for the detections.

```
if ~isempty(bboxes)
    detectedI = insertObjectAnnotation(I,'rectangle',bboxes,cellstr(labels));
```


end

figure
imshow(detectedI)

Input Arguments

detector - YOLO v2 object detector

yolov20bjectDetector object
YOLO v2 object detector, specified as a yolov20bjectDetector object. To create this object, call the trainYOLOv20bjectDetector function with the training data as input.

I - Test image

2-D grayscale image | 2-D RGB image
Test image, specified as a real, nonsparse, grayscale, or RGB image.
Data Types: uint8|uint16|int16| double| single|logical

ds - Datastore
 datastore object

Datastore, specified as a datastore object containing a collection of images. Each image must be a grayscale, RGB, or multichannel image. The function processes only the first column of the datastore, which must contain images and must be cell arrays or tables with multiple columns.

roi - Search region of interest

four- element vector of form [x y width height]
Search region of interest, specified as a four-element vector of form $[x y$ width height]. The vector specifies the upper left corner and size of a region of interest in pixels.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: detect(detector,I,'Threshold', 0.25)

Threshold - Detection threshold

0.5 (default) | scalar in the range [0, 1]

Detection threshold, specified as a comma-separated pair consisting of 'Threshold' and a scalar in the range [0,1]. Detections that have scores less than this threshold value are removed. To reduce false positives, increase this value.

SelectStrongest - Select strongest bounding box

 true (default) | falseSelect the strongest bounding box for each detected object, specified as the commaseparated pair consisting of 'SelectStrongest' and either true or false.

- true - Returns the strongest bounding box per object. The method calls the selectStrongestBboxMulticlass function, which uses nonmaximal suppression to eliminate overlapping bounding boxes based on their confidence scores.

By default, the selectStrongestBboxMulticlass function is called as follows

```
selectStrongestBboxMulticlass(bbox,scores,...
    'RatioType','Union',...
    'OverlapThreshold',0.5);
```

- false - Return all the detected bounding boxes. You can then write your own custom method to eliminate overlapping bounding boxes.

MinSize - Minimum region size

[1 1] (default) | vector of the form [height width]
Minimum region size, specified as the comma-separated pair consisting of 'MinSize' and a vector of the form [height width]. Units are in pixels. The minimum region size defines the size of the smallest region containing the object.

By default, MinSize is 1-by-1.

MaxSize - Maximum region size

size(I) (default) | vector of the form [height width]

Maximum region size, specified as the comma-separated pair consisting of 'MaxSize' and a vector of the form [height width]. Units are in pixels. The maximum region size defines the size of the largest region containing the object.

By default, 'MaxSize' is set to the height and width of the input image, I. To reduce computation time, set this value to the known maximum region size for the objects that can be detected in the input test image.

MiniBatchSize - Minimum batch size

128 (default) | scalar
Minimum batch size, specified as the comma-separated pair consisting of 'MiniBatchSize' and a scalar value. Use the MiniBatchSize to process a large collection of image. Images are grouped into minibatches and processed as a batch to improve computation efficiency. Increase the minibatch size to decrease processing time. Decrease the size to use less memory.

ExecutionEnvironment - Hardware resource 'auto' (default)|'gpu'|'cpu'

Hardware resource on which to run the detector, specified as the comma-separated pair consisting of 'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'.

- 'auto' - Use a GPU if it is available. Otherwise, use the CPU.
- 'gpu ' - Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a CUDA-enabled NVIDIA GPU with a compute capability of 3.0 or higher. If a suitable GPU is not available, the function returns an error.
- ' cpu' - Use the CPU.

Acceleration - Performance optimization

'auto' (default)|'mex'| 'none'
Performance optimization, specified as the comma-separated pair consisting of 'Acceleration' and one of the following:

- 'auto' - Automatically apply a number of optimizations suitable for the input network and hardware resource.
- 'mex' - Compile and execute a MEX function. This option is available when using a GPU only. Using a GPU requires Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with compute capability 3.0 or higher. If Parallel Computing Toolbox or a suitable GPU is not available, then the function returns an error.
- 'none' - Disable all acceleration.

The default option is 'auto'. If 'auto' is specified, MATLAB applies a number of compatible optimizations. If you use the 'auto' option, MATLAB does not ever generate a MEX function.

Using the 'Acceleration' options 'auto' and 'mex' can offer performance benefits, but at the expense of an increased initial run time. Subsequent calls with compatible parameters are faster. Use performance optimization when you plan to call the function multiple times using new input data.

The 'mex' option generates and executes a MEX function based on the network and parameters used in the function call. You can have several MEX functions associated with a single network at one time. Clearing the network variable also clears any MEX functions associated with that network.

The 'mex' option is only available for input data specified as a numeric array, cell array of numeric arrays, table, or image datastore. No other types of datastore support the 'mex' option.

The 'mex' option is only available when you are using a GPU. You must also have a C/C+ + compiler installed. For setup instructions, see "MEX Setup" (GPU Coder).
'mex ' acceleration does not support all layers. For a list of supported layers, see "Supported Layers" (GPU Coder).

Output Arguments

bboxes - Location of objects detected within image

M-by-4 matrix
Location of objects detected within the input image, returned as an M-by- 4 matrix, where M is the number of bounding boxes. Each row of bboxes contains a four-element vector of the form [$x y$ width height]. This vector specifies the upper left corner and size of that corresponding bounding box in pixels.

scores - Detection scores

M-by-1 vector
Detection confidence scores, returned as an M-by-1 vector, where M is the number of bounding boxes. A higher score indicates higher confidence in the detection.

labels - Labels for bounding boxes

M-by-1 categorical array
Labels for bounding boxes, returned as an M-by-1 categorical array of M labels. You define the class names used to label the objects when you train the input detector.

detectionResults - Detection results

3-column table
Detection results, returned as a 3-column table with variable names, Boxes, Scores, and Labels. The Boxes column contains M-by- 4 matrices, of M bounding boxes for the objects found in the image. Each row contains a bounding box as a 4 -element vector in the format [x, y, width,height]. The format specifies the upper-left corner location and size in pixels of the bounding box in the corresponding image.

More About

Data Preprocessing

By default, the detect function preprocesses the test image for object detection by:

- Resizing it to a nearest possible image size used for training the YOLO v2 network. The function determines the nearest possible image size from the TrainingImageSize property of the yolov20bjectDetector object.
- Normalizing its pixel values to lie in same range as that of the images used to train the YOLO v2 object detector. For example, if the detector was trained on uint8 images, the test image must also have pixel values in the range [0,255]. Otherwise, use the im2uint8 or rescale function to rescale the pixel values in the test image.

See Also

Apps
 Image Labeler | Video Labeler

Functions

evaluateDetectionMissRate|evaluateDetectionPrecision|
selectStrongestBboxMulticlass|trainYOLOv20bjectDetector

Objects

boxLabelDatastore|yolov20bjectDetector

Topics

"Create YOLO v2 Object Detection Network"
"Object Detection Using YOLO v2 Deep Learning"
"Estimate Anchor Boxes From Training Data"
"Getting Started with YOLO v2"
"Anchor Boxes for Object Detection"
"Datastores for Deep Learning" (Deep Learning Toolbox)

Introduced in R2019a

classifyRegions

Classify objects in image regions using R-CNN object detector

Syntax

[labels,scores] = classifyRegions(detector,I,rois)
[labels,scores,allScores] = classifyRegions(detector,I,rois)
[___] = classifyRegions(___ Name,Value)

Description

[labels,scores] = classifyRegions(detector, I, rois) classifies objects within the regions of interest of image I, using an R-CNN (regions with convolutional neural networks) object detector. For each region, classifyRegions returns the class label with the corresponding highest classification score.

When using this function, use of a CUDA enabled NVIDIA GPU with a compute capability of 3.0 or higher is highly recommended. The GPU reduces computation time significantly. Usage of the GPU requires Parallel Computing Toolbox.
[labels,scores,allScores] = classifyRegions(detector,I,rois) also returns all the classification scores of each region. The scores are returned in an M-by- N matrix of M regions and N class labels.
\qquad] = classifyRegions(\qquad Name, Value) specifies options using one or more Name, Value pair arguments. For example, classifyRegions(detector, I, rois,'ExecutionEnvironment', 'cpu') classifies objects within image regions using only the CPU hardware.

Examples

Classify Multiple Image Regions

Load a pretrained detector.

```
load('rcnnStopSigns.mat','rcnn')
```

Read the test image.

```
img = imread('stopSignTest.jpg');
```

Specify multiple regions to classify within the test image.

```
rois = [llll6 143 33 27
    347 168 36 54];
```

Classify regions.
[labels,scores] = classifyRegions(rcnn,img,rois); detectedImg = insertObjectAnnotation(img,'rectangle',rois,cellstr(labels)); figure
imshow(detectedImg)

Input Arguments

detector - R-CNN object detector
rcnnObjectDetector object

R-CNN object detector, specified as an rcnnObjectDetector object. To create this object, call the trainRCNNObjectDetector function with training data as input.

I - Input image
 grayscale image | RGB image

Input image, specified as a real, nonsparse, grayscale or RGB image.
Data Types: uint8|uint16|int16|double | single|logical

rois - Regions of interest

M-by-4 matrix
Regions of interest within the image, specified as an M-by- 4 matrix defining M rectangular regions. Each row contains a four-element vector of the form [x y width height]. This vector specifies the upper left corner and size of a region in pixels.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'MiniBatchSize',64

MiniBatchSize - Size of smaller batches for R-CNN data processing

128 (default) | integer
Size of smaller batches for R-CNN data processing, specified as the comma-separated pair consisting of 'MiniBatchSize' and an integer. Larger batch sizes lead to faster processing but take up more memory.

ExecutionEnvironment - Hardware resource
'auto' (default)|'gpu'|'cpu'

Hardware resource used to classify image regions, specified as the comma-separated pair consisting of 'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'.

- 'auto' - Use a GPU if it is available. Otherwise, use the CPU.
- 'gpu ' - Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with a compute capability of 3.0 or higher. If a suitable GPU is not available, the function returns an error.
- ' cpu' - Use the CPU.

Example: 'ExecutionEnvironment','cpu'

Output Arguments

labels - Classification labels of regions

M-by-1 categorical array
Classification labels of regions, returned as an M-by- 1 categorical array. M is the number of regions of interest in rois. Each class name in labels corresponds to a classification score in scores and a region of interest in rois. classifyRegions obtains the class names from the input detector.

scores - Highest classification score per region

M-by-1 vector of values in the range [0, 1]
Highest classification score per region, returned as an M-by- 1 vector of values in the range [0, 1]. M is the number of regions of interest in rois. Each classification score in scores corresponds to a class name in labels and a region of interest in rois. A higher score indicates higher confidence in the classification.

allScores - All classification scores per region

M-by- N matrix of values in the range $[0,1]$
All classification scores per region, returned as an M-by- N matrix of values in the range $[0,1] . M$ is the number of regions in rois. N is the number of class names stored in the input detector. Each row of classification scores in allscores corresponds to a region of interest in rois. A higher score indicates higher confidence in the classification.

See Also
\section*{Apps}
Image Labeler | Video Labeler
\section*{Functions}
trainRCNNObjectDetector
Objects
rcnnObjectDetector
Introduced in R2016b

classifyRegions

Classify objects in image regions using Fast R-CNN object detector

Syntax

```
[labels,scores] = classifyRegions(detector,I,rois)
[labels,scores,allScores] = classifyRegions(detector,I,rois)
[___] = classifyRegions( __ ,'ExecutionEnvironment',resource)
```


Description

[labels,scores] = classifyRegions(detector,I,rois) classifies objects within the regions of interest of image I, using a Fast R-CNN (regions with convolutional neural networks) object detector. For each region, classifyRegions returns the class label with the corresponding highest classification score.

When using this function, use of a CUDA enabled NVIDIA GPU with a compute capability of 3.0 or higher is highly recommended. The GPU reduces computation time significantly. Usage of the GPU requires Parallel Computing Toolbox.
[labels,scores,allScores] = classifyRegions(detector,I,rois) also returns all the classification scores of each region. The scores are returned in an M-by- N matrix of M regions and N class labels.
\square] = classifyRegions(\qquad ,'ExecutionEnvironment', resource) specifies the hardware resource used to classify object within image regions: 'auto', 'cpu' , or 'gpu'. You can use this syntax with either of the preceding syntaxes.

Examples

Classify Image Regions Using Fast R-CNN

Configure a Fast R-CNN object detector and use it to classify objects within multiple regions of an image.

Load a fastRCNNObjectDetector object that is pretrained to detect stop signs.

```
data = load('rcnnStopSigns.mat','fastRCNN');
fastRCNN = data.fastRCNN;
```

Read in a test image containing a stop sign.
I = imread('stopSignTest.jpg');
figure
imshow(I)

Specify regions of interest to classify within the test image.

```
rois = [llll6 143 33 27
    347 168 36 54];
```

Classify the image regions and inspect the output labels and classification scores. The labels come from the ClassNames property of the detector.
[labels,scores] = classifyRegions(fastRCNN,I,rois)

```
labels = 2x1 categorical array
    stopSign
    Background
scores = 2x1 single column vector
    0.9969
    1.0000
```

The detector has high confidence in the classifications. Display the classified regions on the test image.

```
detectedI = insertObjectAnnotation(I,'rectangle',rois,cellstr(labels));
```

figure
imshow(detectedI)

Input Arguments

detector - Fast R-CNN object detector

fastRCNNObjectDetector object
Fast R-CNN object detector, specified as a fastRCNNObjectDetector object. To create this object, call the trainFastRCNNObjectDetector function with training data as input.

I - Input image

grayscale image | RGB image
Input image, specified as a real, nonsparse, grayscale or RGB image.
Data Types: uint8|uint16|int16|double | single|logical

rois - Regions of interest

M-by-4 matrix
Regions of interest within the image, specified as an M-by-4 matrix defining M rectangular regions. Each row contains a four-element vector of the form [x y width height]. This vector specifies the upper left corner and size of a region in pixels.

resource - Hardware resource

'auto' (default)|'gpu'|'cpu'
Hardware resource used to classify image regions, specified as 'auto', 'gpu', or 'cpu'.

- 'auto' - Use a GPU if it is available. Otherwise, use the CPU.
- 'gpu' - Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a CUDA enabled NVIDIA GPU with a compute capability of 3.0 or higher. If a suitable GPU is not available, the function returns an error.
- ' cpu' - Use the CPU.

Example: 'ExecutionEnvironment', 'cpu'

Output Arguments

labels - Classification labels of regions
M-by-1 categorical array

Classification labels of regions, returned as an M-by- 1 categorical array. M is the number of regions of interest in rois. Each class name in labels corresponds to a classification score in scores and a region of interest in rois. classifyRegions obtains the class names from the input detector.

scores - Highest classification score per region

M-by-1 vector of values in the range [0,1]
Highest classification score per region, returned as an M-by-1 vector of values in the range [0, 1]. M is the number of regions of interest in rois. Each classification score in scores corresponds to a class name in labels and a region of interest in rois. A higher score indicates higher confidence in the classification.

allScores - All classification scores per region

M-by- N matrix of values in the range $[0,1]$
All classification scores per region, returned as an M-by- N matrix of values in the range $[0,1] . M$ is the number of regions in rois. N is the number of class names stored in the input detector. Each row of classification scores in allscores corresponds to a region of interest in rois. A higher score indicates higher confidence in the classification.

See Also

Apps
Image Labeler | Video Labeler
\section*{Functions}
trainFastRCNNObjectDetector

Objects

fastRCNNObjectDetector

Introduced in R2017a

trainFastRCNNObjectDetector

Train a Fast R-CNN deep learning object detector

Syntax

trainedDetector = trainFastRCNNObjectDetector(trainingData, network, options)
trainedDetector = trainFastRCNNObjectDetector(trainingData, checkpoint,options)
trainedDetector $=$ trainFastRCNNObjectDetector(trainingData, detector, options)
trainedDetector = trainFastRCNNObjectDetector (\qquad
,'RegionProposalFcn',proposalFcn)
trainedDetector = trainFastRCNNObjectDetector (__ ,Name, Value)
[trainedDetector,info] = trainFastRCNNObjectDetector(\qquad

Description

trainedDetector = trainFastRCNNObjectDetector(trainingData, network, options) trains a Fast R-CNN (regions with convolution neural networks) object detector using deep learning. You can train a Fast R-CNN detector to detect multiple object classes.

This function requires that you have Deep Learning Toolbox. It is recommended that you also have Parallel Computing Toolbox to use with a CUDA-enabled NVIDIA GPU with compute capability 3.0 or higher.
trainedDetector = trainFastRCNNObjectDetector(trainingData, checkpoint, options) resumes training from a detector checkpoint.
trainedDetector = trainFastRCNNObjectDetector(trainingData, detector, options) continues training a detector with additional training data or performs more training iterations to improve detector accuracy.
trainedDetector = trainFastRCNNObjectDetector(\qquad
, 'RegionProposalFcn' , proposalFcn) optionally trains a custom region proposal
function, proposalFcn, using any of the previous inputs. If you do not specify a proposal function, then the function uses a variation of the Edge Boxes[2] algorithm.
trainedDetector $=$ trainFastRCNNObjectDetector(\qquad , Name, Value) uses additional options specified by one or more Name, Value pair arguments.
[trainedDetector,info] = trainFastRCNNObjectDetector(\qquad) also returns information on the training progress, such as training loss and accuracy, for each iteration.

Examples

Train Fast R-CNN Stop Sign Detector

Load training data.

```
data = load('rcnnStopSigns.mat', 'stopSigns', 'fastRCNNLayers');
stopSigns = data.stopSigns;
fastRCNNLayers = data.fastRCNNLayers;
```

Add fullpath to image files.

```
stopSigns.imageFilename = fullfile(toolboxdir('vision'),'visiondata', ...
    stopSigns.imageFilename);
```

Randomly shuffle data for training.

```
rng(0);
shuffledIdx = randperm(height(stopSigns));
stopSigns = stopSigns(shuffledIdx,:);
```

Create an imageDatastore using the files from the table.

```
imds = imageDatastore(stopSigns.imageFilename);
```

Create a boxLabelDatastore using the label columns from the table.
blds = boxLabelDatastore(stopSigns(:,2:end));
Combine the datastores.

```
ds = combine(imds, blds);
```

The stop sign training images have different sizes. Preprocess the data to resize the image and boxes to a predefined size.

```
ds = transform(ds,@(data)preprocessData(data,[920 968 3]));
```

Set the network training options.

```
options = trainingOptions('sgdm', ...
    'MiniBatchSize', 10, ...
    'InitialLearnRate', le-3, ...
    'MaxEpochs', 10, ...
    'CheckpointPath', tempdir);
```

Train the Fast R-CNN detector. Training can take a few minutes to complete.

```
frcnn = trainFastRCNNObjectDetector(ds, fastRCNNLayers , options, ...
    'NegativeOverlapRange', [0 0.1],
    'PositiveOverlapRange', [0.7 1]);
```

Training a Fast R-CNN Object Detector for the following object classes:

* stopSign
--> Extracting region proposals from training datastore...done.

Training on single GPU.

| Epoch | Iteration | Time Elapsed (hh:mm:ss) | Mini-batch Loss | Mini-batch Accuracy | Mini-batch RMSE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 00:00:29 | 0.3787 | 93.59\% | 0.96 |
| 10 | 10 | 00:05:14 | 0.3032 | 98.52\% | 0.95 |

Detector training complete.

Test the Fast R-CNN detector on a test image.

```
img = imread('stopSignTest.jpg');
```

Run the detector.
[bbox, score, label] = detect(frcnn, img);

Display detection results.

```
detectedImg = insertObjectAnnotation(img,'rectangle',bbox,score);
figure
imshow(detectedImg)
```


Supporting Functions

```
function data = preprocessData(data,targetSize)
% Resize image and bounding boxes to the targetSize.
scale = targetSize(1:2)./size(data{1},[1 2]);
data{1} = imresize(data{1},targetSize(1:2));
bboxes = round(data{2});
```

```
data{2} = bboxresize(bboxes,scale);
end
```


Input Arguments

trainingData - Labeled ground truth

datastore | table
Labeled ground truth, specified as a datastore or a table.
Each bounding box must be in the format $[x y$ width height].

- If you use a datastore, calling the datastore with the read and readall functions must return a cell array or table with three columns, \{images,boxes,labels .
- images - The first column must be a cell vector of images that can be grayscale, RGB, or a M-by- N-by- P multichannel image.).
- boxes - The second column must be a cell vector that contains M-by-4 matrices of bounding boxes in the format [x, y,width,height]. The vectors represent the location and size of bounding boxes for the objects in each image.
- labels - The third column must be a cell vector that contains M-by- 1 categorical vectors containing object class names. All categorical data returned by the datastore must contain the same categories.

You can use the combine function to create the datastore to use for training.

- imageDatastore - Create a datastore containing images.
- boxLabelDatastore - Create a datastore containing bounding boxes and labels.
- combine(imds,blds) - Combine images, bounding boxes, and labels into one datastore.

For more information, see "Datastores for Deep Learning" (Deep Learning Toolbox).

- If you use a table, the table must have two or more columns. The first column of the table must contain image file names with paths. The images must be grayscale or truecolor (RGB) and they can be in any format supported by imread. Each of the remaining columns must be a cell vector that contains M-by- 4 matrices that represent a single object class, such as vehicle, flower, or stop sign. The columns contain 4element double arrays of M bounding boxes in the format [x, y,width,height]. The format specifies the upper-left corner location and size of the bounding box in the
corresponding image. To create a ground truth table, you can use the Image Labeler app or Video Labeler app. To create a table of training data from the generated ground truth, use the objectDetectorTrainingData function.

Network, specified as a SeriesNetwork, an array of Layer objects, a layerGraph object, or by the network name. The network is trained to classify the object classes defined in the trainingData table. The SeriesNetwork, Layer, and layerGraph objects are available in the Deep Learning Toolbox.

- When you specify the network as a SeriesNetwork, an array of Layer objects, or by the network name, the network is automatically transformed into a Fast R-CNN network by adding an ROI max pooling layer, and new classification and regression layers to support object detection. Additionally, the GridSize property of the ROI max pooling layer is set to the output size of the last max pooling layer in the network.
- The array of Layer objects must contain a classification layer that supports the number of object classes, plus a background class. Use this input type to customize the learning rates of each layer. An example of an array of Layer objects:

```
layers = [imageInputLayer([[28 28 3])
    convolution2dLayer([5 5],10)
```

```
reluLayer()
fullyConnectedLayer(10)
softmaxLayer()
classificationLayer()];
```

- When you specify the network as SeriesNetwork, Layer array, or network by name, the weights for additional convolution and fully-connected layers that you add to create the network, are initialized to 'narrow-normal'.
- The network name must be one of the following valid network names. You must also install the corresponding Add-on.

| Network Name | Feature Extraction Layer Name | ROI Pooling Layer OutputSi ze | Description |
| :---: | :---: | :---: | :---: |
| alexnet | 'relu5' | [6 6] | Last max pooling layer is replaced by ROI max pooling layer |
| vgg16 | 'relu5_3' | [7 7] | |
| vgg19 | 'relu5_4' | | |
| squeezenet | 'fire5-concat' | [14 14] | |
| resnet18 | 'res4b_relu' | | ROI pooling layer is inserted after the feature extraction layer. |
| resnet50 | $\begin{aligned} & \text { 'activation_40_re } \\ & \text { lu' } \end{aligned}$ | | |
| resnet101 | 'res4b22_relu' | | |
| googlenet | 'inception_4doutput' | | |
| $\begin{aligned} & \text { mobilenetv } \\ & 2 \end{aligned}$ | 'block_13_expand relu' | | |
| $\begin{aligned} & \text { inceptionv } \\ & 3 \end{aligned}$ | 'mixed7' | [17 17] | |
| inceptionr esnetv2 | 'block17_20_ac' | | |

- The LayerGraph object must be a valid Fast R-CNN object detection network. You can also use a LayerGraph object to train a custom Fast R-CNN network.

Tip If your network is a DAGNetwork, use the layerGraph function to convert the network to a LayerGraph object. Then, create a custom Fast R-CNN network as described by the "Create Fast R-CNN Object Detection Network" example.

See "Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN" to learn more about how to create a Fast R-CNN network.

options - Training options

training0ptions output

Training options, returned by the training0ptions function from the Deep Learning Toolbox. To specify solver and other options for network training, use training0ptions.

Note trainFastRCNNObjectDetector does not support these training options:

- The Plots value: 'training-progress'
- The ValidationData, ValidationFrequency, or ValidationPatience options
- The OutputFcn option.
- The training0ptions 'once' and 'every-epoch' Shuffle options are not supported for combined datastore inputs.
- The trainingOptions 'parallel' and 'multi-gpu' ExecutionEnvironment options are not supported when you use a combined datastore input.

checkpoint - Saved detector checkpoint
 fastRCNNObjectDetector object

Saved detector checkpoint, specified as a fastRCNNObjectDetector object. To save the detector after every epoch, set the 'CheckpointPath' property when using the trainingOptions function. Saving a checkpoint after every epoch is recommended because network training can take a few hours.

To load a checkpoint for a previously trained detector, load the MAT-file from the checkpoint path. For example, if the 'CheckpointPath ' property of options is '/ tmp ' , load a checkpoint MAT-file using:

```
data = load('/tmp/faster_rcnn_checkpoint__105__2016_11_18___14_25_08.mat');
```

The name of the MAT-file includes the iteration number and timestamp of when the detector checkpoint was saved. The detector is saved in the detector variable of the file. Pass this file back into the trainFastRCNNObjectDetector function:
frcnn = trainFastRCNNObjectDetector(stopSigns,...
data.detector,options);

detector - Previously trained Fast R-CNN object detector fastRCNNObjectDetector object

Previously trained Fast R-CNN object detector, specified as a fastRCNNObjectDetector object.
proposalFcn - Region proposal method
function handle
Region proposal method, specified as a function handle. If you do not specify a region proposal function, the function implements a variant of the EdgeBoxes[2] algorithm. The function must have the form:

```
[bboxes,scores] = proposalFcn(I)
```

The input, I, is an image defined in the trainingData table. The function must return rectangular bound boxes, bboxes, in an m-by- 4 array. Each row of bboxes contains a four-element vector, [x, y, width, height]. This vector specifies the upper-left corner and size of a bounding box in pixels. The function must also return a score for each bounding box in an m-by- 1 vector. Higher score values indicate that the bounding box is more likely to contain an object. The scores are used to select the strongest n regions, where n is defined by the value of NumStrongestRegions.

Dependencies

If you do not specify a custom proposal function and you use a table for the input training data, the function uses a variation of the Edge Boxes algorithm. If you use a datastore for input training data for multichannel images, you must specify a custom region proposal function.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, . . . , NameN, ValueN.

Example: 'PositiveOverlapRange',[0.75 1]

PositiveOverlapRange - Bounding box overlap ratios for positive training samples
 ```[0.5 1] (default)| two-element vector```

Bounding box overlap ratios for positive training samples, specified as the commaseparated pair consisting of 'PositiveOverlapRange' and a two-element vector. The vector contains values in the range [0,1]. Region proposals that overlap with ground truth bounding boxes within the specified range are used as positive training samples.

The overlap ratio used for both the PositiveOverlapRange and NegativeOverlapRange is defined as:

$$
\frac{\operatorname{area}(A \cap B)}{\operatorname{area}(A \cup B)}
$$

A and B are bounding boxes.

NegativeOverlapRange - Bounding box overlap ratios for negative training samples

[0.1 0.5] (default)|two-element vector

Bounding box overlap ratios for negative training samples, specified as the commaseparated pair consisting of NegativeOverlapRange and a two-element vector. The vector contains values in the range [0,1]. Region proposals that overlap with the ground truth bounding boxes within the specified range are used as negative training samples.

The overlap ratio used for both the Positive0verlapRange and NegativeOverlapRange is defined as:

$$
\frac{\operatorname{area}(A \cap B)}{\operatorname{area}(A \cup B)}
$$

A and B are bounding boxes.

NumStrongestRegions - Maximum number of strongest region proposals 2000 (default) | positive integer

Maximum number of strongest region proposals to use for generating training samples, specified as the comma-separated pair consisting of 'NumStrongestRegions' and a positive integer. Reduce this value to speed up processing time at the cost of training accuracy. To use all region proposals, set this value to Inf.

NumRegionsToSample - Number of region proposals 128 (default) | integer

Number of region proposals to randomly sample from each training image, specified by an integer. Reduce the number of regions to sample to reduce memory usage and speedup training. Reducing the value can also decrease training accuracy.

SmallestImageDimension - Length of smallest image dimension
 [] (default) | positive integer

Length of smallest image dimension, either width or height, specified as the commaseparated pair consisting of 'SmallestImageDimension' and a positive integer. Training images are resized such that the length of the shortest dimension is equal to the specified integer. By default, training images are not resized. Resizing training images helps reduce computational costs and memory used when training images are large. Typical values range from 400-600 pixels.

Dependencies

- The SmallestImageDimension property only supports table input training data. To resize the input data of a datastore input, use the transform function.

FreezeBatchNormalization - Frozen batch normalization true (default) | false

Frozen batch normalization during training, specified as the comma-separated pair consisting of 'FreezeBatchNormalization' and true or false. The value indicates whether the input layers to the network are frozen during training. Set this value to true if you are training with a small mini-batch size. Small batch sizes result in poor estimates of the batch mean and variance that is required for effective batch normalization.

If you do not specify a value for 'FreezeBatchNormalization', the function sets the property to

- true if the 'MiniBatchSize' name-value argument for the training0ptions function is less than 8.
- false if the 'MiniBatchSize' name-value argument for the training0ptions function is greater than or equal to 8 .

You must specify a value for 'FreezeBatchNormalization' to overide this default behavior.

Output Arguments

trainedDetector - Trained Fast R-CNN object detector fastRCNNObjectDetector object

Trained Fast R-CNN object detector, returned as a fastRCNNObjectDetector object.

info - Training information

structure
Training information, returned as a structure with the following fields. Each field is a numeric vector with one element per training iteration. Values that have not been calculated at a specific iteration are represented by NaN .

- TrainingLoss - Training loss at each iteration. This is the combination of the classification and regression loss used to train the Fast R-CNN network.
- TrainingAccuracy - Training set accuracy at each iteration
- TrainingRMSE - Training root mean square error (RMSE) for the box regression layer
- BaseLearnRate - Learning rate at each iteration

Tips

- To accelerate data preprocessing for training, trainFastRCNNObjectDetector automatically creates and uses a parallel pool based on your parallel preference settings. For more details about setting these preferences, see parallel preference settings. Using parallel computing preferences requires Parallel Computing Toolbox.
- VGG-16, VGG-19, ResNet-101, and Inception-ResNet-v2 are large models. Training with large images can produce "Out of Memory" errors. To mitigate these errors, try one or more of these options:
- Reduce the size of your images by using the 'SmallestImageDimension' argument.
- Decrease the value of the 'NumRegionsToSample' name-value argument value.
- This function supports transfer learning. When you input a network by name, such as ' resnet50' , then the function automatically transforms the network into a valid Fast R-CNN network model based on the pretrained resnet50 model. Alternatively, manually specify a custom Fast R-CNN network by using the LayerGraph extracted
from a pretrained DAG network. For more details, see "Create Fast R-CNN Object Detection Network".
- This table describes how to transform each named network into a Fast R-CNN network. The feature extraction layer name specifies which layer is processed by the ROI pooling layer. The ROI output size specifies the size of the feature maps output by the ROI pooling layer.

| Network Name | Feature Extraction Layer Name | ROI
 Pooling
 Layer
 OutputSi
 ze | Description |
| :---: | :---: | :---: | :---: |
| alexnet | 'relu5' | [6 6] | Last max pooling layer is replaced by ROI max pooling layer |
| vgg16 | 'relu5_3' | [77] | |
| vgg19 | 'relu5_4' | | |
| squeezenet | 'fire5-concat' | [14 14] | |
| resnet18 | 'res4b_relu' | | ROI pooling layer is inserted after the feature extraction layer. |
| resnet50 | ```'activation_40_re lu'``` | | |
| resnet101 | 'res4b22_relu' | | |
| googlenet | 'inception_4doutput' | | |
| $\begin{aligned} & \text { mobilenetv } \\ & 2 \end{aligned}$ | 'block_13_expand relu' | | |
| inceptionv
 3 | 'mixed7' | [17 17] | |
| inceptionr esnetv2 | 'block17_20_ac' | | |

To modify and transform a network into a Fast R-CNN network, see "Design an RCNN, Fast R-CNN, and a Faster R-CNN Model".

- Use the training0ptions function to enable or disable verbose printing.

References

[1] Girshick, Ross. "Fast R-CNN." Proceedings of the IEEE International Conference on Computer Vision. 2015.
[2] Zitnick, C. Lawrence, and Piotr Dollar. "Edge Boxes: Locating Object Proposals From Edges." Computer Vision-ECCV 2014. Springer International Publishing, 2014, pp. 391-405.

Extended Capabilities

Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox ${ }^{\mathrm{TM}}$.

To run in parallel, set 'UseParallel' to true or enable this by default using the Computer Vision Toolbox preferences.

For more information, see "Parallel Computing Toolbox Support".

See Also

Apps
 Image Labeler | Video Labeler

Functions

estimateAnchorBoxes | objectDetectorTrainingData| trainFasterRCNNObjectDetector|trainRCNNObjectDetector| trainingOptions

Objects
Layer|SeriesNetwork|boxLabelDatastore|fastRCNNObjectDetector

Topics

"Anchor Boxes for Object Detection"

[^1]
peopleDetectorACF

Detect people using aggregate channel features

Syntax

```
detector = peopleDetectorACF
detector = peopleDetectorACF(name)
```


Description

detector $=$ peopleDetectorACF returns a pretrained upright people detector using aggregate channel features (ACF). The detector is an acf0bjectDetector object, and is trained using the INRIA person data set.
detector $=$ peopleDetectorACF (name) returns a pretrained upright people detector based on the specified model name.

Examples

Detect People Using Aggregated Channel Features

Load the upright people detector.
detector $=$ peopleDetectorACF;
Read an image. Detect people in the image.

```
I = imread('visionteaml.jpg');
[bboxes,scores] = detect(detector,I);
```

Annotate detected people with bounding boxes and their detection scores.

```
I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
```

```
imshow(I)
title('Detected People and Detection Scores')
```


Input Arguments

name - ACF classification model

'inria-100x41' (default) | 'caltech-50x21'
ACF classification model, specified as 'inria-100x41' or 'caltech-50x21'. The 'inria-100x41' model was trained using the INRIA Person data set. The
' caltech-50x21' model was trained using the Caltech Pedestrian data set.

Output Arguments

detector - Trained ACF-based object detector
 acf0bjectDetector object

Trained ACF-based object detector, returned as an acf0bjectDetector object. The detector is trained to detect upright people in an image.

References

[1] Dollar, P., R. Appel, S. Belongie, and P. Perona. "Fast Feature Pyramids for Object Detection." IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 36, Issue 8, 2014, pp. 1532-1545.
[2] Dollar P., C. Wojek, B. Shiele, and P. Perona. "Pedestrian Detection: An Evaluation of the State of the Art." IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 34, Issue 4, 2012, pp. 743-761.
[3] Dollar, P., C., Wojek, B. Shiele, and P. Perona. "Pedestrian Detection: A Benchmark." IEEE Conference on Computer Vision and Pattern Recognition. 2009.

See Also

acf0bjectDetector| detect | selectStrongestBbox|trainACFObjectDetector |vision.CascadeObjectDetector|vision.PeopleDetector

Topics

"Tracking Pedestrians from a Moving Car"
"Point Feature Types"
Introduced in R2017a

objectDetectorTrainingData

Create training data for an object detector

Syntax

```
[imds,blds] = objectDetectorTrainingData(gTruth)
trainingDataTable = objectDetectorTrainingData(gTruth)
    = objectDetectorTrainingData(gTruth,Name,Value)
```


Description

[imds,blds] = objectDetectorTrainingData(gTruth) creates an image datastore and a box label datastore training data from the specified ground truth.

You can combine the image and box label datastores using combine(imds,blds) to create a datastore needed for training. Use the combined datastore with the training functions, such as trainACFObjectDetector, trainYOLOv20bjectDetector, trainFastRCNNObjectDetector, trainFasterRCNNObjectDetector, and trainRCNNObjectDetector.

This function supports parallel computing using multiple MATLAB workers. Enable parallel computing using the "Computer Vision Toolbox Preferences" dialog.
trainingDataTable $=$ objectDetectorTrainingData(gTruth) returns a table of training data from the specified ground truth. You can use the table to train an object detector using the training functions.
___ = objectDetectorTrainingData(gTruth, Name, Value) returns a table of training data with additional options specified by one or more name-value pair arguments. If you create the groundTruth objects in gTruth using a video file or a custom data source, then you can specify any combination of name-value pair arguments. If you create the groundTruth objects from an image collection or image sequence data source, then you can specify only the 'SamplingFactor' name-value pair argument.

Examples

Train a YOLO v2 Vehicle Detector

Train a vehicle detector based on a YOLO v2 network.
Add the folder containing images to the workspace.

```
imageDir = fullfile(matlabroot,'toolbox','vision','visiondata','vehicles');
addpath(imageDir);
Load the vehicle ground truth data.
data = load('vehicleTrainingGroundTruth.mat');
gTruth = data.vehicleTrainingGroundTruth;
Load the detector containing the layerGraph object for training.
```

```
vehicleDetector = load('yolov2VehicleDetector.mat');
```

vehicleDetector = load('yolov2VehicleDetector.mat');
lgraph = vehicleDetector.lgraph
lgraph = vehicleDetector.lgraph
lgraph =
lgraph =
LayerGraph with properties:
LayerGraph with properties:
Layers: [25\times1 nnet.cnn.layer.Layer]
Layers: [25\times1 nnet.cnn.layer.Layer]
Connections: [24×2 table]

```
        Connections: [24×2 table]
```

Create an image datastore and box label datastore using the ground truth object.
[imds,bxds] = objectDetectorTrainingData(gTruth);
Combine the datastores.

```
cds = combine(imds,bxds);
```

Configure training options.

```
options = trainingOptions('sgdm', ...
    'InitialLearnRate', 0.001, ...
    'Verbose',true, ...
    'MiniBatchSize',16, ...
    'MaxEpochs',30, ...
```

```
'Shuffle','every-epoch', ...
'VerboseFrequency',10);
```

Train the detector.
[detector,info] = trainYOLOv20bjectDetector(cds,lgraph,options);
Training on single CPU.

| Epoch | Iteration | Time Elapsed
 (hh:mm:ss) | Mini-batch RMSE | Mini-batch Loss | Base Learning Rate |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 00: 00:00 | 7.83 | 61.4 | 0.00 |
| 1 | 10 | 00:00:05 | 2.12 | 4.5 | 0.00 |
| 2 | 20 | 00:00:11 | 1.39 | 1.9 | 0.00 |
| 2 | 30 | 00:00:16 | 1.83 | 3.3 | 0.00 |
| 3 | 40 | 00:00:22 | 1.56 | 2.4 | 0.00 |
| 3 | 50 | 00:00:27 | 1.60 | 2.5 | 0.00 |
| 4 | 60 | 00:00:32 | 1.52 | 2.3 | 0.00 |
| 4 | 70 | 00:00:37 | 1.58 | 2.5 | 0.00 |
| 5 | 80 | 00:00:43 | 1.54 | 2.4 | 0.00 |
| 5 | 90 | 00:00:48 | 1.20 | 1.5 | 0.00 |
| 6 | 100 | 00:00:53 | 1.16 | 1.3 | 0.00 |
| 7 | 110 | 00:00:58 | 1.02 | 1.0 | 0.00 |
| 7 | 120 | 00:01:03 | 1.05 | 1.1 | 0.00 |
| 8 | 130 | 00:01:09 | 1.13 | 1.3 | 0.00 |
| 8 | 140 | 00:01:14 | 1.06 | 1.1 | 0.00 |
| 9 | 150 | 00:01:19 | 1.15 | 1.3 | 0.00 |
| 9 | 160 | 00:01:24 | 1.03 | 1.1 | 0.00 |
| 10 | 170 | 00:01:30 | 1.10 | 1.2 | 0.00 |
| 10 | 180 | 00:01:35 | 0.90 | 0.8 | 0.00 |
| 11 | 190 | 00:01:40 | 0.67 | 0.4 | 0.00 |
| 12 | 200 | 00:01:45 | 0.87 | 0.8 | 0.00 |
| 12 | 210 | 00:01:50 | 0.73 | 0.5 | 0.00 |
| 13 | 220 | 00:01:56 | 1.00 | 1.0 | 0.00 |
| 13 | 230 | 00:02:01 | 0.73 | 0.5 | 0.00 |
| 14 | 240 | 00:02:06 | 0.97 | 0.9 | 0.00 |
| 14 | 250 | 00:02:11 | 0.76 | 0.6 | 0.00 |
| 15 | 260 | 00:02:17 | 0.99 | 1.0 | 0.00 |
| 15 | 270 | 00:02:22 | 0.76 | 0.6 | 0.00 |
| 16 | 280 | 00:02:27 | 0.71 | 0.5 | 0.00 |
| 17 | 290 | 00: 02:32 | 0.79 | 0.6 | 0.00 |
| 17 | 300 | 00:02:38 | 0.77 | 0.6 | 0.00 |
| 18 | 310 | 00:02:43 | 0.80 | 0.6 | 0.00 |
| 18 | 320 | 00:02:48 | 0.74 | 0.5 | 0.00 |

19
19

Read a test image.
I = imread('highway.png');
Run the detector.
[bboxes,scores] = detect(detector,I);
Display the results.

```
if(~isempty(bboxes))
    I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
end
figure
imshow(I)
```


Train ACF-Based Stop Sign Detector

Use training data to train an ACF-based object detector for stop signs
Add the folder containing images to the MATLAB path.

```
imageDir = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata', 'stopSignImages');
addpath(imageDir);
Load ground truth data, which contains data for stops signs and cars.
load('stopSignsAndCarsGroundTruth.mat','stopSignsAndCarsGroundTruth')
```

View the label definitions to see the label types in the ground truth.
stopSignsAndCarsGroundTruth.LabelDefinitions
Select the stop sign data for training.

```
stopSignGroundTruth = selectLabels(stopSignsAndCarsGroundTruth,'stopSign');
```

Create the training data for a stop sign object detector.

```
trainingData = objectDetectorTrainingData(stopSignGroundTruth);
summary(trainingData)
```

Variables:
imageFilename: 41×1 cell array of character vectors

```
stopSign: 41×1 cell
```

Train an ACF-based object detector.
acfDetector = trainACFObjectDetector(trainingData,'NegativeSamplesFactor',2);
ACF Object Detector Training
The training will take 4 stages. The model size is 34×31.
Sample positive examples(~100\% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.

Stage 1:

Sample negative examples($\sim 100 \%$ Completed)
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 19 weak learners.
Stage 2:
Sample negative examples(~100\% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed.
The trained classifier has 20 weak learners.
Stage 3:
Sample negative examples(~100\% Completed)
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and 84 negative examples...Completed. The trained classifier has 54 weak learners.

Stage 4:
Sample negative examples(~100\% Completed)

```
Found 84 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 42 positive examples and }84\mathrm{ negative examples...Completed.
The trained classifier has 61 weak learners.
ACF object detector training is completed. Elapsed time is 30.3579 seconds.
```

Test the ACF-based detector on a sample image.

```
I = imread('stopSignTest.jpg');
bboxes = detect(acfDetector,I);
```

Display the detected object.
annotation = acfDetector.ModelName;
I = insertObjectAnnotation(I,'rectangle',bboxes,annotation);
figure
imshow(I)

Remove the image folder from the path.
rmpath(imageDir);

Train ACF-Based Vehicle Detector

Use training data to train an ACF-based object detector for vehicles.
imageDir = fullfile(matlabroot,'toolbox','driving','drivingdata','vehiclesSequence'); addpath(imageDir);

Load the ground truth data.
load vehicleGroundTruth.mat
Create the training data for an object detector for vehicles

```
trainingData = objectDetectorTrainingData(gTruth,'SamplingFactor',2);
```

Train the ACF-based object detector.
acfDetector = trainACFObjectDetector(trainingData,'ObjectTrainingSize',[20 20]);
ACF Object Detector Training
The training will take 4 stages. The model size is 20×20.
Sample positive examples(~100\% Completed)
Compute approximation coefficients...Completed.
Compute aggregated channel features...Completed.
Stage 1:
Sample negative examples(~100\% Completed)
Compute aggregated channel features...Completed.
Train classifier with 71 positive examples and 355 negative examples...Completed.
The trained classifier has 68 weak learners.
Stage 2:
Sample negative examples(~100\% Completed)
Found 76 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 71 positive examples and 355 negative examples...Completed. The trained classifier has 120 weak learners.

Stage 3:

```
Sample negative examples(~100% Completed)
Found 54 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with 71 positive examples and 355 negative examples...Completed.
The trained classifier has }170\mathrm{ weak learners.
Stage 4:
Sample negative examples(~100% Completed)
Found 63 new negative examples for training.
Compute aggregated channel features...Completed.
Train classifier with }71\mathrm{ positive examples and }355\mathrm{ negative examples...Completed.
The trained classifier has }215\mathrm{ weak learners.
ACF object detector training is completed. Elapsed time is 28.4547 seconds.
```

Test the ACF detector on a test image.
I = imread('highway.png');
[bboxes, scores] = detect(acfDetector,I,'Threshold',1);

Select the detection with the highest classification score.
[~,idx] = max(scores);
Display the detected object.
annotation = acfDetector.ModelName;
I = insertObjectAnnotation(I,'rectangle',bboxes(idx,:), annotation);

figure

imshow(I)

Remove the image folder from the path.
rmpath(imageDir);

Input Arguments

gTruth - Ground truth data

scalar | array of groundTruth objects
Ground truth data, specified as a scalar or an array of groundTruth objects. You can create ground truth objects from existing ground truth data by using the groundTruth object.

If you use custom data sources in groundTruth with parallel computing enabled, then the reader function is expected to work with a pool of MATLAB workers to read images from the data source in parallel.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, ..., NameN, ValueN.

Example: 'SamplingFactor',5

SamplingFactor - Factor for subsampling images

'auto ' (default) | integer | vector of integers
Factor for subsampling images in the ground truth data source, specified as 'auto', an integer, or a vector of integers. For a sampling factor of N, the returned training data includes every N th image in the ground truth data source. The function ignores ground truth images with empty label data.

| Value | Sampling Factor |
| :--- | :--- |
| 'auto ' | The sampling factor N is 5 for data sources
 with timestamps, and 1 for a collection of
 images. |
| Integer | All ground truth data sources in gTruth
 are sampled with the same sampling factor
 N. |
| Vector of integers | The k th ground truth data source in
 gTruth is sampled with a sampling factor
 of $N(k)$. |

WriteLocation - Name of folder
 pwd (current working folder) (default) | string scalar | character vector

Folder name to write extracted images to, specified as a string scalar or character vector. The specified folder must exist and have write permissions. This property applies only for groundTruth objects created using a video file or a custom data source.

ImageFormat - Image file format
 PNG (default) | string scalar | character vector

Image file format, specified as a string scalar or character vector. File formats must be supported by imwrite. This argument applies only for groundTruth objects created using a video file or a custom data source.

NamePrefix - Prefix for output image file names

string scalar | character vector
Prefix for output image file names, specified as a string scalar or character vector. The image files are named as:

```
<name_prefix><image_number>.<image_format>
```

The default value uses the name of the data source that the images were extracted from, strcat(sourceName,' '). This property applies only for groundTruth objects created using a video file or a custom data source.

Verbose - Flag to display training progress true (default) | false

Flag to display training progress at the MATLAB command line, specified as either true or false. This property applies only for groundTruth objects created using a video file or a custom data source.

Output Arguments

imds - Image datastore

imageDatastore object
Image datastore, returned as an imageDatastore object containing images extracted from the gTruth objects. The images in imds contain at least one class of annotated labels. The function ignores images that are not annotated.

blds - Box label datastore
 boxLabelDatastore object

Box label datastore, returned as a boxLabelDatastore object. The datastore contains categorical vectors for ROI label names and M-by- 4 matrices of M bounding boxes. The locations and sizes of the bounding boxes are represented as double M-by- 4 element vectors in the format [x, y, width,height].

trainingDataTable - Training data table
 table

Training data table, returned as a table with two or more columns. The first column of the table contains image file names with paths. The images can be grayscale or truecolor
(RGB) and in any format supported by imread. Each of the remaining columns contain M -by-4 matrices that represent a single object class, such as vehicle, flower, or biological cell type. The columns contain M bounding boxes in the format [x, y, width,height]. The format specifies the upper-left corner location and size of the bounding box in the corresponding image. To create a ground truth table, you can use the Image Labeler app or Video Labeler app.

```
stopSigns X
```

囲 27×2 table

| | 1 imageFilename | $\begin{gathered} 2 \\ \text { stopSign } \end{gathered}$ | |
| :---: | :---: | :---: | :---: |
| 1 | 'stopSignlmages/image005.jpg' | [$980,393,31,56]$ | |
| 2 | 'stopSignlmages/image006.jpg' | [1.0408e+03,354.7500,73,72] | |
| 3 | 'stopSignlmages/image009.jpg' | [635,254,65,63] | |
| 4 | 'stopSignlmages/image013.jpg' | [398.2050,261.2996,349.6806,385.6992] | |
| 5 | 'stopSignlmages/image014.jpg' | [365.1880,306.3229,357.1845,421.7178] | |
| 6 | 'stopSignlmages/image020.jpg' | [653.7500,307.7500,73.0000,76] | |
| 7 | 'stopSignlmages/image021.jpg' | [589.7500,239.7500,181,196.0000] | |
| 8 | 'stopSignlmages/image022.jpg' | [509.7500,470.7500,43,73] | |

The output table ignores any sublabel or attribute data present in the input gTruth object.

See Also

Apps

Ground Truth Labeler | Image Labeler | Video Labeler

Functions

estimateAnchorBoxes | trainACFObjectDetector|
trainFastRCNNObjectDetector|trainFasterRCNNObjectDetector|
trainRCNNObjectDetector|trainYOLOv20bjectDetector

Objects

acf0bjectDetector| boxLabelDatastore | groundTruth|imageDatastore

Topics
 "Datastores for Deep Learning" (Deep Learning Toolbox)
 "Training Data for Object Detection and Semantic Segmentation"

Introduced in R2017a

estimateFisheyeParameters

Calibrate fisheye camera

Syntax

[fisheyeParams,imagesUsed,estimationErrors] = estimateFisheyeParameters(imagePoints, worldPoints,imageSize) [\qquad] = estimateFisheyeParameters(\qquad , Name, Value)

Description

[fisheyeParams,imagesUsed,estimationErrors] = estimateFisheyeParameters(imagePoints, worldPoints, imageSize) returns a fisheyeParameters object containing estimates for the intrinsic and extrinsic parameters of a fisheye camera. The function also returns the images you used to estimate the fisheye parameters and the standard estimation errors for the single camera calibration.
[__]] = estimateFisheyeParameters(\qquad , Name, Value) configures the fisheyeParams object properties specified by one or more Name, Value pair arguments, using the previous syntax. Unspecified properties have their default values.

Examples

Fisheye Camera Calibration

Use calibration images to detect a checkerboard calibration pattern. Then calibrate the camera using corneres extracted from the pattern and visualize the results.

Gather a set of calibration images.

```
images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata',...
    'calibration','gopro'));
imageFileNames = images.Files;
```

Detect the calibration pattern from the images.

```
[imagePoints,boardSize] = detectCheckerboardPoints(imageFileNames);
```

Generate world coordinates for the corners of the checkerboard squares.

```
squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);
```

Estimate the fisheye camera calibration parameters based on the image and world points.

```
I = readimage(images,1);
imageSize = [size(I,1) size(I,2)];
params = estimateFisheyeParameters(imagePoints,worldPoints,imageSize);
```

Visualize the calibration accuracy.
figure
showReprojectionErrors(params);

Visualize the camera extrinsics.
figure
showExtrinsics(params);

Extrinsic Parameters Visualization

drawnow

Plot the detected and reprojected points.

figure

imshow(I);
hold on
plot(imagePoints(:,1,1),imagePoints(:,2,1),'go');
plot(params.ReprojectedPoints(:,1,1),params.ReprojectedPoints(:,2,1),'r+');
legend('Detected Points','Reprojected Points');
hold off

Input Arguments

imagePoints - Key points of calibration pattern

M-by-2-by-numImages array
Key points of calibration pattern, specified as an M-by-2-by-numImages array of [x, y] intrinsic image coordinates. The number of images, numImages, must be greater than 2. The number of keypoint coordinates in each pattern, M, must be greater than 3 .

Data Types: single | double

worldPoints - Key points of calibration pattern in world coordinates M-by-2 matrix

Key points of calibration pattern in world coordinates, specified as an M-by-2 matrix of M $[x, y]$ world coordinates. Because the pattern must be planar, the z-coordinates are zero.
Data Types: single | double

imageSize - Image size

[mrows ncols] vector
Image size, specified as an [mrows ncols] vector.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1,Value1, . . . , NameN, ValueN.

Example: 'WorldUnits','mm' sets the world point units to millimeters.

EstimateAlignment - Estimate axes alignment false (default) | true

Estimate the axes alignment, specified as the comma-separated pair consisting of 'EstimateAlignment' and false or true. Set to true if the optical axis of the fisheye lens is not perpendicular to the image plane.

WorldUnits - World point units

'mm' (default) | character vector | string scalar
World point units, specified as the comma-separated pair consisting of 'WorldUnits' and a character vector or string scalar. This argument is used simply to store the unit type and does not affect any calculations.

Output Arguments

fisheyeParams - Fisheye camera parameters
fisheyeParameters object

Fisheye camera parameters, returned as a fisheyeParameters object.

imagesUsed - Images used to estimate camera parameters

P-by-1 logical array
Images used to the estimate camera parameters, returned as a P-by-1 logical array. P corresponds to the number of images. A logical true value indicates the index of an image used to estimate the camera parameters.

estimationErrors - Standard errors of estimated parameters fisheyeCalibrationErrors object

Standard errors of estimated parameters, returned as a fisheyeCalibrationErrors object.

References

[1] Scaramuzza, D., A. Martinelli, and R. Siegwart. "A Toolbox for Easy Calibrating Omindirectional Cameras." Proceedings to IEEE International Conference on Intelligent Robots and Systems (IROS 2006). Beijing, China, October 7-15, 2006.
[2] Urban, S., J. Leitloff, and S. Hinz. "Improved Wide-Angle, Fisheye and Omnidirectional Camera Calibration." ISPRS Journal of Photogrammetry and Remove Sensing. Vol. 108, 2015, pp.72-79.

See Also

detectCheckerboardPoints|fisheyeCalibrationErrors|fisheyeIntrinsics |fisheyeParameters|generateCheckerboardPoints|showExtrinsics| showReprojectionErrors|undistortFisheyeImage

Topics

"Fisheye Calibration Basics"

Introduced in R2017b

undistortFisheyelmage

Correct fisheye image for lens distortion

Syntax

```
J = undistortFisheyeImage(I,intrinsics)
[J,camIntrinsics] = undistortFisheyeImage(I,intrinsics)
[___] = undistortFisheyeImage( ___,interp)
[____] = undistortFisheyeImage(
```

\qquad

``` ,Name, Value)
```


Description

J = undistortFisheyeImage(I,intrinsics) removes lens distortion for image I and returns the result as image J.
[J, camIntrinsics] = undistortFisheyeImage(I,intrinsics) also returns a cameraIntrinsics object, which corresponds to a virtual perspective camera that produces image J.
\qquad] = undistortFisheyeImage(\qquad , interp) specifies the interpolation method, interp, using the preceding syntaxes.
\qquad] = undistortFisheyeImage(\qquad , Name, Value) specifies one or more Name, Value pair arguments. Unspecified properties have their default values.

Examples

Correct Fisheye Image for Lens Distortion

Remove lens distortion from a fisheye image by detecting a checkboard calibration pattern and calibrating the camera. Then, display the results.

Gather a set of checkerboard calibration images.

```
images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
    'calibration','gopro'));
```

Detect the calibration pattern from the images.
[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);
Generate world coordinates for the corners of the checkerboard squares.

```
squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);
```

Estimate the fisheye camera calibration parameters based on the image and world points. Use the first image to get the image size.

```
I = readimage(images,1);
imageSize = [size(I,1) size(I,2)];
params = estimateFisheyeParameters(imagePoints,worldPoints,imageSize);
```

Remove lens distortion from the first image I and display the results.
J1 = undistortFisheyeImage(I,params.Intrinsics);
figure
imshowpair(I,J1,'montage')
title('Original Image (left) vs. Corrected Image (right)')

J2 = undistortFisheyeImage(I,params.Intrinsics,'OutputView','full');
figure
imshow(J2)
title('Full Output View')

Input Arguments

I - Input image

M-by- N-by-3 truecolor image | M-by- N 2-D grayscale image

Input image, specified as an M-by- N-by-3 truecolor or M-by- N 2-D grayscale image. The input image must be real and nonsparse.
Data Types: single | double | int16|uint8|uint16|logical

intrinsics - Fisheye intrinsic camera parameters

fisheyeIntrinsics object
Fisheye intrinsic camera parameters, specified as a fisheyeIntrinsics object.

interp - Interpolation method

'bilinear' (default)|'nearest' | 'cubic'
Interpolation method to use on the input image, specified as 'bilinear', 'nearest', or 'cubic'.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: 'ScaleFactor', 2 sets the scale factor to increase the zoom in the camera view.

OutputView - Size of the output image

'same' (default)|'full' | 'valid'
Size of the output image, specified as either 'same', 'full', or 'valid'.

ScaleFactor - Scale factor for focal length

1 (default) | scalar | [sx sy] vector
Scale factor for the focal length of a virtual camera perspective, in pixels, specified as a scalar or an [sx sy] vector. Specify a vector to scale the x and y axes individually. Increase the scale to zoom in the perspective of the camera view.

FillValues - Output pixel fill values

0 (default) | scalar | 3-element vector
Output pixel fill values, specified as the comma-separated pair consisting of 'FillValues' and scalar or 3-element vector. When the corresponding inverse-
transformed location in the input image lies completely outside the input image boundaries, you use the fill values for output pixels. When you use a 2-D grayscale input image, FillValues must be a scalar. When you use a truecolor image, FillValues can be a scalar or a 3-element vector of RGB values.

Output Arguments

J - Undistorted image
 M-by- N-by-3 truecolor image | M-by- N 2-D grayscale image

Undistorted image, returned as an M-by- N-by-3 truecolor or M-by- N 2-D grayscale image.
Data Types: single | double | int16|uint8|uint16|logical

camIntrinsics - Undistorted intrinsics of virtual camera
 cameraIntrinsics object

Undistorted intrinsics of a virtual camera, returned as a cameraIntrinsics object. These intrinsics are for a camera that has a perspective that produces the undistorted image.

See Also

cameraIntrinsics|estimateFisheyeParameters|fisheyeIntrinsics| undistortFisheyePoints

Topics

"Fisheye Calibration Basics"

Introduced in R2017b

undistortFisheyePoints

Correct point coordinates for fisheye lens distortion

Syntax

```
undistortedPoints = undistortFisheyePoints(points,intrinsics)
undistortedPoints = undistortFisheyePoints(___,scaleFactor)
[
```

\qquad

``` ,camIntrinsics] = undistortFisheyePoints(
``` \(\qquad\)
```

[___,reprojectionErrors] = undistortFisheyePoints(

```
\(\qquad\)
``` )
```


Description

undistortedPoints = undistortFisheyePoints(points,intrinsics) returns point coordinates corrected for fisheye lens distortion.
undistortedPoints = undistortFisheyePoints(__ , scaleFactor) returns corrected point coordinates using the scaleFactor and the previous inputs.
[__ , camIntrinsics] = undistortFisheyePoints(__) also returns a cameraIntrinsics object, which corresponds to a virtual perspective camera that produces undistorted points.
[\square ,reprojectionErrors] = undistortFisheyePoints(\qquad) also returns reprojectionErrors used to evaluate the accuracy of undistorted points. The function computes the reprojection errors by applying distortion to the points, and taking the distances between the result and the corresponding input points.

Examples

Undistort Checkerboard Points from Fisheye Image

Undistort and translate checkerboard points detected in a calibration image, and then display the results.

Create an imageDatastore object containing checkerboard calibration images.

```
images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata',...
    calibration','gopro'));
imageFileNames = images.Files;
```

Detect the calibration pattern from the images.
[imagePoints,boardSize] = detectCheckerboardPoints(imageFileNames);
Generate world coordinates for the corners of the checkerboard squares.

```
squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);
```

Estimate the fisheye parameters from the image and world points. Get the image size from the first image.

```
I = readimage(images,10);
imageSize = [size(I,1) size(I,2)];
params = estimateFisheyeParameters(imagePoints,worldPoints,imageSize);
```

In the first image, detect the checkerboard points.

```
points = detectCheckerboardPoints(I);
```

Undistort the points and image.

```
[undistortedPoints,intrinsics1] = undistortFisheyePoints(points,params.Intrinsics);
```

[J, intrinsics2] = undistortFisheyeImage(I,params.Intrinsics,'OutputView','full');

Translate the undistorted points.

```
newOrigin = intrinsics2.PrincipalPoint - intrinsics1.PrincipalPoint;
undistortedPoints = [undistortedPoints(:,1) + newOrigin(1), ...
    undistortedPoints(:,2) + newOrigin(2)];
```

Display the results.

```
figure
imshow(I)
hold on
plot(points(:,1),points(:,2),'r*-')
title('Detected Points')
hold off
```


figure
imshow(J)
hold on
plot(undistortedPoints(:, 1), undistortedPoints(:, 2),'g*-')
title('Undistorted Points')
hold off

Undistorted Points

Input Arguments

points - Input points
M-by-2 matrix
Input points, specified as an M-by- 2 matrix of M [xy] coordinates.

intrinsics - Fisheye intrinsic camera parameters

fisheyeIntrinsics object

Fisheye intrinsic camera parameters, specified as a fisheyeIntrinsics object.

scaleFactor - Scale factor for points

1 (default)| scalar|[sx sy] vector
Scale factor for points, specified as a scalar or an [sx sy] vector. Specify a vector to scale the x and y axes individually. Increase the scale to zoom in the perspective of the camera view.

Output Arguments

undistortedPoints - Undistorted points

M-by-2 matrix
Undistorted points, returned as an M-by-2 matrix of M number of [x y] coordinates. If points is double, then undistortedPoints is double. Otherwise, undistortedPoints is single.

Data Types: single | double

camIntrinsics - Undistorted intrinsics of virtual camera
 cameraIntrinsics object

Undistorted intrinsics of a virtual camera, returned as a cameraIntrinsics object. These intrinsics are for a camera that has a perspective that produces the undistorted image.

reprojectionErrors - Reprojection errors

M-by-1 vector
Reprojection errors, returned as an M-by- 1 vector. The function computes the reprojection errors by applying distortion to the undistorted points and taking the distances between the results and the corresponding input points. Errors are expressed in pixels.

See Also

fisheyeIntrinsics|undistortFisheyeImage

Topics
"Fisheye Calibration Basics"
Introduced in R2017b

pointsToWorld

Determine world coordinates of image points

Syntax

```
worldPoints = pointsToWorld(cameraParams,rotationMatrix,
translationVector,imagePoints)
```


Description

worldPoints = pointsToWorld(cameraParams, rotationMatrix, translationVector, imagePoints) returns world points on the $X-Y$ plane, which correspond to the input image points. Points are converted using the input rotation matrix, translation vector, and camera parameters.

Examples

Map Image Points of Fisheye Image to World Coordinates

Map the points of a fisheye image to world coordinates and compare these points to the ground truth points. A series of checkerboard pattern images are used to estimate the fisheye parameters and calibrate the camera.

Create a set of checkerboard calibration images.

```
images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata' ,...
    'calibration','gopro'));
```

Detect the checkerboard corners in the images. Leave the last image for testing.
[imagePoints,boardSize] = detectCheckerboardPoints(images.Files(1:end-1));
Generate the world coordinates of the checkerboard corners in the pattern-centric coordinate system, with the upper-left corner at $(0,0)$.

```
squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);
```

Estimate the fisheye camera parameters from the image and world points. Use the first image to get image size.

```
I = imread(images.Files{end});
imageSize = [size(I,1) size(I,2)];
fisheyeParams = estimateFisheyeParameters(imagePoints,worldPoints,imageSize);
intrinsics = fisheyeParams.Intrinsics;
```

Find the reference object in the new image.
imagePoints = detectCheckerboardPoints(I);
Compute new extrinsics.

```
[R,t] = extrinsics(imagePoints,worldPoints,intrinsics);
```

Map image points to world coordinates in the X-Y plane.

```
newWorldPoints = pointsToWorld(intrinsics,R,t,imagePoints);
```

Compare estimated world points to the ground truth points.

```
plot(worldPoints(:,1),worldPoints(:,2),'gx');
hold on
plot(newWorldPoints(:,1),newWorldPoints(:,2),'ro');
legend('Ground Truth','Estimates');
hold off
```


Input Arguments

cameraParams - Camera parameters

cameraParameters object | fisheyeParameters object
Camera parameters, specified as a cameraParameters or fisheyeParameters object. These objects contain the intrinsic, extrinsic, and lens distortion parameters of a camera.

- To create a cameraParameters, use the estimateCameraParameters function or the Camera Calibrator app.
- To create a fisheyeParameters, use the estimateFisheyeParameters function.

rotationMatrix - 3-D rotation

3-by-3 matrix
3-D rotation of the world coordinates relative to the image coordinates, specified as a 3-by-3 matrix. The rotation matrix, together with the translation vector, enable you to transform points from the world coordinate system to the camera coordinate system. The rotationMatrix and translationVector inputs must be the same data type.

Data Types: double | single

translationVector - 3-D translation

1-by-3 vector
3-D translation of the world coordinates relative to the image coordinates, specified as a 1-by-3 vector. The translation vector, together with the rotation matrix, enable you to transform points from the world coordinate system to the camera coordinate system. The rotationMatrix and translationVector inputs must be the same data type.

Data Types: double | single
imagePoints - Image points
M-by-2 matrix
Image points, specified as an M-by- 2 matrix containing $M[x, y]$ coordinates of image points.

When using the cameraParameters object as the cameraParams input, pointsToWorld does not account for lens distortion. Therefore, the imagePoints input must contain image points detected in the undistorted image, or they must be undistorted
using the undistortPoints function. For a fisheyeIntrinsics object, the image points are distorted.

Output Arguments

worldPoints - World coordinates

M-by-2 matrix
World coordinates, returned as an M-by-2 matrix. M represents the number of undistorted points in $[x, y]$ world coordinates.

See Also

Functions

cameraPoseToExtrinsics |estimateCameraParameters|
estimateFisheyeParameters|estimateWorldCameraPose|extrinsics|
extrinsicsToCameraPose|undistortImage|undistortPoints|worldToImage
Objects
cameraParameters|fisheyeIntrinsics|fisheyeParameters

Apps

Camera Calibrator | Stereo Camera Calibrator

Introduced in R2016a

worldTolmage

Project world points into image

Syntax

```
imagePoints = worldToImage(cameraParams,rotationMatrix,
translationVector,worldPoints)
imagePoints = worldToImage( ___ 'ApplyDistortion',distort)
```


Description

imagePoints = worldToImage(cameraParams,rotationMatrix, translationVector, worldPoints) returns the projection of 3-D world points into an image given camera parameters, the rotation matrix, and the translation vector.
imagePoints = worldToImage(___ 'ApplyDistortion',distort) returns the projection with the option of applying distortion. This syntax is supported for nonfisheye camera parameters.

Examples

Project World Points into Image

Create a set of calibration images.

```
images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata', ...
    'calibration','slr'));
```

Detect the checkerboard corners in the images.
[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);
Generate the world coordinates of the checkerboard corners in the pattern-centric coordinate system, with the upper-left corner at $(0,0)$.

```
squareSize = 29; % in millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);
```

Calibrate the camera.
cameraParams = estimateCameraParameters(imagePoints,worldPoints);
Load the image at a new location.
imOrig = imread(fullfile(matlabroot,'toolbox','vision','visiondata', ... 'calibration','slr','image9.jpg'));
imshow(imOrig,'InitialMagnification',30);

Undistort the image.
imUndistorted = undistortImage(imOrig,cameraParams);

Find a reference object in the new image.
[imagePoints,boardSize] = detectCheckerboardPoints(imUndistorted);
Compute new extrinsics.
[R,t] = extrinsics(imagePoints,worldPoints,cameraParams);
Add a z-coordinate to the world points.

```
zCoord = zeros(size(worldPoints,1),1);
worldPoints = [worldPoints zCoord];
```

Project the world points back into the original image.

```
projectedPoints = worldToImage(cameraParams,R,t,worldPoints);
hold on
plot(projectedPoints(:,1),projectedPoints(:,2),'g*-');
legend('Projected points');
hold off
```


Input Arguments

cameraParams - Camera parameters

cameraParameters object | fisheyeParameters object
Camera parameters, specified as a cameraParameters or fisheyeParameters object. These objects contain the intrinsic, extrinsic, and lens distortion parameters of a camera.

- To create a cameraParameters, use the estimateCameraParameters function or the Camera Calibrator app.
- To create a fisheyeParameters, use the estimateFisheyeParameters function.

rotationMatrix - 3-D rotation

3-by-3 matrix
3-D rotation of the world coordinates relative to the image coordinates, specified as a 3-by-3 matrix. The rotation matrix, together with the translation vector, enable you to transform points from the world coordinate system to the camera coordinate system. The rotationMatrix and translationVector inputs must be the same data type.

Data Types: double | single

translationVector - 3-D translation

1-by-3 vector
3-D translation of the world coordinates relative to the image coordinates, specified as a 1-by-3 vector. The translation vector, together with the rotation matrix, enable you to transform points from the world coordinate system to the camera coordinate system. The rotationMatrix and translationVector inputs must be the same data type.

Data Types: double \| single

worldPoints - 3-D world points

M-by-3 matrix
3-D world points, specified as an M-by-3 matrix containing $M[x, y, z]$ coordinates of 3-D world points.

distort - Apply lens distortion

false (default) | true
Option to apply lens distortion, specified as false or true. When you set this argument to true, the function applies lens distortion to the output imagePoints.

This argument is valid only when using a cameraParameters object as the cameraParams input.

Output Arguments

imagePoints - Image points

M-by-2 matrix
Image points, returned as an M-by-2 matrix of $M[x, y]$ point coordinates.

See Also

Apps
 Camera Calibrator | Stereo Camera Calibrator

Functions

cameraParameters|cameraPoseToExtrinsics |estimateCameraParameters | estimateWorldCameraPose|extrinsics|extrinsicsToCameraPose| fisheyeIntrinsics|pointsToWorld|relativeCameraPose|undistortImage| undistortPoints

Introduced in R2016b

toStruct

Convert a camera parameters object into a struct

Syntax
paramStruct = toStruct(cameraParams)
\section*{Description}

paramStruct $=$ toStruct (cameraParams) returns a struct containing the camera parameters in the cameraParams input object. You can use the struct to create an identical cameraParameters object. Use the struct for C code generation. You can call toStruct, and then pass the resulting structure into the generated code, which recreates the cameraParameters object.

Input Arguments

cameraParams - Camera parameters

cameraParameters object
Camera parameters, specified as a cameraParameters object. The object contains the parameters for the camera.

Output Arguments

paramStruct - Camera parameters

struct
Camera parameters, returned as a struct.

See Also

cameraParameters

Topics
"Code Generation for Depth Estimation From Stereo Video"
Introduced in R2015a

displayErrors

Display standard errors of camera parameter estimates

Syntax

```
displayErrors(estimationErrors,cameraParams)
```


Description

displayErrors(estimationErrors, cameraParams) displays the camera parameters and corresponding standard errors.

Examples

Display Fisheye Camera Calibration Errors

Gather a set of checkerboard calibration images.

```
images = imageDatastore(fullfile(toolboxdir('vision'),'visiondata',...
    'calibration','gopro'));
```

Detect the calibration pattern from the images.

```
[imagePoints,boardSize] = detectCheckerboardPoints(images.Files);
```

Generate world coordinates for the corners of the checkerboard squares.

```
squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);
```

Estimate the fisheye parameters using image and world points. Use the first image to get the image size. Also, store the errors from the calibration.

```
I = readimage(images,1);
imageSize = [size(I,1) size(I,2)];
```

```
[params,~,errors] = estimateFisheyeParameters(imagePoints, ...
worldPoints,imageSize);
```

Display the standard errors of the estimated camera parameters.

displayErrors(errors,params);

Standard Errors of Estimated Camera Parameters

Intrinsics

Mapping coefficients: [875.0781 +/- 0.9451 Distortion center (pixels):[1005.8165 +/- 0.6871
Stretch matrix parameters:[$1.0000+/-0.0000$

```
-0.0003 +/- -0.0000 -0.0000
    743.0346 +/- 0.5578 ]
        0.0000 +/- 0.0000
            0.000
```

Extrinsics

Rotation vectors:

$-0.0267+/-$	0.0009
$0.2950+/-$	0.0009
$0.3442+/-$	0.0009
$-0.3784+/-$	0.0009
$0.4575+/-$	0.0009
$0.1089+/-$	0.0008
$0.0063+/-$	0.0008
$0.2797+/-$	0.0008
$-0.3295+/-$	0.0008
$-0.3543+/-$	0.0009
$0.3680+/-$	0.0008

0.0258
-0. 1967
-0. 1941
0.0829
-0. 1215
-0. 0386
0.0486
0.1509
0.0541
0.2637
-0. 1329
Translation vectors (mm):

$-82.6066+/-0.1356$
$-15.7750+/-0.1712$
$-56.7378+/-0.1884$
$-70.2875+/-0.1041$
$-46.9681+/-0.1569$
$-16.0260+/-0.1153$
-125.5877 +/- 0.1428
-72.5409 +/- 0.1260
$-24.8329+/-0.0745$
$-93.4074+/-0.1010$
$-51.9152+/-0.1600$
195.1106
241.7126
269.9739
157.0826
228.4060
162.6247
212.8055
173.7615
104.3541
155.8247
234.4075

Input Arguments

estimationErrors - Standard errors of estimated parameters cameraCalibrationErrors object | fisheyeCalibrationErrors object

Standard errors of estimated parameters, specified as a cameraCalibrationErrors or fisheyeCalibrationErrors object.

cameraParams - Camera parameters

cameraParameters object | fisheyeParameters object
Camera parameters, specified as a cameraParameters or fisheyeParameters object. These objects contain the intrinsic, extrinsic, and lens distortion parameters of a camera.

- To create a cameraParameters, use the estimateCameraParameters function or the Camera Calibrator app.
- To create a fisheyeParameters, use the estimateFisheyeParameters function.

See Also

Functions
 estimateCameraParameters |estimateFisheyeParameters

Objects

cameraParameters|fisheyeParameters

Apps

Camera Calibrator

Introduced in R2017b

info

Information about specified video file

Syntax

S = info(videoFReader)

Description

$S=$ info(videoFReader) returns a MATLAB structure, S, with information about the video file specified in the Filename property.

Input Arguments

videoFReader - Video file reader object

object (default)
Video file reader, specified as a vision.VideoFileReader System object.

Output Arguments

S - Information about input file

structure
Information about input file, returned as a structure. The fields and possible values for the structure S are described below:
Audio
Logical value indicating if the file has audio content.
Video
Logical value indicating if the file has video content.

VideoFrameRate	Frame rate of the video stream in frames per second. The value may vary from the actual frame rate of the recorded video, and takes into consideration any synchronization issues between audio and video streams when the file contains both audio and video content. This implies that video frames may be dropped if the audio stream leads the video stream by more than 1/(actual video frames per second).
VideoSize	Video size as a two-element numeric vector of the form:
VideoFormat	[VideoWidthInPixels, VideoHeight InPixels]
	Video signal format.

Introduced in R2012a

isDone

End-of-file status (logical)

Syntax

```
status = isDone(videoFReader)
```


Description

status = isDone(videoFReader) returns a logical value indicating that the VideoFileReader System object videoFReader, has reached the end of the multimedia file after playing it PlayCount number of times. After the object plays the file the number of times set by the PlayCount property, it sets the status to true.

Examples

Read and Play a Video File

Load the video using a video reader object.

```
videoFReader = vision.VideoFileReader('ecolicells.avi');
```

Create a video player object to play the video file.

```
videoPlayer = vision.VideoPlayer;
```

Use a while loop to read and play the video frames. Pause for 0.1 seconds after displaying each frame.

```
while ~isDone(videoFReader)
    videoFrame = videoFReader();
    videoPlayer(videoFrame);
    pause(0.1)
end
```


Release the objects.
release(videoPlayer);
release(videoFReader);

Input Arguments

videoFReader - Video file reader object
object (default)
Video file reader, specified as a vision.VideoFileReader System object.

Output Arguments

status - Status of reader file
true|false

Status of reader file, returned as true or false.

Introduced in R2012a

isOpen

Visible or hidden status for player

Syntax

isOpen(player)

Description

isOpen($p l a y e r$) returns true or false to indicate whether the player is visible.

Examples

Terminate a Point Cloud Processing Loop

Close the display of continuous point cloud player
Add data to the point cloud player.

```
player = pcplayer([0 1],[0 1],[0 1]);
```

File Edit View Insert Tools Desktop Window Help

Display continuous player figure. Use the is0pen method to check if player figure window is open.

```
while isOpen(player)
    ptCloud = pointCloud(rand(1000,3,'single'));
        view(player, ptCloud);
end
```

Terminate the while-loop by closing pcplayer figure window.

Input Arguments

player - Player
object
Video player, specified as a pcplayer, or vision. DeployableVideoPlayer object.
Introduced in R2012a

segmentGroundFromLidarData

Segment ground points from organized lidar data

Syntax

groundPtsIdx = segmentGroundFromLidarData(ptCloud)
groundPtsIdx = segmentGroundFromLidarData(ptCloud,Name,Value)

Description

groundPtsIdx = segmentGroundFromLidarData(ptCloud) segments organized 3D lidar data, ptCloud , into ground and nonground parts. The lidar sensor must be mounted horizontally such that all ground points are observed in the lidar scan closest to the sensor.
groundPtsIdx = segmentGroundFromLidarData(ptCloud,Name,Value) sets properties using one or more name-value pairs. Enclose each property name in quotes. For example, segmentGroundFromLidarData(ptCloud,'ElevationAngleDelta',5)

Examples

Segment and Plot Organized Lidar Data

Segment ground points and nonground points from an organized lidar point cloud. Create organized point clouds from these segmentations, and display them.

Load an organized lidar, point cloud.
ld = load('drivingLidarPoints.mat');
Segment ground points from the organized lidar point cloud.
groundPtsIdx = segmentGroundFromLidarData(ld.ptCloud);

Create an organized point cloud containing only these ground points by using the select function. Display this point cloud.

```
groundPtCloud = select(ld.ptCloud,groundPtsIdx);
figure
pcshow(groundPtCloud)
```


Create an organized point cloud containing only the nonground points. Specify a threshold of 0.5 meters.
nonGroundPtCloud = select(ld.ptCloud, \sim groundPtsIdx,'OutputSize','full'); distThreshold = 0.5;
[labels,numClusters] = segmentLidarData(nonGroundPtCloud,distThreshold);

Display the nonground points cloud clusters.

```
figure
colormap(hsv(numClusters))
pcshow(nonGroundPtCloud.Location,labels)
title('Point Cloud Clusters')
```


Segment and Plot Ground Plane using PCAP File

Load Velodyne PCAP® to the workspace.
velodyneFileReaderObj = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E')

Create a point cloud player using pcplayer. Define its $x-, y$-, and z-axes limits, in meters, and label its axes.

```
xlimits = [-40 40];
ylimits = [-15 15];
zlimits = [-3 3];
player = pcplayer(xlimits,ylimits,zlimits);
Label the pcplayer axes.
```

```
xlabel(player.Axes,'X (m)')
```

xlabel(player.Axes,'X (m)')
ylabel(player.Axes,'Y (m)')
ylabel(player.Axes,'Y (m)')
zlabel(player.Axes,'Z (m)')

```
zlabel(player.Axes,'Z (m)')
```

Set the colormap for labeling points. Use RGB triplets to specify green for ground-plane points, and red for obstacle points.

```
colors = [0 1 0; 1 0 0];
greenIdx = 1;
redIdx = 2;
```

Iterate through the first 200 point clouds in the Velodyne PCAP file, using readFrame to read in the data. Segment the ground points from each point cloud. Color all ground points green and nonground points red. Plot the resulting lidar point cloud.

```
colormap(player.Axes,colors)
title(player.Axes,'Segmented Ground Plane of Lidar Point Cloud');
    for i = 1 : 200
    % Read current frame.
    ptCloud = velodyneFileReaderObj.readFrame(i);
    % Create label array.
    colorLabels = zeros(size(ptCloud.Location,1),size(ptCloud.Location,2));
    % Find the ground points.
    groundPtsIdx = segmentGroundFromLidarData(ptCloud);
    % Map color ground points to green.
    colorLabels(groundPtsIdx (:)) = greenIdx;
    % Map color nonground points to red.
    colorLabels(~groundPtsIdx (:)) = redIdx;
    % Plot the results.
```

view(player, ptCloud.Location, colorLabels)
end

Segmented Ground Plane of Lidar Point Cloud

Input Arguments

ptCloud - Point cloud
pointCloud object

Point cloud, specified as a pointCloud object. ptCloud is an organized point cloud that stores $[x, y, z]$ point coordinates in an M-by- N-by-3 matrix.

Name-Value Pair Arguments

Example: 'ElevationAngleDelta',5

ElevationAngleDelta - Elevation angle difference threshold
 5 (default) | nonnegative scalar

Elevation angle difference threshold to identify ground points, specified as a nonnegative scalar. The function computes the elevation angle difference between one labeled ground point and its 4 -connected neighbors. The neighborhood point is labeled as ground if the difference is below the threshold. Typical values for ElevationAngleDelta are in the range of $[5,15]$ degrees. Increase this value to encompass more points from uneven ground surfaces.

InitialElevationAngle - Initial elevation angle threshold
 30 (default) | non-negative scalar

Initial elevation angle threshold to identify the ground point in the scanning line closest to the lidar sensor, specified as a non-negative scalar. The function marks a point as ground when the elevantion angle falls below this value. Typical values for InitialElevationAngle are in the range of 15 and 30 degrees.

Output Arguments

groundPtsIdx - Ground points index

logical matrix
Ground points index, returned as an M-by- N logical matrix. Elements with a true value, 1, indicate ground points. Elements with a false value, 0, indicate nonground points.

References

[1] Bogoslavskyi, I. "Efficient Online Segmentation for Sparse 3D Laser Scans." Journal of Photogrammetry, Remote Sensing and Geoinformation Science. Vol. 85, Number 1, 2017, pp. 41-52.

See Also

pcfitplane|pcsegdist|pointCloud|segmentLidarData| velodyneFileReader

Introduced in R2018b

[^0]: Example: showReprojectionErrors(cameraParams, 'Parent', ax)

[^1]: "Getting Started with R-CNN, Fast R-CNN, and Faster R-CNN" "Datastores for Deep Learning" (Deep Learning Toolbox)

 ## Introduced in R2017a

